Nonparametric Bayesian transfer learning for robust cardiopulmonary diseases classification in X-ray images

Deep learning has revolutionized the detection of cardiopulmonary diseases by using readily available X-ray images. Transfer learning offers an exciting avenue for accelerating progress in this field, particularly when large training datasets are scarce. However, difficulties arise when transferring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems Jg. 326; S. 114034
Hauptverfasser: Haftu, Kibrom, Assabie, Yaregal
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 27.09.2025
Schlagworte:
ISSN:0950-7051
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep learning has revolutionized the detection of cardiopulmonary diseases by using readily available X-ray images. Transfer learning offers an exciting avenue for accelerating progress in this field, particularly when large training datasets are scarce. However, difficulties arise when transferring knowledge from one domain to another unrelated task, potentially harming model performance. Therefore, we propose a novel nonparametric Bayesian statistical model to investigate the effectiveness of transfer learning on radiographic images. The proposed model comprises of two main components: deep transfer learning and classification. The deep transfer learning component extracts domain-invariant discriminating features using an Indian buffet process-driven variational autoencoder. This Bayesian nonparametric model enables flexible modeling of networks with potentially unbounded sizes while simultaneously capturing complex structural patterns and regularities within the data. The classification component further fine-tunes these features using a supervised algorithm rather than the current approaches that use a single feature space represented by the last fully connected layer of the convolutional neural networks across all conditions. Our model achieved a mean area under the curve (AUC) score of 88.01% for 14 cardiopulmonary diseases in the NIH chest radiograph dataset, outperforming the existing state-of-the-art methods. Validation of the collected external data demonstrates the generalizability of the model.
AbstractList Deep learning has revolutionized the detection of cardiopulmonary diseases by using readily available X-ray images. Transfer learning offers an exciting avenue for accelerating progress in this field, particularly when large training datasets are scarce. However, difficulties arise when transferring knowledge from one domain to another unrelated task, potentially harming model performance. Therefore, we propose a novel nonparametric Bayesian statistical model to investigate the effectiveness of transfer learning on radiographic images. The proposed model comprises of two main components: deep transfer learning and classification. The deep transfer learning component extracts domain-invariant discriminating features using an Indian buffet process-driven variational autoencoder. This Bayesian nonparametric model enables flexible modeling of networks with potentially unbounded sizes while simultaneously capturing complex structural patterns and regularities within the data. The classification component further fine-tunes these features using a supervised algorithm rather than the current approaches that use a single feature space represented by the last fully connected layer of the convolutional neural networks across all conditions. Our model achieved a mean area under the curve (AUC) score of 88.01% for 14 cardiopulmonary diseases in the NIH chest radiograph dataset, outperforming the existing state-of-the-art methods. Validation of the collected external data demonstrates the generalizability of the model.
ArticleNumber 114034
Author Haftu, Kibrom
Assabie, Yaregal
Author_xml – sequence: 1
  givenname: Kibrom
  orcidid: 0009-0009-2652-4455
  surname: Haftu
  fullname: Haftu, Kibrom
  email: kibrom.haftu@aau.edu.et
– sequence: 2
  givenname: Yaregal
  orcidid: 0000-0001-7591-9298
  surname: Assabie
  fullname: Assabie, Yaregal
BookMark eNp9kL1OwzAURj0UiRZ4Awa_QIqdxImzIEHFn1TBAhKbdeNcV25Tu_JNkfL2tAoz0zedT0dnwWYhBmTsVoqlFLK62y53IdJIy1zkaillKYpyxuaiUSKrhZKXbEG0FULkudRztnuP4QAJ9jgkb_kjjEgeAh8SBHKYeI-Qgg8b7mLiKbZHGriF1Pl4OPb7GCCNvPOEQEjc9kDknbcw-Bi4D_w7SzByv4cN0jW7cNAT3vztFft6fvpcvWbrj5e31cM6s7mqhwydUkWuJRQVgm51i63Ku9o2shFN5bTS0OqqroVUjVYShCvBtQ0AlLrMq6a4YuX0a1MkSujMIZ0M0mikMOdIZmumSOYcyUyRTtj9hOHJ7cdjMmQ9BoudT2gH00X__8EvJ9l42g
Cites_doi 10.1016/j.engappai.2023.106902
10.1038/s41598-019-42294-8
10.1097/HP.0000000000001028
10.1007/s00330-020-07302-w
10.1109/JSTSP.2019.2961233
10.1016/j.advengsoft.2022.103317
10.1109/ICCCNT61001.2024.10724101
10.1109/ICASSP.2019.8682952
10.1109/JBHI.2024.3451950
10.1016/j.jocs.2018.11.008
10.1055/s-0040-1702009
10.1109/TMI.2020.3042773
10.1109/LGRS.2023.3330957
10.1063/5.0232644
10.3390/electronics8030292
10.1109/CVPR.2017.243
10.1038/nature14541
10.1016/j.eswa.2018.08.041
10.2105/AJPH.2017.303839
10.1109/SIBGRAPI-T.2019.00010
10.1109/ISBI.2019.8759573
10.1016/j.acra.2019.08.018
10.1109/ISED59382.2023.10444597
10.1093/ije/dyz274
10.1109/CVPR.2019.01155
10.1016/j.entcs.2019.04.008
10.1109/TMI.2020.3000949
10.1109/ICCV.2015.315
10.1109/ACCESS.2023.3346315
10.1109/JSTARS.2022.3192127
10.1155/2019/4180949
10.1007/978-3-319-93000-8_62
10.3390/jpm13101426
10.1148/radiol.2018180237
10.1109/ICDM.2019.00127
10.1007/s11042-023-14831-1
10.1007/s11063-020-10392-8
10.1007/978-3-030-13469-3_88
10.1007/s10710-017-9314-z
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2025.114034
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_knosys_2025_114034
S0950705125010792
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77I
77K
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
~HD
29L
9DU
AAQXK
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
ID FETCH-LOGICAL-c257t-ef553281a36ea8b8beb52d7c919096f858ab86770159851a0f4afb9aaa4842693
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001526068100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Sat Nov 29 07:22:06 EST 2025
Sat Nov 01 16:41:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Variational autoencoder
Indian buffet process
Cardiopulmonary disease classification
Nonparametric Bayesian priors
Deep transfer learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-ef553281a36ea8b8beb52d7c919096f858ab86770159851a0f4afb9aaa4842693
ORCID 0000-0001-7591-9298
0009-0009-2652-4455
ParticipantIDs crossref_primary_10_1016_j_knosys_2025_114034
elsevier_sciencedirect_doi_10_1016_j_knosys_2025_114034
PublicationCentury 2000
PublicationDate 2025-09-27
PublicationDateYYYYMMDD 2025-09-27
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-27
  day: 27
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Huang, Liu, van der Maaten, Weinberger (b43) 2018
Wang, Peng, Lu, Lu, Bagheri, Summers (b50) 2017
Wang, Peng, Lu, Lu, Bagheri, Summers (b40) 2017
G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely Connected Convolutional Networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 4700–4708.
Seibert (b4) 2019; 116
Tomczak, Welling (b89) 2018
Wang, Peng, Lu, Lu, Bagheri, Summers (b93) 2019
Ma, Wang, Hoi (b52) 2020
Tan, Le (b55) 2020
Burgess, Higgins, Pal, Matthey, Watters, Desjardins, Lerchner (b60) 2018
Livieris, Kanavos, Pintelas (b3) 2019; 343
Wang, Lin, Zhu (b36) 2024
Yan, Yao, Li, Xu, Huang (b56) 2018
Bjorck, Gomes, Selman, Weinberger (b92) 2018; 31
Salaken, Khosravi, Nguyen, Nahavandi (b16) 2019; 115
Thevenot, Lopez, Hadid (b31) 2018; 22
J. Feng, T. Darrell, Learning the Structure of Deep Convolutional Networks, in: 2015 IEEE International Conference on Computer Vision, ICCV, Santiago, Chile, 2015, pp. 2749–2757.
Yanbo Ma, Qiuhao Zhou, Xuesong Chen, Haihua Lu, Yong Zhao, Multi-attention Network for Thoracic Disease Classification and Localization, in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 1378–1382.
Baltruschat, Nickisch, Grass, Knopp, Saalbach (b47) 2019; 9
Li Yao, Eric Poblenz, Dmitry Dagunts, Ben Covington, Devon Bernard, Kevin Lyman, Learning to diagnose from scratch by exploiting dependencies among labels, in: International Conference on Learning Representations, 2018.
Requia, Adams, Arain, Papatheodorou, Koutrakis, Mahmoud (b1) 2018; 108
Ricardo Ribani, Mauricio Marengoni, A Survey of Transfer Learning for Convolutional Neural Networks, in: 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), 2019, pp. 47–57.
(b5) 2019
Li, Zheng, Yao, Gao, Hong (b39) 2022; 19
Chen, Fang, Xu, Zhu, Li (b77) 2021; 34
Murphy, Elangovan, Halling-Brown, Lewis, Young, Dance, Wells (b13) 2019; Vol. 10952
Pulkit Kumar, Monika Grewal, Muktabh Mayank Srivastava, Boosted Cascaded Convnets for Multi-label Classification of Thoracic Diseases in Chest Radiographs, in: International Conference on Image Analysis and Recognition, 2017.
Broderick, Kulis, Jordan (b69) 2013
Z. Wang, Z. Dai, B. Poczos, J. Carbonell, Characterizing and Avoiding Negative Transfer, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA, USA, 2019, pp. 11285–11294.
Ouyang, Karanam, Wu, Chen, Huo, Zhou, Wang, Cheng (b49) 2021; 40
Jorge-Cano, Vieco Pérez, Paredes Palacios, Sánchez Peiró, Benedí Ruiz (b62) 2018
Li, Zheng, Liu, Li, Yu, Ni (b38) 2023; 20
Chatzis (b95) 2014
Sebastian Gündel, Sasa Grbic, Bogdan Georgescu, Shaohua Kevin Zhou, Ludwig Ritschl, Andreas Meier, Dorin Comaniciu, Learning to recognize Abnormalities in Chest X-Rays with Location-Aware Dense Networks, in: Iberoamerican Congress on Pattern Recognition, 2018.
Jiashi Feng, Trevor Darrell, Learning The Structure of Deep Convolutional Networks, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2015.
He, Zhang, Ren, Sun (b80) 2016
Janssens, Martens (b96) 2020; 49
(b33) 2021; vol. 1168
Raghu, Zhang, Kleinberg, Bengio (b57) 2019
Sun, Flammarion, Fazel (b99) 2019; 32
Szegedy, Vanhoucke, Ioffe, Sutskever, Wozniak, Beaufays, Aubry (b82) 2015
K. Xu, A. Srivastava, C. Sutton, Variational Russian Roulette for Deep Bayesian Nonparametrics, in: Proceedings of the 36th International Conference on Machine Learning, 2020, p. 10.
Waite, Grigorian, Alexander, Macknik, Carrasco, Heeger, Martinez-Conde (b6) 2019; 13
Blei, Kucuklar, McAuliffe (b67) 2017; 18
Shen, Gao (b101) 2018
Simonyan, Zisserman (b81) 2014
Ghahramani (b22) 2015; 521
Hossain, Zunaed, Ahmed, Hossain, Hasan, Hasan (b53) 2024; 12
Choudhary, Tong, Zhu, Wang (b34) 2020; 29
Krizhevsky, Sutskever, Hinton (b86) 2012
Torsy, Saman, Boeykens, Eriksson, Verhaeghe, Beeckman (b8) 2021; 31
Li, Zheng, Gao, Han, Li, Chanussot (b27) 2025; 63
Stephen, Sain, Maduh, Jeong (b10) 2019; 2019
Yao, Wang, Wang, Zhang (b32) 2020
Li, Zheng, Gao, Ni, Huang, Chanussot (b28) 2024; 62
Paisley, Blei, Jordan (b70) 2012; 13
Francés-Belda, Solera-Rico, Nieto-Centenero, Andrés, Vila, Castellanos (b88) 2024; 36
Rachit Singh, Jeffrey Ling, Finale Doshi-Velez, Structured variational autoencoders for the beta-bernoulli process, in: NIPS 2017 Workshop on Advances in Approximate Bayesian Inference, 2017.
Mukherjee, Khare, Verma (b98) 2019
Szegedy, Ioffe, Vanhoucke, Alemi (b44) 2016
Beznosikov, Sadiev, Gasnikov (b100) 2020
Lu, Lu, Zhang (b15) 2019; 30
Wang (b97) 2017
Asgedom, Bråtveit, Moen (b2) 2019; 16
Manisha Pathak, Deevesh Chaudhary, Kratika Sharma, Akhilesh K Sharma, Ashish Gupta, Brij Kishore Sharma, A Robust EfficientNet Architecture for Brain Tumor Classification and Identification Using MRI Image, in: 2023 11th International Conference on Intelligent Systems and Embedded Design, ISED, 2023, pp. 1–5.
Luo, Yu, Chen, Liu, Wang, Xu, Heng (b102) 2020; 39
Sufian, Ghosh, Sadiq, Smarandache (b14) 2020
Li, Zheng, Li, Li, Gao (b25) 2024; 62
Longadge, Dongre (b21) 2013
Wani, Bhat, Afzal, Khan (b12) 2020
Fox, Suddarth, Jordan (b72) 2014
(b29) 2019; vol. 804
Graves (b66) 2016
K. ManojSenthil, T. Meeradevi, Ravi Samikannu, N. Anand, V.S. Dharanimukhi, S. Dhivya, Lung tumor detection using modified EfficientNet-B1, in: 2024 15th International Conference on Computing Communication and Networking Technologies, ICCCNT, 2024, pp. 1–6.
Radford, Metz, Chintala (b64) 2015
Prashnna Gyawali, Zhiyuan Li, Cameron Knight, Sandesh Ghimire, B. Milan Horacek, John Sapp, Linwei Wang, Improving Disentangled Representation Learning with the Beta Bernoulli Process, in: 2019 IEEE International Conference on Data Mining, ICDM, 2019, pp. 1078–1083.
Waite (b7) 2020; 27
Kufel, Bielówka, Rojek, Mitręga, Lewandowski, Cebula, Krawczyk, Bielówka, Kondoł, Bargieł Łączek, Paszkiewicz, Czogalik, Kaczyńska, Wocław, Gruszczyńska, Nawrat (b54) 2023; 13
Wang, Xia (b42) 2018
Griffiths, Ghahramani (b68) 2005
Alom (b11) 2019; 8
Kingma, Welling (b65) 2014
Raza, Zulfiqar, Khan, Arif, Alvi, Iftikhar, Alam (b85) 2023; 126
He, Xia, Ghamisi, Hu, Fan, Zu (b26) 2022; 15
Alec Nichol, Ofir Heess, Yewen Dhari, Johannes Bethge, Srinivasan Lakshminarasimhan, DiffusionCLIP: Text-Guided Image Generation with Diffusion Models, in: International Conference on Learning Representations, 2023.
Irvin, Cheng, Yu, Xiong, Dudley, Goo, Tang, Chakravarthy, Anderson, Gliklich (b51) 2019
Bowman, Jones, Vinyals, Bengio (b63) 2015
Tormos, Garcia-Gasulla, Gimenez-Abalos, Alvarez-Napagao (b58) 2022
Li, Zheng, Li, Gao, Jia (b37) 2023; 61
Suder, Xu, Dunson (b23) 2023
Vinuesa, Solera-Rico, Vila, Sánchez-Gómez, Wang, Almashjary, Dawson (b87) 2023
Huang, Qin, Zhou, Zhu, Liu, Shao (b94) 2020
Reis, Turk, Khoshelham, Kaya (b20) 2023; 82
Cao, Zhao, Sun (b75) 2021; 53
Nam (b9) 2019; 290
Wang, Hu, Zhang, Wang, Yu, Hu (b90) 2020; 14
I. Sirazitdinov, M. Kholiavchenko, R. Kuleev, B. Ibragimov, Data Augmentation for Chest Pathologies Classification, in: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 2019, pp. 1216–1219.
Li, Xu, Zhu, Li (b76) 2022; 23
Kathamuthu, Subramaniam, Le, Muthusamy, Panchal, Sundararajan, Alrubaie, Zahra (b19) 2023; 175
Lin, Roberts, Trigoni, Clark (b61) 2019
Williamson, Zhang, Damien (b73) 2019
Heaton (b91) 2018; 19
Vinuesa (10.1016/j.knosys.2025.114034_b87) 2023
Waite (10.1016/j.knosys.2025.114034_b6) 2019; 13
Paisley (10.1016/j.knosys.2025.114034_b70) 2012; 13
Li (10.1016/j.knosys.2025.114034_b76) 2022; 23
Raghu (10.1016/j.knosys.2025.114034_b57) 2019
Krizhevsky (10.1016/j.knosys.2025.114034_b86) 2012
Sufian (10.1016/j.knosys.2025.114034_b14) 2020
Requia (10.1016/j.knosys.2025.114034_b1) 2018; 108
Williamson (10.1016/j.knosys.2025.114034_b73) 2019
Wani (10.1016/j.knosys.2025.114034_b12) 2020
10.1016/j.knosys.2025.114034_b71
Li (10.1016/j.knosys.2025.114034_b37) 2023; 61
10.1016/j.knosys.2025.114034_b74
Waite (10.1016/j.knosys.2025.114034_b7) 2020; 27
10.1016/j.knosys.2025.114034_b79
Hossain (10.1016/j.knosys.2025.114034_b53) 2024; 12
10.1016/j.knosys.2025.114034_b78
Reis (10.1016/j.knosys.2025.114034_b20) 2023; 82
Jorge-Cano (10.1016/j.knosys.2025.114034_b62) 2018
Kingma (10.1016/j.knosys.2025.114034_b65) 2014
(10.1016/j.knosys.2025.114034_b33) 2021; vol. 1168
Szegedy (10.1016/j.knosys.2025.114034_b44) 2016
Graves (10.1016/j.knosys.2025.114034_b66) 2016
Yao (10.1016/j.knosys.2025.114034_b32) 2020
Li (10.1016/j.knosys.2025.114034_b39) 2022; 19
Alom (10.1016/j.knosys.2025.114034_b11) 2019; 8
Broderick (10.1016/j.knosys.2025.114034_b69) 2013
Chen (10.1016/j.knosys.2025.114034_b77) 2021; 34
10.1016/j.knosys.2025.114034_b83
Huang (10.1016/j.knosys.2025.114034_b43) 2018
Wang (10.1016/j.knosys.2025.114034_b97) 2017
10.1016/j.knosys.2025.114034_b84
Wang (10.1016/j.knosys.2025.114034_b42) 2018
Mukherjee (10.1016/j.knosys.2025.114034_b98) 2019
Li (10.1016/j.knosys.2025.114034_b28) 2024; 62
Suder (10.1016/j.knosys.2025.114034_b23) 2023
Stephen (10.1016/j.knosys.2025.114034_b10) 2019; 2019
Burgess (10.1016/j.knosys.2025.114034_b60) 2018
Bjorck (10.1016/j.knosys.2025.114034_b92) 2018; 31
Tormos (10.1016/j.knosys.2025.114034_b58) 2022
Fox (10.1016/j.knosys.2025.114034_b72) 2014
Asgedom (10.1016/j.knosys.2025.114034_b2) 2019; 16
Kathamuthu (10.1016/j.knosys.2025.114034_b19) 2023; 175
Li (10.1016/j.knosys.2025.114034_b25) 2024; 62
Francés-Belda (10.1016/j.knosys.2025.114034_b88) 2024; 36
Baltruschat (10.1016/j.knosys.2025.114034_b47) 2019; 9
Raza (10.1016/j.knosys.2025.114034_b85) 2023; 126
Torsy (10.1016/j.knosys.2025.114034_b8) 2021; 31
10.1016/j.knosys.2025.114034_b17
10.1016/j.knosys.2025.114034_b18
Shen (10.1016/j.knosys.2025.114034_b101) 2018
Wang (10.1016/j.knosys.2025.114034_b40) 2017
Blei (10.1016/j.knosys.2025.114034_b67) 2017; 18
Heaton (10.1016/j.knosys.2025.114034_b91) 2018; 19
Cao (10.1016/j.knosys.2025.114034_b75) 2021; 53
10.1016/j.knosys.2025.114034_b24
Li (10.1016/j.knosys.2025.114034_b38) 2023; 20
Sun (10.1016/j.knosys.2025.114034_b99) 2019; 32
Chatzis (10.1016/j.knosys.2025.114034_b95) 2014
Griffiths (10.1016/j.knosys.2025.114034_b68) 2005
Szegedy (10.1016/j.knosys.2025.114034_b82) 2015
He (10.1016/j.knosys.2025.114034_b26) 2022; 15
Nam (10.1016/j.knosys.2025.114034_b9) 2019; 290
Beznosikov (10.1016/j.knosys.2025.114034_b100) 2020
10.1016/j.knosys.2025.114034_b30
Thevenot (10.1016/j.knosys.2025.114034_b31) 2018; 22
10.1016/j.knosys.2025.114034_b35
Ma (10.1016/j.knosys.2025.114034_b52) 2020
Wang (10.1016/j.knosys.2025.114034_b93) 2019
Ouyang (10.1016/j.knosys.2025.114034_b49) 2021; 40
Seibert (10.1016/j.knosys.2025.114034_b4) 2019; 116
Li (10.1016/j.knosys.2025.114034_b27) 2025; 63
Wang (10.1016/j.knosys.2025.114034_b50) 2017
Janssens (10.1016/j.knosys.2025.114034_b96) 2020; 49
Huang (10.1016/j.knosys.2025.114034_b94) 2020
Murphy (10.1016/j.knosys.2025.114034_b13) 2019; Vol. 10952
Wang (10.1016/j.knosys.2025.114034_b36) 2024
Simonyan (10.1016/j.knosys.2025.114034_b81) 2014
10.1016/j.knosys.2025.114034_b41
10.1016/j.knosys.2025.114034_b46
Longadge (10.1016/j.knosys.2025.114034_b21) 2013
10.1016/j.knosys.2025.114034_b45
(10.1016/j.knosys.2025.114034_b5) 2019
Yan (10.1016/j.knosys.2025.114034_b56) 2018
10.1016/j.knosys.2025.114034_b48
Tomczak (10.1016/j.knosys.2025.114034_b89) 2018
Bowman (10.1016/j.knosys.2025.114034_b63) 2015
(10.1016/j.knosys.2025.114034_b29) 2019; vol. 804
Lin (10.1016/j.knosys.2025.114034_b61) 2019
Ghahramani (10.1016/j.knosys.2025.114034_b22) 2015; 521
Choudhary (10.1016/j.knosys.2025.114034_b34) 2020; 29
10.1016/j.knosys.2025.114034_b59
Salaken (10.1016/j.knosys.2025.114034_b16) 2019; 115
Luo (10.1016/j.knosys.2025.114034_b102) 2020; 39
Radford (10.1016/j.knosys.2025.114034_b64) 2015
Livieris (10.1016/j.knosys.2025.114034_b3) 2019; 343
Irvin (10.1016/j.knosys.2025.114034_b51) 2019
Lu (10.1016/j.knosys.2025.114034_b15) 2019; 30
Kufel (10.1016/j.knosys.2025.114034_b54) 2023; 13
Wang (10.1016/j.knosys.2025.114034_b90) 2020; 14
Tan (10.1016/j.knosys.2025.114034_b55) 2020
He (10.1016/j.knosys.2025.114034_b80) 2016
References_xml – volume: 31
  start-page: 2444
  year: 2021
  end-page: 2450
  ident: b8
  article-title: Factors associated with insufficient nasogastric tube visibility on X-ray: a retrospective analysis
  publication-title: Eur. Radiol.
– year: 2022
  ident: b58
  article-title: When & how to transfer with transfer learning
– start-page: 96
  year: 2018
  end-page: 104
  ident: b62
  article-title: Empirical evaluation of variational autoencoders for data augmentation
  publication-title: Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
– volume: 12
  start-page: 3256
  year: 2024
  end-page: 3273
  ident: b53
  article-title: ThoraX-PriorNet: A novel attention-based architecture using anatomical prior probability maps for thoracic disease classification
  publication-title: IEEE Access
– volume: 13
  year: 2023
  ident: b54
  article-title: Multi-label classification of chest X-ray abnormalities using transfer learning techniques
  publication-title: J. Pers. Med.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b86
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  ident: b39
  article-title: Deep unsupervised blind hyperspectral and multispectral data fusion
  publication-title: IEEE Geosci. Remote. Sens. Lett.
– volume: vol. 804
  year: 2019
  ident: b29
  publication-title: Recent Advances in Computer Vision: Theories and Applications
– volume: 343
  start-page: 19
  year: 2019
  end-page: 33
  ident: b3
  article-title: Detecting lung abnormalities from X-rays using an improved SSL algorithm
  publication-title: Electron. Notes Theor. Comput. Sci.
– year: 2018
  ident: b42
  article-title: ChestNet: A deep neural network for classification of thoracic diseases on chest radiography
– volume: 39
  start-page: 3583
  year: 2020
  end-page: 3594
  ident: b102
  article-title: Deep mining external imperfect data for chest X-Ray disease screening
  publication-title: IEEE Trans. Med. Imaging
– reference: Ricardo Ribani, Mauricio Marengoni, A Survey of Transfer Learning for Convolutional Neural Networks, in: 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), 2019, pp. 47–57.
– year: 2015
  ident: b82
  article-title: Going deeper with convolutions
– volume: 15
  start-page: 6053
  year: 2022
  end-page: 6068
  ident: b26
  article-title: HyperViTGAN: Semisupervised generative adversarial network with transformer for hyperspectral image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
– volume: 14
  start-page: 775
  year: 2020
  end-page: 788
  ident: b90
  article-title: Structured pruning for efficient convolutional neural networks via incremental regularization
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 31
  year: 2018
  ident: b92
  article-title: Understanding batch normalization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 7
  ident: b10
  article-title: An efficient deep learning approach to pneumonia classification in healthcare
  publication-title: J. Heal. Eng.
– reference: Li Yao, Eric Poblenz, Dmitry Dagunts, Ben Covington, Devon Bernard, Kevin Lyman, Learning to diagnose from scratch by exploiting dependencies among labels, in: International Conference on Learning Representations, 2018.
– volume: 63
  start-page: 1
  year: 2025
  end-page: 18
  ident: b27
  article-title: Enhanced deep image prior for unsupervised hyperspectral image super-resolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2018
  ident: b60
  article-title: Understanding disentangling in
– year: 2023
  ident: b87
  article-title: -Variational autoencoders and transformers for reduced-order modeling of fluid flows
– year: 2020
  ident: b32
  article-title: A comprehensive survey on convolutional neural network in medical image analysis
  publication-title: Multimedia Tools Appl.
– volume: 62
  start-page: 1
  year: 2024
  end-page: 16
  ident: b25
  article-title: Cross-Semantic heterogeneous modeling network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Yanbo Ma, Qiuhao Zhou, Xuesong Chen, Haihua Lu, Yong Zhao, Multi-attention Network for Thoracic Disease Classification and Localization, in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 1378–1382.
– year: 2020
  ident: b52
  article-title: Multi-label thoracic disease image classification with cross-attention networks
– reference: Sebastian Gündel, Sasa Grbic, Bogdan Georgescu, Shaohua Kevin Zhou, Ludwig Ritschl, Andreas Meier, Dorin Comaniciu, Learning to recognize Abnormalities in Chest X-Rays with Location-Aware Dense Networks, in: Iberoamerican Congress on Pattern Recognition, 2018.
– year: 2014
  ident: b72
  article-title: Dirichlet process mixtures for information retrieval
– volume: 32
  year: 2019
  ident: b99
  article-title: Escaping from saddle points on Riemannian manifolds
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2019
  ident: b5
  publication-title: Diseases of the Chest, Breast, Heart and Vessels 2019–2022: Diagnostic and Interventional Imaging
– volume: 27
  start-page: 1
  year: 2020
  ident: b7
  article-title: A review of perceptual expertise in radiology-How it develops, How we can test it, and why humans still matter in the era of artificial intelligence
  publication-title: Acad. Radiol.
– year: 2018
  ident: b101
  article-title: Dynamic routing on deep neural network for thoracic disease classification and sensitive area localization
– year: 2024
  ident: b36
  article-title: Transfer contrastive learning for Raman spectroscopy skin cancer tissue classification
  publication-title: IEEE J. Biomed. Heal. Inform.
– reference: Alec Nichol, Ofir Heess, Yewen Dhari, Johannes Bethge, Srinivasan Lakshminarasimhan, DiffusionCLIP: Text-Guided Image Generation with Diffusion Models, in: International Conference on Learning Representations, 2023.
– volume: 20
  start-page: 1
  year: 2023
  end-page: 5
  ident: b38
  article-title: Model-guided coarse-to-fine fusion network for unsupervised hyperspectral image super-resolution
  publication-title: IEEE Geosci. Remote. Sens. Lett.
– volume: 115
  start-page: 565
  year: 2019
  end-page: 577
  ident: b16
  article-title: Seeded transfer learning for regression problems with deep learning
  publication-title: Expert Syst. Appl.
– volume: 175
  year: 2023
  ident: b19
  article-title: A deep transfer learning-based convolution neural network model for COVID-19 detection using computed tomography scan images for medical applications
  publication-title: Adv. Eng. Softw.
– reference: Manisha Pathak, Deevesh Chaudhary, Kratika Sharma, Akhilesh K Sharma, Ashish Gupta, Brij Kishore Sharma, A Robust EfficientNet Architecture for Brain Tumor Classification and Identification Using MRI Image, in: 2023 11th International Conference on Intelligent Systems and Embedded Design, ISED, 2023, pp. 1–5.
– reference: Rachit Singh, Jeffrey Ling, Finale Doshi-Velez, Structured variational autoencoders for the beta-bernoulli process, in: NIPS 2017 Workshop on Advances in Approximate Bayesian Inference, 2017.
– year: 2016
  ident: b80
  article-title: Deep residual learning for image recognition
– volume: 22
  start-page: 1497
  year: 2018
  end-page: 1511
  ident: b31
  article-title: A survey on computer vision for assistive medical diagnosis from faces
  publication-title: IEEE J. Biomed. Heal. Inf.
– year: 2018
  ident: b56
  article-title: Weakly supervised deep learning for Thoracic Disease classification and localization on chest X-rays
– volume: 13
  year: 2019
  ident: b6
  article-title: Analysis of perceptual expertise in radiology – Current knowledge and a new perspective
  publication-title: Front. Hum. Neurosci.
– year: 2014
  ident: b65
  article-title: Auto-encoding variational bayes
– year: 2020
  ident: b14
  article-title: A survey on deep transfer learning and edge computing for mitigating the COVID-19 Pandemic
– volume: 40
  start-page: 2698
  year: 2021
  end-page: 2710
  ident: b49
  article-title: Learning hierarchical attention for weakly-supervised chest X-Ray abnormality localization and diagnosis
  publication-title: IEEE Trans. Med. Imaging
– reference: Pulkit Kumar, Monika Grewal, Muktabh Mayank Srivastava, Boosted Cascaded Convnets for Multi-label Classification of Thoracic Diseases in Chest Radiographs, in: International Conference on Image Analysis and Recognition, 2017.
– year: 2020
  ident: b55
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– reference: G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely Connected Convolutional Networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 4700–4708.
– volume: 53
  start-page: 339
  year: 2021
  end-page: 353
  ident: b75
  article-title: Stick-Breaking dependent beta processes with variational inference
  publication-title: Neural Process. Lett.
– start-page: 3462
  year: 2017
  end-page: 3471
  ident: b50
  article-title: ChestX-Ray8: Hospital-scale chest X-Ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 34
  start-page: 12674
  year: 2021
  end-page: 12685
  ident: b77
  article-title: Deep sparse coding networks for latent variable inference
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2014
  ident: b81
  article-title: Very deep convolutional networks for large-scale image recognition
– reference: J. Feng, T. Darrell, Learning the Structure of Deep Convolutional Networks, in: 2015 IEEE International Conference on Computer Vision, ICCV, Santiago, Chile, 2015, pp. 2749–2757.
– year: 2016
  ident: b66
  article-title: Variational inference and deep learning
– volume: 108
  start-page: S2
  year: 2018
  ident: b1
  article-title: Global association of air pollution and cardiorespiratory diseases: A systematic review, meta-analysis, and investigation of modifier variables
  publication-title: Am. J. Public Health
– volume: Vol. 10952
  start-page: 81
  year: 2019
  end-page: 91
  ident: b13
  article-title: Using transfer learning for a deep learning model observer
  publication-title: Medical Imaging 2019: Image Perception, Observer Performance, and Technology Assessment
– volume: 23
  start-page: 1
  year: 2022
  end-page: 35
  ident: b76
  article-title: Scalable inference for the indian buffet process with infinite support
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 305
  year: 2018
  end-page: 307
  ident: b91
  article-title: Ian goodfellow, yoshua bengio, and aaron courville: Deep learning: The MIT press, 2016, 800 pp, ISBN: 0262035618
  publication-title: Genet. Program. Evol. Mach.
– reference: K. Xu, A. Srivastava, C. Sutton, Variational Russian Roulette for Deep Bayesian Nonparametrics, in: Proceedings of the 36th International Conference on Machine Learning, 2020, p. 10.
– year: 2019
  ident: b98
  article-title: A simple dynamic learning rate tuning algorithm for automated training of DNNs
– year: 2019
  ident: b57
  article-title: Transfusion: understanding transfer learning for medical imaging
  publication-title: Proceedings of the 33rd International Conference on Neural Information Processing Systems
– volume: 82
  start-page: 39211
  year: 2023
  end-page: 39254
  ident: b20
  article-title: MediNet: transfer learning approach with MediNet medical visual database
  publication-title: Multimedia Tools Appl.
– volume: 290
  start-page: 1
  year: 2019
  ident: b9
  article-title: Development and validation of deep Learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs
  publication-title: Radiology
– volume: 61
  start-page: 1
  year: 2023
  end-page: 17
  ident: b37
  article-title: X-Shaped interactive autoencoders with cross-modality mutual learning for unsupervised hyperspectral image super-resolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2014
  ident: b95
  article-title: Indian buffet process deep generative models
– reference: Z. Wang, Z. Dai, B. Poczos, J. Carbonell, Characterizing and Avoiding Negative Transfer, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA, USA, 2019, pp. 11285–11294.
– year: 2023
  ident: b23
  article-title: Bayesian transfer learning
– volume: 13
  start-page: 1263
  year: 2012
  end-page: 1313
  ident: b70
  article-title: Variational inference for the Indian buffet process
  publication-title: J. Mach. Learn. Res.
– volume: 16
  year: 2019
  ident: b2
  article-title: High prevalence of respiratory symptoms among particleboard workers in Ethiopia: A cross-sectional study
  publication-title: Int. J. Environ. Res. Public Heal.
– year: 2020
  ident: b94
  article-title: Normalization techniques in training DNNs: Methodology, analysis and application
– start-page: 1223
  year: 2013
  end-page: 1231
  ident: b69
  article-title: Submodular clustering with the Indian Buffet Process
  publication-title: Advances in Neural Information Processing Systems
– volume: 30
  start-page: 41
  year: 2019
  end-page: 47
  ident: b15
  article-title: Pathological brain detection based on AlexNet and transfer learning
  publication-title: J. Comput. Sci.
– year: 2015
  ident: b64
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
– volume: 49
  start-page: 1397
  year: 2020
  end-page: 1403
  ident: b96
  article-title: Reflection on modern methods: Revisiting the area under the ROC curve
  publication-title: Int. J. Epidemiol.
– reference: Prashnna Gyawali, Zhiyuan Li, Cameron Knight, Sandesh Ghimire, B. Milan Horacek, John Sapp, Linwei Wang, Improving Disentangled Representation Learning with the Beta Bernoulli Process, in: 2019 IEEE International Conference on Data Mining, ICDM, 2019, pp. 1078–1083.
– year: 2015
  ident: b63
  article-title: Generating sentences from a continuous space
– year: 2018
  ident: b89
  article-title: VAE with a VampPrior
– start-page: 369
  year: 2019
  end-page: 392
  ident: b93
  article-title: ChestX-ray: Hospital-scale chest X-ray database and benchmarks on weakly supervised classification and localization of common thorax diseases
  publication-title: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics
– volume: 116
  start-page: 2
  year: 2019
  ident: b4
  article-title: Projection X-Ray Imaging: Radiography, mammography, fluoroscopy
  publication-title: Health Phys.
– year: 2005
  ident: b68
  article-title: Infinite latent feature models and the Indian buffet process
– volume: 62
  start-page: 1
  year: 2024
  end-page: 17
  ident: b28
  article-title: Model-Informed multistage unsupervised network for hyperspectral image super-resolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 8
  start-page: 292
  year: 2019
  ident: b11
  article-title: A State-of-the-Art survey on deep learning theory and architectures
  publication-title: Electronics
– volume: vol. 1168
  year: 2021
  ident: b33
  publication-title: Smart Innovations in Communication and Computational Sciences: Proceedings of ICSICCS 2020
– volume: 18
  start-page: 1
  year: 2017
  end-page: 45
  ident: b67
  article-title: Variational inference: A review
  publication-title: J. Mach. Learn. Res.
– year: 2019
  ident: b73
  article-title: A new class of time dependent latent factor models with applications
– volume: 29
  start-page: 129
  year: 2020
  end-page: 138
  ident: b34
  article-title: Advancing medical imaging informatics by deep learning-based domain adaptation
  publication-title: Yearb. Med. Inform.
– volume: 9
  start-page: 6381
  year: 2019
  ident: b47
  article-title: Comparison of deep learning approaches for Multi-Label chest X-Ray classification
  publication-title: Sci. Rep.
– reference: K. ManojSenthil, T. Meeradevi, Ravi Samikannu, N. Anand, V.S. Dharanimukhi, S. Dhivya, Lung tumor detection using modified EfficientNet-B1, in: 2024 15th International Conference on Computing Communication and Networking Technologies, ICCCNT, 2024, pp. 1–6.
– year: 2019
  ident: b51
  article-title: CheXpert: A large chest X-ray dataset for benchmarking and training deep learning models
– year: 2018
  ident: b43
  article-title: Densely connected convolutional networks
– volume: 36
  year: 2024
  ident: b88
  article-title: Toward aerodynamic surrogate modeling based on
  publication-title: Phys. Fluids
– reference: Jiashi Feng, Trevor Darrell, Learning The Structure of Deep Convolutional Networks, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2015.
– year: 2017
  ident: b97
  article-title: Custer: Dense neural network chest X-ray pattern recognition with self-attention mechanism
– year: 2013
  ident: b21
  article-title: Class imbalance problem in data mining review
– start-page: 3462
  year: 2017
  end-page: 3471
  ident: b40
  article-title: ChestX-Ray8: Hospital-scale chest X-Ray database and benchmarks on Weakly-Supervised classification and localization of common thorax diseases
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 126
  year: 2023
  ident: b85
  article-title: Lung-EffNet: Lung cancer classification using EfficientNet from CT-scan images
  publication-title: Eng. Appl. Artif. Intell.
– year: 2020
  ident: b100
  article-title: Gradient-Free methods for saddle-point problem
– year: 2019
  ident: b61
  article-title: Balancing reconstruction quality and regularisation in ELBO for VAEs
– year: 2020
  ident: b12
  publication-title: Advances in Deep Learning
– volume: 521
  start-page: 452
  year: 2015
  end-page: 459
  ident: b22
  article-title: Probabilistic machine learning and artificial intelligence
  publication-title: Nature
– reference: I. Sirazitdinov, M. Kholiavchenko, R. Kuleev, B. Ibragimov, Data Augmentation for Chest Pathologies Classification, in: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 2019, pp. 1216–1219.
– year: 2016
  ident: b44
  article-title: Inception-v4, Inception-ResNet and the impact of residual connections on learning
– volume: Vol. 10952
  start-page: 81
  year: 2019
  ident: 10.1016/j.knosys.2025.114034_b13
  article-title: Using transfer learning for a deep learning model observer
– year: 2014
  ident: 10.1016/j.knosys.2025.114034_b81
– volume: 126
  year: 2023
  ident: 10.1016/j.knosys.2025.114034_b85
  article-title: Lung-EffNet: Lung cancer classification using EfficientNet from CT-scan images
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106902
– year: 2023
  ident: 10.1016/j.knosys.2025.114034_b23
– volume: 9
  start-page: 6381
  issue: 1
  year: 2019
  ident: 10.1016/j.knosys.2025.114034_b47
  article-title: Comparison of deep learning approaches for Multi-Label chest X-Ray classification
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-42294-8
– volume: 116
  start-page: 2
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2025.114034_b4
  article-title: Projection X-Ray Imaging: Radiography, mammography, fluoroscopy
  publication-title: Health Phys.
  doi: 10.1097/HP.0000000000001028
– year: 2020
  ident: 10.1016/j.knosys.2025.114034_b55
– year: 2016
  ident: 10.1016/j.knosys.2025.114034_b44
– volume: 63
  start-page: 1
  year: 2025
  ident: 10.1016/j.knosys.2025.114034_b27
  article-title: Enhanced deep image prior for unsupervised hyperspectral image super-resolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2019
  ident: 10.1016/j.knosys.2025.114034_b51
– year: 2015
  ident: 10.1016/j.knosys.2025.114034_b82
– year: 2014
  ident: 10.1016/j.knosys.2025.114034_b72
– year: 2020
  ident: 10.1016/j.knosys.2025.114034_b100
– volume: 31
  start-page: 2444
  issue: 4
  year: 2021
  ident: 10.1016/j.knosys.2025.114034_b8
  article-title: Factors associated with insufficient nasogastric tube visibility on X-ray: a retrospective analysis
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-07302-w
– volume: 14
  start-page: 775
  issue: 4
  year: 2020
  ident: 10.1016/j.knosys.2025.114034_b90
  article-title: Structured pruning for efficient convolutional neural networks via incremental regularization
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2019.2961233
– year: 2019
  ident: 10.1016/j.knosys.2025.114034_b73
– year: 2017
  ident: 10.1016/j.knosys.2025.114034_b97
– volume: 62
  start-page: 1
  year: 2024
  ident: 10.1016/j.knosys.2025.114034_b25
  article-title: Cross-Semantic heterogeneous modeling network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 13
  start-page: 1263
  issue: dec
  year: 2012
  ident: 10.1016/j.knosys.2025.114034_b70
  article-title: Variational inference for the Indian buffet process
  publication-title: J. Mach. Learn. Res.
– year: 2015
  ident: 10.1016/j.knosys.2025.114034_b64
– volume: 31
  year: 2018
  ident: 10.1016/j.knosys.2025.114034_b92
  article-title: Understanding batch normalization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 175
  year: 2023
  ident: 10.1016/j.knosys.2025.114034_b19
  article-title: A deep transfer learning-based convolution neural network model for COVID-19 detection using computed tomography scan images for medical applications
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2022.103317
– ident: 10.1016/j.knosys.2025.114034_b83
  doi: 10.1109/ICCCNT61001.2024.10724101
– volume: vol. 1168
  year: 2021
  ident: 10.1016/j.knosys.2025.114034_b33
– volume: 23
  start-page: 1
  issue: 129
  year: 2022
  ident: 10.1016/j.knosys.2025.114034_b76
  article-title: Scalable inference for the indian buffet process with infinite support
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.knosys.2025.114034_b48
  doi: 10.1109/ICASSP.2019.8682952
– start-page: 1223
  year: 2013
  ident: 10.1016/j.knosys.2025.114034_b69
  article-title: Submodular clustering with the Indian Buffet Process
– year: 2024
  ident: 10.1016/j.knosys.2025.114034_b36
  article-title: Transfer contrastive learning for Raman spectroscopy skin cancer tissue classification
  publication-title: IEEE J. Biomed. Heal. Inform.
  doi: 10.1109/JBHI.2024.3451950
– year: 2023
  ident: 10.1016/j.knosys.2025.114034_b87
– year: 2018
  ident: 10.1016/j.knosys.2025.114034_b101
– volume: 18
  start-page: 1
  issue: 46
  year: 2017
  ident: 10.1016/j.knosys.2025.114034_b67
  article-title: Variational inference: A review
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.knosys.2025.114034_b78
– volume: 30
  start-page: 41
  year: 2019
  ident: 10.1016/j.knosys.2025.114034_b15
  article-title: Pathological brain detection based on AlexNet and transfer learning
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2018.11.008
– year: 2020
  ident: 10.1016/j.knosys.2025.114034_b14
– volume: 29
  start-page: 129
  year: 2020
  ident: 10.1016/j.knosys.2025.114034_b34
  article-title: Advancing medical imaging informatics by deep learning-based domain adaptation
  publication-title: Yearb. Med. Inform.
  doi: 10.1055/s-0040-1702009
– start-page: 96
  year: 2018
  ident: 10.1016/j.knosys.2025.114034_b62
  article-title: Empirical evaluation of variational autoencoders for data augmentation
– year: 2018
  ident: 10.1016/j.knosys.2025.114034_b89
– volume: 13
  year: 2019
  ident: 10.1016/j.knosys.2025.114034_b6
  article-title: Analysis of perceptual expertise in radiology – Current knowledge and a new perspective
  publication-title: Front. Hum. Neurosci.
– year: 2022
  ident: 10.1016/j.knosys.2025.114034_b58
– volume: vol. 804
  year: 2019
  ident: 10.1016/j.knosys.2025.114034_b29
– volume: 40
  start-page: 2698
  issue: 10
  year: 2021
  ident: 10.1016/j.knosys.2025.114034_b49
  article-title: Learning hierarchical attention for weakly-supervised chest X-Ray abnormality localization and diagnosis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3042773
– year: 2020
  ident: 10.1016/j.knosys.2025.114034_b52
– year: 2019
  ident: 10.1016/j.knosys.2025.114034_b61
– year: 2018
  ident: 10.1016/j.knosys.2025.114034_b60
– volume: 20
  start-page: 1
  year: 2023
  ident: 10.1016/j.knosys.2025.114034_b38
  article-title: Model-guided coarse-to-fine fusion network for unsupervised hyperspectral image super-resolution
  publication-title: IEEE Geosci. Remote. Sens. Lett.
  doi: 10.1109/LGRS.2023.3330957
– volume: 36
  issue: 11
  year: 2024
  ident: 10.1016/j.knosys.2025.114034_b88
  article-title: Toward aerodynamic surrogate modeling based on β -variational autoencoders
  publication-title: Phys. Fluids
  doi: 10.1063/5.0232644
– volume: 8
  start-page: 292
  issue: 3
  year: 2019
  ident: 10.1016/j.knosys.2025.114034_b11
  article-title: A State-of-the-Art survey on deep learning theory and architectures
  publication-title: Electronics
  doi: 10.3390/electronics8030292
– volume: 62
  start-page: 1
  year: 2024
  ident: 10.1016/j.knosys.2025.114034_b28
  article-title: Model-Informed multistage unsupervised network for hyperspectral image super-resolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: 10.1016/j.knosys.2025.114034_b79
  doi: 10.1109/CVPR.2017.243
– volume: 521
  start-page: 452
  year: 2015
  ident: 10.1016/j.knosys.2025.114034_b22
  article-title: Probabilistic machine learning and artificial intelligence
  publication-title: Nature
  doi: 10.1038/nature14541
– volume: 61
  start-page: 1
  year: 2023
  ident: 10.1016/j.knosys.2025.114034_b37
  article-title: X-Shaped interactive autoencoders with cross-modality mutual learning for unsupervised hyperspectral image super-resolution
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2018
  ident: 10.1016/j.knosys.2025.114034_b43
– volume: 115
  start-page: 565
  year: 2019
  ident: 10.1016/j.knosys.2025.114034_b16
  article-title: Seeded transfer learning for regression problems with deep learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.041
– year: 2013
  ident: 10.1016/j.knosys.2025.114034_b21
– start-page: 3462
  year: 2017
  ident: 10.1016/j.knosys.2025.114034_b40
  article-title: ChestX-Ray8: Hospital-scale chest X-Ray database and benchmarks on Weakly-Supervised classification and localization of common thorax diseases
– volume: 108
  start-page: S2
  issue: S2
  year: 2018
  ident: 10.1016/j.knosys.2025.114034_b1
  article-title: Global association of air pollution and cardiorespiratory diseases: A systematic review, meta-analysis, and investigation of modifier variables
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.2017.303839
– ident: 10.1016/j.knosys.2025.114034_b35
  doi: 10.1109/SIBGRAPI-T.2019.00010
– ident: 10.1016/j.knosys.2025.114034_b18
  doi: 10.1109/ISBI.2019.8759573
– volume: 27
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.knosys.2025.114034_b7
  article-title: A review of perceptual expertise in radiology-How it develops, How we can test it, and why humans still matter in the era of artificial intelligence
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2019.08.018
– year: 2016
  ident: 10.1016/j.knosys.2025.114034_b80
– ident: 10.1016/j.knosys.2025.114034_b84
  doi: 10.1109/ISED59382.2023.10444597
– ident: 10.1016/j.knosys.2025.114034_b41
– volume: 49
  start-page: 1397
  issue: 4
  year: 2020
  ident: 10.1016/j.knosys.2025.114034_b96
  article-title: Reflection on modern methods: Revisiting the area under the ROC curve
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyz274
– ident: 10.1016/j.knosys.2025.114034_b17
  doi: 10.1109/CVPR.2019.01155
– volume: 343
  start-page: 19
  year: 2019
  ident: 10.1016/j.knosys.2025.114034_b3
  article-title: Detecting lung abnormalities from X-rays using an improved SSL algorithm
  publication-title: Electron. Notes Theor. Comput. Sci.
  doi: 10.1016/j.entcs.2019.04.008
– year: 2020
  ident: 10.1016/j.knosys.2025.114034_b32
  article-title: A comprehensive survey on convolutional neural network in medical image analysis
  publication-title: Multimedia Tools Appl.
– year: 2014
  ident: 10.1016/j.knosys.2025.114034_b65
– year: 2020
  ident: 10.1016/j.knosys.2025.114034_b94
– volume: 39
  start-page: 3583
  issue: 11
  year: 2020
  ident: 10.1016/j.knosys.2025.114034_b102
  article-title: Deep mining external imperfect data for chest X-Ray disease screening
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3000949
– ident: 10.1016/j.knosys.2025.114034_b30
  doi: 10.1109/ICCV.2015.315
– start-page: 369
  year: 2019
  ident: 10.1016/j.knosys.2025.114034_b93
  article-title: ChestX-ray: Hospital-scale chest X-ray database and benchmarks on weakly supervised classification and localization of common thorax diseases
– year: 2018
  ident: 10.1016/j.knosys.2025.114034_b42
– year: 2018
  ident: 10.1016/j.knosys.2025.114034_b56
– year: 2015
  ident: 10.1016/j.knosys.2025.114034_b63
– start-page: 3462
  year: 2017
  ident: 10.1016/j.knosys.2025.114034_b50
  article-title: ChestX-Ray8: Hospital-scale chest X-Ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
– year: 2019
  ident: 10.1016/j.knosys.2025.114034_b5
– volume: 12
  start-page: 3256
  year: 2024
  ident: 10.1016/j.knosys.2025.114034_b53
  article-title: ThoraX-PriorNet: A novel attention-based architecture using anatomical prior probability maps for thoracic disease classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3346315
– volume: 16
  year: 2019
  ident: 10.1016/j.knosys.2025.114034_b2
  article-title: High prevalence of respiratory symptoms among particleboard workers in Ethiopia: A cross-sectional study
  publication-title: Int. J. Environ. Res. Public Heal.
– volume: 15
  start-page: 6053
  year: 2022
  ident: 10.1016/j.knosys.2025.114034_b26
  article-title: HyperViTGAN: Semisupervised generative adversarial network with transformer for hyperspectral image classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
  doi: 10.1109/JSTARS.2022.3192127
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.knosys.2025.114034_b10
  article-title: An efficient deep learning approach to pneumonia classification in healthcare
  publication-title: J. Heal. Eng.
  doi: 10.1155/2019/4180949
– ident: 10.1016/j.knosys.2025.114034_b45
  doi: 10.1007/978-3-319-93000-8_62
– ident: 10.1016/j.knosys.2025.114034_b24
  doi: 10.1109/ICCV.2015.315
– volume: 13
  issue: 10
  year: 2023
  ident: 10.1016/j.knosys.2025.114034_b54
  article-title: Multi-label classification of chest X-ray abnormalities using transfer learning techniques
  publication-title: J. Pers. Med.
  doi: 10.3390/jpm13101426
– ident: 10.1016/j.knosys.2025.114034_b74
– year: 2019
  ident: 10.1016/j.knosys.2025.114034_b98
– volume: 290
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.knosys.2025.114034_b9
  article-title: Development and validation of deep Learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs
  publication-title: Radiology
  doi: 10.1148/radiol.2018180237
– volume: 22
  start-page: 1497
  issue: 5
  year: 2018
  ident: 10.1016/j.knosys.2025.114034_b31
  article-title: A survey on computer vision for assistive medical diagnosis from faces
  publication-title: IEEE J. Biomed. Heal. Inf.
– ident: 10.1016/j.knosys.2025.114034_b59
  doi: 10.1109/ICDM.2019.00127
– year: 2019
  ident: 10.1016/j.knosys.2025.114034_b57
  article-title: Transfusion: understanding transfer learning for medical imaging
– start-page: 1097
  year: 2012
  ident: 10.1016/j.knosys.2025.114034_b86
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 82
  start-page: 39211
  issue: 25
  year: 2023
  ident: 10.1016/j.knosys.2025.114034_b20
  article-title: MediNet: transfer learning approach with MediNet medical visual database
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-023-14831-1
– year: 2014
  ident: 10.1016/j.knosys.2025.114034_b95
– year: 2005
  ident: 10.1016/j.knosys.2025.114034_b68
– volume: 34
  start-page: 12674
  year: 2021
  ident: 10.1016/j.knosys.2025.114034_b77
  article-title: Deep sparse coding networks for latent variable inference
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 53
  start-page: 339
  issue: 1
  year: 2021
  ident: 10.1016/j.knosys.2025.114034_b75
  article-title: Stick-Breaking dependent beta processes with variational inference
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-020-10392-8
– ident: 10.1016/j.knosys.2025.114034_b71
– volume: 19
  start-page: 1
  year: 2022
  ident: 10.1016/j.knosys.2025.114034_b39
  article-title: Deep unsupervised blind hyperspectral and multispectral data fusion
  publication-title: IEEE Geosci. Remote. Sens. Lett.
– ident: 10.1016/j.knosys.2025.114034_b46
  doi: 10.1007/978-3-030-13469-3_88
– year: 2016
  ident: 10.1016/j.knosys.2025.114034_b66
– year: 2020
  ident: 10.1016/j.knosys.2025.114034_b12
– volume: 19
  start-page: 305
  issue: 1–2
  year: 2018
  ident: 10.1016/j.knosys.2025.114034_b91
  article-title: Ian goodfellow, yoshua bengio, and aaron courville: Deep learning: The MIT press, 2016, 800 pp, ISBN: 0262035618
  publication-title: Genet. Program. Evol. Mach.
  doi: 10.1007/s10710-017-9314-z
– volume: 32
  year: 2019
  ident: 10.1016/j.knosys.2025.114034_b99
  article-title: Escaping from saddle points on Riemannian manifolds
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0002218
Score 2.4349294
Snippet Deep learning has revolutionized the detection of cardiopulmonary diseases by using readily available X-ray images. Transfer learning offers an exciting avenue...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 114034
SubjectTerms Cardiopulmonary disease classification
Deep learning
Deep transfer learning
Indian buffet process
Nonparametric Bayesian priors
Variational autoencoder
Title Nonparametric Bayesian transfer learning for robust cardiopulmonary diseases classification in X-ray images
URI https://dx.doi.org/10.1016/j.knosys.2025.114034
Volume 326
WOSCitedRecordID wos001526068100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002218
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbQlgMXoDxEeVQ-cFu5Ckmc2MeCimiRVkgUaTlFtmOjbdVslWRR---Z8WPbZRECJC7RylIcZz7v-JvJPAh5DSdMWxpbMMNbzcpcVQxOOTBVHFhETlqeqdBsop7NxHwuP8V-94NvJ1B3nbi6kpf_FWoYA7AxdfYv4F5PCgPwG0CHK8AO1z8CfrbssJ73BbbKMtO36tr6PMnRM1Tbpz4RIX6yX-rVMGJ96naBrbxglRhGFz_bDFOD5BqjiVQKipyzXl1PFxegh4bbzPZjcs4xPBjbWCJ6uNFwblx5rQL2eXhrv88GLPHrnapfVW-_xZeLboicY8xEyOoPvrGt_JjoZMxYncWSslHfFiFFfkt3BzfC2cF5t4QlHuBDsJJxFp2dm1WxP-PUODNQOLBgJZzCOznYPtmE7BweH81P1sdxnnsn73opKX_SB_ltP-vX_OQW5zh9SO5HY4EeBpB3yR3bPSIPUiMOGvXyY3K-gTlNmNOEOU2YU8CcBszpT5jThDndxJwuOuoxpwHzJ-TL-6PTdx9Y7KLBDKjjkVnHeZGLN6qorBJaaKt53tZGAhWUlRNcKI1FDeFfK4F-q8yVymmplCoF5jkXT8mkW3b2GaFgHdfWcM1lqcvM-qTsouKuggFXC7NHWJJdcxmKpTQpivCsCbJuUNZNkPUeqZOAm0j4ApFrYE_89s7n_3znC3LvZvu-JJOxX9lX5K75Pi6Gfj9unh95QIGU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+Bayesian+transfer+learning+for+robust+cardiopulmonary+diseases+classification+in+X-ray+images&rft.jtitle=Knowledge-based+systems&rft.au=Haftu%2C+Kibrom&rft.au=Assabie%2C+Yaregal&rft.date=2025-09-27&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.volume=326&rft_id=info:doi/10.1016%2Fj.knosys.2025.114034&rft.externalDocID=S0950705125010792
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon