T-Drive: Enhancing Driving Directions with Taxi Drivers' Intelligence

This paper presents a smart driving direction system leveraging the intelligence of experienced drivers. In this system, GPS-equipped taxis are employed as mobile sensors probing the traffic rhythm of a city and taxi drivers' intelligence in choosing driving directions in the physical world. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering Jg. 25; H. 1; S. 220 - 232
Hauptverfasser: Yuan, Jing, Zheng, Yu, Xie, Xing, Sun, Guangzhong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.01.2013
Schlagworte:
ISSN:1041-4347, 1558-2191
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a smart driving direction system leveraging the intelligence of experienced drivers. In this system, GPS-equipped taxis are employed as mobile sensors probing the traffic rhythm of a city and taxi drivers' intelligence in choosing driving directions in the physical world. We propose a time-dependent landmark graph to model the dynamic traffic pattern as well as the intelligence of experienced drivers so as to provide a user with the practically fastest route to a given destination at a given departure time. Then, a Variance-Entropy-Based Clustering approach is devised to estimate the distribution of travel time between two landmarks in different time slots. Based on this graph, we design a two-stage routing algorithm to compute the practically fastest and customized route for end users. We build our system based on a real-world trajectory data set generated by over 33,000 taxis in a period of three months, and evaluate the system by conducting both synthetic experiments and in-the-field evaluations. As a result, 60-70 percent of the routes suggested by our method are faster than the competing methods, and 20 percent of the routes share the same results. On average, 50 percent of our routes are at least 20 percent faster than the competing approaches.
AbstractList This paper presents a smart driving direction system leveraging the intelligence of experienced drivers. In this system, GPS-equipped taxis are employed as mobile sensors probing the traffic rhythm of a city and taxi drivers' intelligence in choosing driving directions in the physical world. We propose a time-dependent landmark graph to model the dynamic traffic pattern as well as the intelligence of experienced drivers so as to provide a user with the practically fastest route to a given destination at a given departure time. Then, a Variance-Entropy-Based Clustering approach is devised to estimate the distribution of travel time between two landmarks in different time slots. Based on this graph, we design a two-stage routing algorithm to compute the practically fastest and customized route for end users. We build our system based on a real-world trajectory data set generated by over 33,000 taxis in a period of three months, and evaluate the system by conducting both synthetic experiments and in-the-field evaluations. As a result, 60-70 percent of the routes suggested by our method are faster than the competing methods, and 20 percent of the routes share the same results. On average, 50 percent of our routes are at least 20 percent faster than the competing approaches.
Author Sun, Guangzhong
Xie, Xing
Zheng, Yu
Yuan, Jing
Author_xml – sequence: 1
  givenname: Jing
  surname: Yuan
  fullname: Yuan, Jing
  email: yuanjing@mail.ustc.edu.cn
  organization: University of Science and Technology of China, Beijing
– sequence: 2
  givenname: Yu
  surname: Zheng
  fullname: Zheng, Yu
  email: yuzheng@microsoft.com
  organization: Microsoft Research Asia, Beijing
– sequence: 3
  givenname: Xing
  surname: Xie
  fullname: Xie, Xing
  email: xing.xie@microsoft.com
  organization: Microsoft Research Asia, Beijing
– sequence: 4
  givenname: Guangzhong
  surname: Sun
  fullname: Sun, Guangzhong
  email: gzsun@ustc.edu.cn
  organization: University of Science and Technology of China, Beijing
BookMark eNp1UD1PwzAQtVCRaAsjE0s2Jpc7OyYOG2oDVFRiCXPkuOfWKLjIifj49yQtYkBiee90997T6U3YKOwCMXaOMEOE_Kp8XBQzAYg9wBEbo1KaC8xx1M-QIk9lmp2wSdu-AIDONI5ZUfJF9O90kxRha4L1YZMMiz37SLbzu9AmH77bJqX59PsjxfYyWYaOmsZvKFg6ZcfONC2d_fCUPd8V5fyBr57ul_PbFbdCZR13SHWmU0HOmrpGB87VBnUGWhMoQkpTgaBNLtZSqjp369qmuTUZKCMgBzll8pBr465tI7nK-s4ML3bR-KZCqIYmqqGJamiih8HF_7jeon818etf_cVB74noV3sNQkml5DfGNGop
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_trb_2016_08_005
crossref_primary_10_1145_3057280
crossref_primary_10_1007_s00778_017_0491_4
crossref_primary_10_1016_j_trc_2019_05_039
crossref_primary_10_1109_TIV_2019_2960935
crossref_primary_10_1145_3657640
crossref_primary_10_1016_j_jestch_2020_06_002
crossref_primary_10_3390_su15064767
crossref_primary_10_1007_s11704_019_9059_3
crossref_primary_10_1007_s11280_019_00700_1
crossref_primary_10_1016_j_trc_2020_102729
crossref_primary_10_1007_s11704_018_7249_z
crossref_primary_10_1109_TVT_2020_2997712
crossref_primary_10_1145_3517335
crossref_primary_10_1145_3705005
crossref_primary_10_1007_s00778_015_0378_1
crossref_primary_10_1088_1742_6596_2006_1_012035
crossref_primary_10_1093_comjnl_bxz097
crossref_primary_10_1016_j_scs_2022_103924
crossref_primary_10_1109_TNSE_2019_2904530
crossref_primary_10_1016_j_trc_2021_103372
crossref_primary_10_1049_iet_its_2016_0195
crossref_primary_10_3390_ijgi6110373
crossref_primary_10_1016_j_trb_2017_03_010
crossref_primary_10_1109_TVCG_2016_2598416
crossref_primary_10_1007_s11277_021_08255_z
crossref_primary_10_1145_3627819
crossref_primary_10_1145_2743025
crossref_primary_10_1007_s10115_014_0763_x
crossref_primary_10_1109_JIOT_2024_3427676
crossref_primary_10_1145_2970819
crossref_primary_10_1007_s10707_022_00473_2
crossref_primary_10_1109_TITS_2014_2357835
crossref_primary_10_1109_TMC_2018_2863288
crossref_primary_10_1111_tgis_12689
crossref_primary_10_1016_j_ins_2019_12_014
crossref_primary_10_1007_s11704_014_4177_4
crossref_primary_10_1007_s10619_013_7139_1
crossref_primary_10_1109_TKDE_2017_2772907
crossref_primary_10_1007_s11042_023_15236_w
crossref_primary_10_1109_TITS_2014_2298892
crossref_primary_10_3390_info13110508
crossref_primary_10_1007_s11280_016_0396_y
crossref_primary_10_1007_s11707_015_0525_4
crossref_primary_10_1145_3329676
crossref_primary_10_1016_j_eswa_2023_122132
crossref_primary_10_1111_tgis_12192
crossref_primary_10_1016_j_future_2024_107488
crossref_primary_10_3233_IDA_192791
crossref_primary_10_1111_mice_12459
crossref_primary_10_1287_isre_2020_0946
crossref_primary_10_1145_3563457
crossref_primary_10_1007_s11276_019_02072_w
crossref_primary_10_1016_j_tre_2024_103485
crossref_primary_10_1109_TETC_2015_2501846
crossref_primary_10_1145_3331450
crossref_primary_10_1111_poms_14056
crossref_primary_10_3390_su13010266
crossref_primary_10_1109_ACCESS_2020_2964099
crossref_primary_10_1007_s11042_020_10453_z
crossref_primary_10_1016_j_physa_2018_02_064
crossref_primary_10_1016_j_pmcj_2014_01_003
crossref_primary_10_1109_TIM_2020_2973843
crossref_primary_10_1145_3013527
crossref_primary_10_1007_s11042_023_17464_6
crossref_primary_10_1016_j_trc_2021_103156
crossref_primary_10_1049_iet_its_2015_0065
crossref_primary_10_1016_j_trc_2017_03_013
crossref_primary_10_1007_s11390_022_2409_x
crossref_primary_10_1016_j_trc_2022_103792
crossref_primary_10_1080_10447318_2025_2526573
crossref_primary_10_3390_app12168047
crossref_primary_10_1002_dac_5229
crossref_primary_10_1002_cpe_5332
crossref_primary_10_1109_TKDE_2015_2411278
crossref_primary_10_1007_s10707_021_00458_7
crossref_primary_10_1109_TBDATA_2017_2667700
crossref_primary_10_1109_TITS_2020_3040386
crossref_primary_10_1016_j_future_2023_02_011
crossref_primary_10_3390_ijgi10060398
crossref_primary_10_1007_s11047_014_9479_9
crossref_primary_10_3390_s20164571
crossref_primary_10_1631_FITEE_2300453
crossref_primary_10_3141_2643_02
crossref_primary_10_1016_j_trc_2019_04_018
crossref_primary_10_3389_fict_2017_00029
crossref_primary_10_1007_s11280_016_0414_0
crossref_primary_10_1080_13658816_2018_1458984
crossref_primary_10_1016_j_ins_2018_12_056
crossref_primary_10_1145_2543581_2543584
crossref_primary_10_1145_3543850
crossref_primary_10_1109_JSEN_2023_3347705
crossref_primary_10_1109_TBDATA_2017_2717978
crossref_primary_10_1371_journal_pone_0165597
crossref_primary_10_1109_TITS_2022_3169002
crossref_primary_10_1145_2560189
crossref_primary_10_1016_j_neucom_2016_02_085
crossref_primary_10_1109_TITS_2023_3247884
crossref_primary_10_1007_s10115_016_0948_6
crossref_primary_10_1109_TITS_2013_2262376
crossref_primary_10_1109_TITS_2021_3063199
crossref_primary_10_1145_3550486
crossref_primary_10_1109_TMC_2019_2915228
crossref_primary_10_1002_net_22256
crossref_primary_10_1049_itr2_12016
crossref_primary_10_1016_j_trc_2024_104549
crossref_primary_10_3233_MGS_200324
crossref_primary_10_1049_joe_2019_0872
crossref_primary_10_1016_j_commtr_2022_100075
crossref_primary_10_1016_j_tre_2023_103176
crossref_primary_10_3390_ijgi14040165
crossref_primary_10_1016_j_inffus_2018_11_002
crossref_primary_10_1109_ACCESS_2019_2922293
crossref_primary_10_1109_TETC_2017_2703784
crossref_primary_10_1109_TMC_2024_3471569
crossref_primary_10_1109_TKDE_2019_2940950
crossref_primary_10_1007_s11042_021_10755_w
crossref_primary_10_1016_j_eswa_2020_114546
crossref_primary_10_1017_S147106841800011X
crossref_primary_10_1016_j_eswa_2021_115733
crossref_primary_10_1177_0361198121999059
crossref_primary_10_1016_j_trpro_2017_05_076
crossref_primary_10_1109_TKDE_2019_2915231
crossref_primary_10_1109_TMC_2020_3043500
crossref_primary_10_3390_ijgi10020077
crossref_primary_10_1145_3267105
crossref_primary_10_1109_TPDS_2020_3037469
crossref_primary_10_1109_TITS_2017_2753468
crossref_primary_10_1016_j_trc_2020_102651
crossref_primary_10_1007_s11442_020_1726_7
crossref_primary_10_1109_TCDS_2016_2608500
crossref_primary_10_1109_TITS_2015_2461000
crossref_primary_10_3390_smartcities4020038
crossref_primary_10_1109_TMC_2021_3091324
crossref_primary_10_1016_j_procs_2019_04_046
crossref_primary_10_1080_03081060_2017_1340025
crossref_primary_10_1109_TITS_2014_2371815
crossref_primary_10_1109_TITS_2015_2426955
crossref_primary_10_3390_s22051748
crossref_primary_10_1145_3446679
crossref_primary_10_1007_s10707_015_0227_9
crossref_primary_10_1016_j_pmcj_2017_01_003
crossref_primary_10_1109_TKDE_2022_3220822
crossref_primary_10_1093_comnet_cnx008
crossref_primary_10_1109_JIOT_2025_3564518
crossref_primary_10_3390_ijgi14020058
crossref_primary_10_1016_j_trc_2021_103070
crossref_primary_10_1016_j_ins_2021_02_052
crossref_primary_10_1016_j_inffus_2020_01_002
crossref_primary_10_1109_TBDATA_2018_2872532
crossref_primary_10_1002_cpe_4735
crossref_primary_10_1109_TPDS_2016_2565480
crossref_primary_10_1007_s10994_021_06118_z
crossref_primary_10_1109_TNSE_2024_3524576
crossref_primary_10_3390_s19061475
crossref_primary_10_1109_TITS_2023_3299277
crossref_primary_10_1109_MCOM_2013_6525604
crossref_primary_10_1109_ACCESS_2019_2926824
crossref_primary_10_1007_s10707_015_0238_6
crossref_primary_10_1109_TASE_2018_2865494
crossref_primary_10_3390_su11041077
crossref_primary_10_1080_13658816_2024_2442059
crossref_primary_10_1109_TVT_2015_2480964
crossref_primary_10_1109_ACCESS_2019_2916342
crossref_primary_10_1109_ACCESS_2019_2918765
crossref_primary_10_1145_2629592
crossref_primary_10_1007_s00778_019_00568_7
crossref_primary_10_1016_j_tra_2022_07_002
crossref_primary_10_1016_j_jtrangeo_2023_103544
crossref_primary_10_1109_TVCG_2016_2535234
crossref_primary_10_1007_s13177_019_00187_0
crossref_primary_10_1109_TVCG_2020_2992200
crossref_primary_10_1109_TKDE_2017_2776927
crossref_primary_10_1287_ijoc_2021_0112
crossref_primary_10_1109_TITS_2021_3089487
crossref_primary_10_1109_TKDE_2018_2854705
crossref_primary_10_1016_j_future_2016_06_034
crossref_primary_10_1109_TVT_2022_3176653
crossref_primary_10_1109_ACCESS_2019_2945205
Cites_doi 10.1145/956676.956693
10.1145/1644038.1644048
10.1145/1869790.1869807
10.1109/ITSC.2008.4732534
10.1145/1653771.1653820
10.1145/1367497.1367532
10.1016/0022-247x(66)90009-6
10.1145/79147.214078
10.1109/ICDE.2011.5767890
10.1007/s00778-010-0181-y
10.1109/ITSC.2010.5625144
10.1007/11853565_15
10.1109/ICDE.2006.71
10.1145/1869790.1869865
10.1145/1463434.1463513
10.1145/1409635.1409678
10.1109/ICDE.2011.5767844
10.1007/978-3-540-74819-9_47
10.1109/MDM.2010.14
10.4153/CJM-1961-015-3
10.1109/3468.594911
10.1287/opre.17.3.395
10.1016/j.jmp.2010.01.006
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TKDE.2011.200
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 232
ExternalDocumentID 10_1109_TKDE_2011_200
6025355
Genre orig-research
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c257t-f1eb7842efcabb1f0ffba187088e05e1e442108a92d335b9fdbc49ca705a20903
IEDL.DBID RIE
ISICitedReferencesCount 301
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312890500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sat Nov 29 08:09:16 EST 2025
Tue Nov 18 21:29:00 EST 2025
Wed Aug 27 02:33:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c257t-f1eb7842efcabb1f0ffba187088e05e1e442108a92d335b9fdbc49ca705a20903
PageCount 13
ParticipantIDs ieee_primary_6025355
crossref_citationtrail_10_1109_TKDE_2011_200
crossref_primary_10_1109_TKDE_2011_200
PublicationCentury 2000
PublicationDate 2013-Jan.
2013-1-00
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-Jan.
PublicationDecade 2010
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
Letchner (ref27)
Dean (ref8) 1999
ref1
ref17
ref16
ref18
ref24
ref23
ref26
George (ref10) 1991
ref25
ref20
ref21
ref28
Gonzalez (ref22)
Gühnemann (ref19)
ref29
ref7
ref9
ref4
ref3
ref6
ref5
Hunter (ref2)
References_xml – volume-title: Proc. Conf. Innovative Applications of Artificial Intelligence (NCAI)
  ident: ref27
  article-title: Trip Router with Individualized Preferences (trip): Incorporating Personalization into Route Planning
– ident: ref23
  doi: 10.1145/956676.956693
– ident: ref16
  doi: 10.1145/1644038.1644048
– volume-title: Proc. 33rd Int’l Conf. Very Large Data Bases (VLDB)
  ident: ref22
  article-title: Adaptive Fastest Path Computation on a Road Network: A Traffic Mining Approach
– ident: ref1
  doi: 10.1145/1869790.1869807
– ident: ref12
  doi: 10.1109/ITSC.2008.4732534
– ident: ref3
  doi: 10.1145/1653771.1653820
– volume-title: Proc. Neural Information Processing Systems (NIPS)
  ident: ref2
  article-title: Path and Travel Time Inference from GPS Probe Vehicle Data
– ident: ref11
  doi: 10.1145/1367497.1367532
– ident: ref13
  doi: 10.1016/0022-247x(66)90009-6
– ident: ref6
  doi: 10.1145/79147.214078
– year: 1999
  ident: ref8
  article-title: Continuous-Time Dynamic Shortest Path Algorithms
– ident: ref29
  doi: 10.1109/ICDE.2011.5767890
– ident: ref25
  doi: 10.1007/s00778-010-0181-y
– ident: ref17
  doi: 10.1109/ITSC.2010.5625144
– ident: ref20
  doi: 10.1007/11853565_15
– volume-title: ITS Working Papers
  ident: ref19
  article-title: Monitoring Traffic and Emissions by Floating Car Data
– ident: ref5
  doi: 10.1109/ICDE.2006.71
– ident: ref15
  doi: 10.1145/1869790.1869865
– ident: ref18
  doi: 10.1145/1463434.1463513
– ident: ref21
  doi: 10.1145/1409635.1409678
– ident: ref26
  doi: 10.1109/ICDE.2011.5767844
– ident: ref24
  doi: 10.1007/978-3-540-74819-9_47
– volume-title: Statistical Methods
  year: 1991
  ident: ref10
– ident: ref4
  doi: 10.1109/MDM.2010.14
– ident: ref9
  doi: 10.4153/CJM-1961-015-3
– ident: ref28
  doi: 10.1109/3468.594911
– ident: ref14
  doi: 10.1287/opre.17.3.395
– ident: ref7
  doi: 10.1016/j.jmp.2010.01.006
SSID ssj0008781
Score 2.5370822
Snippet This paper presents a smart driving direction system leveraging the intelligence of experienced drivers. In this system, GPS-equipped taxis are employed as...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 220
SubjectTerms Cities and towns
data mining
Driving behavior
driving directions
Geographic Information Systems
Global Positioning System
GPS trajectory
Meteorology
Road vehicles
Spatial databases
Spatial databases and GIS
Trajectory
Title T-Drive: Enhancing Driving Directions with Taxi Drivers' Intelligence
URI https://ieeexplore.ieee.org/document/6025355
Volume 25
WOSCitedRecordID wos000312890500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ60jQc9WG011lc4GL0UCwt0wZuxNBqTxgMmvZFlmdUmhpraGn--OwvFHvTgCbLMgQw7z2W-D-BCInNzmlhGGs_V8TayRc4dm9wlU44I5FAYsgk-mYTTafTUgH49C4OI5uczvKZbc5afz-WKWmWDoQ7QOj42ock5L2e1aq8bckNIqqsLXRN5Pv_B0xwkj6O4BOtkNMi2EX82CFVMPBm3__cme7Bb5Y3Wbfmh96GBRQfaa04GqzLRDuxsAAx2IU7s0UL7sxsrLl4JWaN4sWjBXEtnp3edRc1YKxFfM_NQJ4RX1sMGVOcBPI_j5O7erogTbKktcGkrFzMe-gyVFFnmKkepTLjaMsMQnQBd9H1d6YUiYrnnBVmk8kz6kRTcCQSjxs0htIp5gUdg5VIxT7qIIsh8pdNJ4UrGHQyGGAYcVQ_6a3WmskIVJ3KLt9RUF06UkvZT0j4xXvbgshZ_L-E0_hLsktZroUrhx78vn8A2MzQV1Bo5hdZyscIz2JKfy9nH4txslG9V7rtn
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gmqgHUdCIzx6MXqi025a23oxAICDxUBNuzXY7qySmGATjz3dnW5CDHjy12c6hme48t_N9AFcCmZ3SxDLSeK6Kt6HJU98yyV0yaXFPtLgmm_BHo2A8Dp9K0FjNwiCi_vkMb-lWn-WnU7GgVlmzpQK0io8bsOm5LrPzaa2V3w18TUmq6gtVFTmu_4Oo2YwG7U4O18lolG0tAq1RquiI0q387132Ya_IHI37_FMfQAmzKlSWrAxGYaRV2F2DGKxBJzLbM-XR7oxO9krYGtmLQQv6mrs7te8MascaEf-a6IcqJbwx-mtgnYfw3O1EDz2zoE4whbLBuSltTPzAZSgFTxJbWlIm3Fa2GQRoeWgj6c8KeMhSx_GSUKaJcEPBfcvjjFo3R1DOphkeg5EKyRxhI3IvcaVKKLktmG-h18LA81HWobFUZywKXHGit3iLdX1hhTFpPybtE-dlHa5X4u85oMZfgjXS-kqoUPjJ78uXsN2LHofxsD8anMIO06QV1Cg5g_J8tsBz2BKf88nH7EJvmm9Bl76u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=T-Drive%3A+Enhancing+Driving+Directions+with+Taxi+Drivers%27+Intelligence&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Yuan%2C+Jing&rft.au=Zheng%2C+Yu&rft.au=Xie%2C+Xing&rft.au=Sun%2C+Guangzhong&rft.date=2013-01-01&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=25&rft.issue=1&rft.spage=220&rft.epage=232&rft_id=info:doi/10.1109%2FTKDE.2011.200&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2011_200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon