T-Drive: Enhancing Driving Directions with Taxi Drivers' Intelligence
This paper presents a smart driving direction system leveraging the intelligence of experienced drivers. In this system, GPS-equipped taxis are employed as mobile sensors probing the traffic rhythm of a city and taxi drivers' intelligence in choosing driving directions in the physical world. We...
Uložené v:
| Vydané v: | IEEE transactions on knowledge and data engineering Ročník 25; číslo 1; s. 220 - 232 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.01.2013
|
| Predmet: | |
| ISSN: | 1041-4347, 1558-2191 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper presents a smart driving direction system leveraging the intelligence of experienced drivers. In this system, GPS-equipped taxis are employed as mobile sensors probing the traffic rhythm of a city and taxi drivers' intelligence in choosing driving directions in the physical world. We propose a time-dependent landmark graph to model the dynamic traffic pattern as well as the intelligence of experienced drivers so as to provide a user with the practically fastest route to a given destination at a given departure time. Then, a Variance-Entropy-Based Clustering approach is devised to estimate the distribution of travel time between two landmarks in different time slots. Based on this graph, we design a two-stage routing algorithm to compute the practically fastest and customized route for end users. We build our system based on a real-world trajectory data set generated by over 33,000 taxis in a period of three months, and evaluate the system by conducting both synthetic experiments and in-the-field evaluations. As a result, 60-70 percent of the routes suggested by our method are faster than the competing methods, and 20 percent of the routes share the same results. On average, 50 percent of our routes are at least 20 percent faster than the competing approaches. |
|---|---|
| AbstractList | This paper presents a smart driving direction system leveraging the intelligence of experienced drivers. In this system, GPS-equipped taxis are employed as mobile sensors probing the traffic rhythm of a city and taxi drivers' intelligence in choosing driving directions in the physical world. We propose a time-dependent landmark graph to model the dynamic traffic pattern as well as the intelligence of experienced drivers so as to provide a user with the practically fastest route to a given destination at a given departure time. Then, a Variance-Entropy-Based Clustering approach is devised to estimate the distribution of travel time between two landmarks in different time slots. Based on this graph, we design a two-stage routing algorithm to compute the practically fastest and customized route for end users. We build our system based on a real-world trajectory data set generated by over 33,000 taxis in a period of three months, and evaluate the system by conducting both synthetic experiments and in-the-field evaluations. As a result, 60-70 percent of the routes suggested by our method are faster than the competing methods, and 20 percent of the routes share the same results. On average, 50 percent of our routes are at least 20 percent faster than the competing approaches. |
| Author | Sun, Guangzhong Xie, Xing Zheng, Yu Yuan, Jing |
| Author_xml | – sequence: 1 givenname: Jing surname: Yuan fullname: Yuan, Jing email: yuanjing@mail.ustc.edu.cn organization: University of Science and Technology of China, Beijing – sequence: 2 givenname: Yu surname: Zheng fullname: Zheng, Yu email: yuzheng@microsoft.com organization: Microsoft Research Asia, Beijing – sequence: 3 givenname: Xing surname: Xie fullname: Xie, Xing email: xing.xie@microsoft.com organization: Microsoft Research Asia, Beijing – sequence: 4 givenname: Guangzhong surname: Sun fullname: Sun, Guangzhong email: gzsun@ustc.edu.cn organization: University of Science and Technology of China, Beijing |
| BookMark | eNp1UD1PwzAQtVCRaAsjE0s2Jpc7OyYOG2oDVFRiCXPkuOfWKLjIifj49yQtYkBiee90997T6U3YKOwCMXaOMEOE_Kp8XBQzAYg9wBEbo1KaC8xx1M-QIk9lmp2wSdu-AIDONI5ZUfJF9O90kxRha4L1YZMMiz37SLbzu9AmH77bJqX59PsjxfYyWYaOmsZvKFg6ZcfONC2d_fCUPd8V5fyBr57ul_PbFbdCZR13SHWmU0HOmrpGB87VBnUGWhMoQkpTgaBNLtZSqjp369qmuTUZKCMgBzll8pBr465tI7nK-s4ML3bR-KZCqIYmqqGJamiih8HF_7jeon818etf_cVB74noV3sNQkml5DfGNGop |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1016_j_trb_2016_08_005 crossref_primary_10_1145_3057280 crossref_primary_10_1007_s00778_017_0491_4 crossref_primary_10_1016_j_trc_2019_05_039 crossref_primary_10_1109_TIV_2019_2960935 crossref_primary_10_1145_3657640 crossref_primary_10_1016_j_jestch_2020_06_002 crossref_primary_10_3390_su15064767 crossref_primary_10_1007_s11704_019_9059_3 crossref_primary_10_1007_s11280_019_00700_1 crossref_primary_10_1016_j_trc_2020_102729 crossref_primary_10_1007_s11704_018_7249_z crossref_primary_10_1109_TVT_2020_2997712 crossref_primary_10_1145_3517335 crossref_primary_10_1145_3705005 crossref_primary_10_1007_s00778_015_0378_1 crossref_primary_10_1088_1742_6596_2006_1_012035 crossref_primary_10_1093_comjnl_bxz097 crossref_primary_10_1016_j_scs_2022_103924 crossref_primary_10_1109_TNSE_2019_2904530 crossref_primary_10_1016_j_trc_2021_103372 crossref_primary_10_1049_iet_its_2016_0195 crossref_primary_10_3390_ijgi6110373 crossref_primary_10_1016_j_trb_2017_03_010 crossref_primary_10_1109_TVCG_2016_2598416 crossref_primary_10_1007_s11277_021_08255_z crossref_primary_10_1145_3627819 crossref_primary_10_1145_2743025 crossref_primary_10_1007_s10115_014_0763_x crossref_primary_10_1109_JIOT_2024_3427676 crossref_primary_10_1145_2970819 crossref_primary_10_1007_s10707_022_00473_2 crossref_primary_10_1109_TITS_2014_2357835 crossref_primary_10_1109_TMC_2018_2863288 crossref_primary_10_1111_tgis_12689 crossref_primary_10_1016_j_ins_2019_12_014 crossref_primary_10_1007_s11704_014_4177_4 crossref_primary_10_1007_s10619_013_7139_1 crossref_primary_10_1109_TKDE_2017_2772907 crossref_primary_10_1007_s11042_023_15236_w crossref_primary_10_1109_TITS_2014_2298892 crossref_primary_10_3390_info13110508 crossref_primary_10_1007_s11280_016_0396_y crossref_primary_10_1007_s11707_015_0525_4 crossref_primary_10_1145_3329676 crossref_primary_10_1016_j_eswa_2023_122132 crossref_primary_10_1111_tgis_12192 crossref_primary_10_1016_j_future_2024_107488 crossref_primary_10_3233_IDA_192791 crossref_primary_10_1111_mice_12459 crossref_primary_10_1287_isre_2020_0946 crossref_primary_10_1145_3563457 crossref_primary_10_1007_s11276_019_02072_w crossref_primary_10_1016_j_tre_2024_103485 crossref_primary_10_1109_TETC_2015_2501846 crossref_primary_10_1145_3331450 crossref_primary_10_1111_poms_14056 crossref_primary_10_3390_su13010266 crossref_primary_10_1109_ACCESS_2020_2964099 crossref_primary_10_1007_s11042_020_10453_z crossref_primary_10_1016_j_physa_2018_02_064 crossref_primary_10_1016_j_pmcj_2014_01_003 crossref_primary_10_1109_TIM_2020_2973843 crossref_primary_10_1145_3013527 crossref_primary_10_1007_s11042_023_17464_6 crossref_primary_10_1016_j_trc_2021_103156 crossref_primary_10_1049_iet_its_2015_0065 crossref_primary_10_1016_j_trc_2017_03_013 crossref_primary_10_1007_s11390_022_2409_x crossref_primary_10_1016_j_trc_2022_103792 crossref_primary_10_1080_10447318_2025_2526573 crossref_primary_10_3390_app12168047 crossref_primary_10_1002_dac_5229 crossref_primary_10_1002_cpe_5332 crossref_primary_10_1109_TKDE_2015_2411278 crossref_primary_10_1007_s10707_021_00458_7 crossref_primary_10_1109_TBDATA_2017_2667700 crossref_primary_10_1109_TITS_2020_3040386 crossref_primary_10_1016_j_future_2023_02_011 crossref_primary_10_3390_ijgi10060398 crossref_primary_10_1007_s11047_014_9479_9 crossref_primary_10_3390_s20164571 crossref_primary_10_1631_FITEE_2300453 crossref_primary_10_3141_2643_02 crossref_primary_10_1016_j_trc_2019_04_018 crossref_primary_10_3389_fict_2017_00029 crossref_primary_10_1007_s11280_016_0414_0 crossref_primary_10_1080_13658816_2018_1458984 crossref_primary_10_1016_j_ins_2018_12_056 crossref_primary_10_1145_2543581_2543584 crossref_primary_10_1145_3543850 crossref_primary_10_1109_JSEN_2023_3347705 crossref_primary_10_1109_TBDATA_2017_2717978 crossref_primary_10_1371_journal_pone_0165597 crossref_primary_10_1109_TITS_2022_3169002 crossref_primary_10_1145_2560189 crossref_primary_10_1016_j_neucom_2016_02_085 crossref_primary_10_1109_TITS_2023_3247884 crossref_primary_10_1007_s10115_016_0948_6 crossref_primary_10_1109_TITS_2013_2262376 crossref_primary_10_1109_TITS_2021_3063199 crossref_primary_10_1145_3550486 crossref_primary_10_1109_TMC_2019_2915228 crossref_primary_10_1002_net_22256 crossref_primary_10_1049_itr2_12016 crossref_primary_10_1016_j_trc_2024_104549 crossref_primary_10_3233_MGS_200324 crossref_primary_10_1049_joe_2019_0872 crossref_primary_10_1016_j_commtr_2022_100075 crossref_primary_10_1016_j_tre_2023_103176 crossref_primary_10_3390_ijgi14040165 crossref_primary_10_1016_j_inffus_2018_11_002 crossref_primary_10_1109_ACCESS_2019_2922293 crossref_primary_10_1109_TETC_2017_2703784 crossref_primary_10_1109_TMC_2024_3471569 crossref_primary_10_1109_TKDE_2019_2940950 crossref_primary_10_1007_s11042_021_10755_w crossref_primary_10_1016_j_eswa_2020_114546 crossref_primary_10_1017_S147106841800011X crossref_primary_10_1016_j_eswa_2021_115733 crossref_primary_10_1177_0361198121999059 crossref_primary_10_1016_j_trpro_2017_05_076 crossref_primary_10_1109_TKDE_2019_2915231 crossref_primary_10_1109_TMC_2020_3043500 crossref_primary_10_3390_ijgi10020077 crossref_primary_10_1145_3267105 crossref_primary_10_1109_TPDS_2020_3037469 crossref_primary_10_1109_TITS_2017_2753468 crossref_primary_10_1016_j_trc_2020_102651 crossref_primary_10_1007_s11442_020_1726_7 crossref_primary_10_1109_TCDS_2016_2608500 crossref_primary_10_1109_TITS_2015_2461000 crossref_primary_10_3390_smartcities4020038 crossref_primary_10_1109_TMC_2021_3091324 crossref_primary_10_1016_j_procs_2019_04_046 crossref_primary_10_1080_03081060_2017_1340025 crossref_primary_10_1109_TITS_2014_2371815 crossref_primary_10_1109_TITS_2015_2426955 crossref_primary_10_3390_s22051748 crossref_primary_10_1145_3446679 crossref_primary_10_1007_s10707_015_0227_9 crossref_primary_10_1016_j_pmcj_2017_01_003 crossref_primary_10_1109_TKDE_2022_3220822 crossref_primary_10_1093_comnet_cnx008 crossref_primary_10_1109_JIOT_2025_3564518 crossref_primary_10_3390_ijgi14020058 crossref_primary_10_1016_j_trc_2021_103070 crossref_primary_10_1016_j_ins_2021_02_052 crossref_primary_10_1016_j_inffus_2020_01_002 crossref_primary_10_1109_TBDATA_2018_2872532 crossref_primary_10_1002_cpe_4735 crossref_primary_10_1109_TPDS_2016_2565480 crossref_primary_10_1007_s10994_021_06118_z crossref_primary_10_1109_TNSE_2024_3524576 crossref_primary_10_3390_s19061475 crossref_primary_10_1109_TITS_2023_3299277 crossref_primary_10_1109_MCOM_2013_6525604 crossref_primary_10_1109_ACCESS_2019_2926824 crossref_primary_10_1007_s10707_015_0238_6 crossref_primary_10_1109_TASE_2018_2865494 crossref_primary_10_3390_su11041077 crossref_primary_10_1080_13658816_2024_2442059 crossref_primary_10_1109_TVT_2015_2480964 crossref_primary_10_1109_ACCESS_2019_2916342 crossref_primary_10_1109_ACCESS_2019_2918765 crossref_primary_10_1145_2629592 crossref_primary_10_1007_s00778_019_00568_7 crossref_primary_10_1016_j_tra_2022_07_002 crossref_primary_10_1016_j_jtrangeo_2023_103544 crossref_primary_10_1109_TVCG_2016_2535234 crossref_primary_10_1007_s13177_019_00187_0 crossref_primary_10_1109_TVCG_2020_2992200 crossref_primary_10_1109_TKDE_2017_2776927 crossref_primary_10_1287_ijoc_2021_0112 crossref_primary_10_1109_TITS_2021_3089487 crossref_primary_10_1109_TKDE_2018_2854705 crossref_primary_10_1016_j_future_2016_06_034 crossref_primary_10_1109_TVT_2022_3176653 crossref_primary_10_1109_ACCESS_2019_2945205 |
| Cites_doi | 10.1145/956676.956693 10.1145/1644038.1644048 10.1145/1869790.1869807 10.1109/ITSC.2008.4732534 10.1145/1653771.1653820 10.1145/1367497.1367532 10.1016/0022-247x(66)90009-6 10.1145/79147.214078 10.1109/ICDE.2011.5767890 10.1007/s00778-010-0181-y 10.1109/ITSC.2010.5625144 10.1007/11853565_15 10.1109/ICDE.2006.71 10.1145/1869790.1869865 10.1145/1463434.1463513 10.1145/1409635.1409678 10.1109/ICDE.2011.5767844 10.1007/978-3-540-74819-9_47 10.1109/MDM.2010.14 10.4153/CJM-1961-015-3 10.1109/3468.594911 10.1287/opre.17.3.395 10.1016/j.jmp.2010.01.006 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TKDE.2011.200 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-2191 |
| EndPage | 232 |
| ExternalDocumentID | 10_1109_TKDE_2011_200 6025355 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 1OL 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TAF TN5 UHB VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c257t-f1eb7842efcabb1f0ffba187088e05e1e442108a92d335b9fdbc49ca705a20903 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 301 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312890500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sat Nov 29 08:09:16 EST 2025 Tue Nov 18 21:29:00 EST 2025 Wed Aug 27 02:33:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c257t-f1eb7842efcabb1f0ffba187088e05e1e442108a92d335b9fdbc49ca705a20903 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_6025355 crossref_citationtrail_10_1109_TKDE_2011_200 crossref_primary_10_1109_TKDE_2011_200 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-Jan. 2013-1-00 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-Jan. |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref11 Letchner (ref27) Dean (ref8) 1999 ref1 ref17 ref16 ref18 ref24 ref23 ref26 George (ref10) 1991 ref25 ref20 ref21 ref28 Gonzalez (ref22) Gühnemann (ref19) ref29 ref7 ref9 ref4 ref3 ref6 ref5 Hunter (ref2) |
| References_xml | – volume-title: Proc. Conf. Innovative Applications of Artificial Intelligence (NCAI) ident: ref27 article-title: Trip Router with Individualized Preferences (trip): Incorporating Personalization into Route Planning – ident: ref23 doi: 10.1145/956676.956693 – ident: ref16 doi: 10.1145/1644038.1644048 – volume-title: Proc. 33rd Int’l Conf. Very Large Data Bases (VLDB) ident: ref22 article-title: Adaptive Fastest Path Computation on a Road Network: A Traffic Mining Approach – ident: ref1 doi: 10.1145/1869790.1869807 – ident: ref12 doi: 10.1109/ITSC.2008.4732534 – ident: ref3 doi: 10.1145/1653771.1653820 – volume-title: Proc. Neural Information Processing Systems (NIPS) ident: ref2 article-title: Path and Travel Time Inference from GPS Probe Vehicle Data – ident: ref11 doi: 10.1145/1367497.1367532 – ident: ref13 doi: 10.1016/0022-247x(66)90009-6 – ident: ref6 doi: 10.1145/79147.214078 – year: 1999 ident: ref8 article-title: Continuous-Time Dynamic Shortest Path Algorithms – ident: ref29 doi: 10.1109/ICDE.2011.5767890 – ident: ref25 doi: 10.1007/s00778-010-0181-y – ident: ref17 doi: 10.1109/ITSC.2010.5625144 – ident: ref20 doi: 10.1007/11853565_15 – volume-title: ITS Working Papers ident: ref19 article-title: Monitoring Traffic and Emissions by Floating Car Data – ident: ref5 doi: 10.1109/ICDE.2006.71 – ident: ref15 doi: 10.1145/1869790.1869865 – ident: ref18 doi: 10.1145/1463434.1463513 – ident: ref21 doi: 10.1145/1409635.1409678 – ident: ref26 doi: 10.1109/ICDE.2011.5767844 – ident: ref24 doi: 10.1007/978-3-540-74819-9_47 – volume-title: Statistical Methods year: 1991 ident: ref10 – ident: ref4 doi: 10.1109/MDM.2010.14 – ident: ref9 doi: 10.4153/CJM-1961-015-3 – ident: ref28 doi: 10.1109/3468.594911 – ident: ref14 doi: 10.1287/opre.17.3.395 – ident: ref7 doi: 10.1016/j.jmp.2010.01.006 |
| SSID | ssj0008781 |
| Score | 2.5370822 |
| Snippet | This paper presents a smart driving direction system leveraging the intelligence of experienced drivers. In this system, GPS-equipped taxis are employed as... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 220 |
| SubjectTerms | Cities and towns data mining Driving behavior driving directions Geographic Information Systems Global Positioning System GPS trajectory Meteorology Road vehicles Spatial databases Spatial databases and GIS Trajectory |
| Title | T-Drive: Enhancing Driving Directions with Taxi Drivers' Intelligence |
| URI | https://ieeexplore.ieee.org/document/6025355 |
| Volume | 25 |
| WOSCitedRecordID | wos000312890500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VigEGCi2I8qUMCJaG5sPBCRuiqUCgiiGgblXsnKESSlFpET-fs5OGDDAwJXI8RGffnd8l9x7AKXPQVyLVSJUxm0lyxTAj4BoFXPkcleCGeP75gY9G4XgcPTagV_XCIKL5-Qwv9K35lp_N5FKXyvqXlKApP67BGue86NWqom7IjSApoQvCRD7jP3ya_eR-EBdknZ5uZKvln5qgisknw9b_3mQbtspzo3VdLPQONDBvQ2ulyWCVLtqGzRrBYAfixB7MKZ5dWXH-qpk18hdLD5hrEexo11m6GGsl6dfUPKQD4bl1V6Pq3IWnYZzc3NqlcIItyQMXtnKRbMw8VDIVwlWOouVwyTPDEJ0AXWSMkF6YRl7m-4GIVCYki2TKnSD1dOFmD5r5LMd9sByeIUaR8DwhmKTwhkL4BMBdCk7K5aILvZU5J7JkFdfiFm8Tgy6caKKtP9HW14qXXTirpr8XdBp_Texoq1eTSoMf_D58CBuekanQpZEjaC7mSzyGdfm5mH7MT8xG-QazYLto |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VggQMFFoQ5TMDgqWh-XBwwoZoqlYtFUNA3aLYOUMllKLSIn4-tpOGDjAwJXI8RM--O98l9x7ABbHQFSxRmSohJuHSFP1UJq6BR4VLUTCqieefh3Q08sfj4LECrbIXBhH1z2d4rW71t_x0yheqVNa-kQFaxsc1WPcIcey8W6v0uz7VkqQyv5BZkUvoD6NmOxp0wpyu01GtbCsRaEVSRUeUbu1_77ILO8XJ0bjLl3oPKpjVobZUZTAKI63D9grFYAPCyOzMpEe7NcLsVXFrZC-GGtDX3N3JfWeocqwRJV8T_VAeCa-M_gpZ5z48dcPovmcW0gkmlzY4N4WNEmXioOAJY7awhFwQW9qm76PloY0KP8tPAid1XY8FImWcBDyhlpc4qnRzANVsmuEhGBZNEYOAOQ5jhEsHh4y5MgW3pXsSNmVNaC3hjHnBK67kLd5inV9YQazQjxX6SvOyCZfl9PecUOOviQ2FejmpAPzo9-Fz2OxFD8N42B8NjmHL0aIVqlByAtX5bIGnsME_55OP2ZneNN-ff76v |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=T-Drive%3A+Enhancing+Driving+Directions+with+Taxi+Drivers%27+Intelligence&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Yuan%2C+Jing&rft.au=Zheng%2C+Yu&rft.au=Xie%2C+Xing&rft.au=Sun%2C+Guangzhong&rft.date=2013-01-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=25&rft.issue=1&rft.spage=220&rft.epage=232&rft_id=info:doi/10.1109%2FTKDE.2011.200&rft.externalDocID=6025355 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |