Nonparametric Bayesian transfer learning for robust cardiopulmonary diseases classification in X-ray images
Deep learning has revolutionized the detection of cardiopulmonary diseases by using readily available X-ray images. Transfer learning offers an exciting avenue for accelerating progress in this field, particularly when large training datasets are scarce. However, difficulties arise when transferring...
Gespeichert in:
| Veröffentlicht in: | Knowledge-based systems Jg. 326; S. 114034 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
27.09.2025
|
| Schlagworte: | |
| ISSN: | 0950-7051 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Deep learning has revolutionized the detection of cardiopulmonary diseases by using readily available X-ray images. Transfer learning offers an exciting avenue for accelerating progress in this field, particularly when large training datasets are scarce. However, difficulties arise when transferring knowledge from one domain to another unrelated task, potentially harming model performance. Therefore, we propose a novel nonparametric Bayesian statistical model to investigate the effectiveness of transfer learning on radiographic images. The proposed model comprises of two main components: deep transfer learning and classification. The deep transfer learning component extracts domain-invariant discriminating features using an Indian buffet process-driven variational autoencoder. This Bayesian nonparametric model enables flexible modeling of networks with potentially unbounded sizes while simultaneously capturing complex structural patterns and regularities within the data. The classification component further fine-tunes these features using a supervised algorithm rather than the current approaches that use a single feature space represented by the last fully connected layer of the convolutional neural networks across all conditions. Our model achieved a mean area under the curve (AUC) score of 88.01% for 14 cardiopulmonary diseases in the NIH chest radiograph dataset, outperforming the existing state-of-the-art methods. Validation of the collected external data demonstrates the generalizability of the model. |
|---|---|
| AbstractList | Deep learning has revolutionized the detection of cardiopulmonary diseases by using readily available X-ray images. Transfer learning offers an exciting avenue for accelerating progress in this field, particularly when large training datasets are scarce. However, difficulties arise when transferring knowledge from one domain to another unrelated task, potentially harming model performance. Therefore, we propose a novel nonparametric Bayesian statistical model to investigate the effectiveness of transfer learning on radiographic images. The proposed model comprises of two main components: deep transfer learning and classification. The deep transfer learning component extracts domain-invariant discriminating features using an Indian buffet process-driven variational autoencoder. This Bayesian nonparametric model enables flexible modeling of networks with potentially unbounded sizes while simultaneously capturing complex structural patterns and regularities within the data. The classification component further fine-tunes these features using a supervised algorithm rather than the current approaches that use a single feature space represented by the last fully connected layer of the convolutional neural networks across all conditions. Our model achieved a mean area under the curve (AUC) score of 88.01% for 14 cardiopulmonary diseases in the NIH chest radiograph dataset, outperforming the existing state-of-the-art methods. Validation of the collected external data demonstrates the generalizability of the model. |
| ArticleNumber | 114034 |
| Author | Haftu, Kibrom Assabie, Yaregal |
| Author_xml | – sequence: 1 givenname: Kibrom orcidid: 0009-0009-2652-4455 surname: Haftu fullname: Haftu, Kibrom email: kibrom.haftu@aau.edu.et – sequence: 2 givenname: Yaregal orcidid: 0000-0001-7591-9298 surname: Assabie fullname: Assabie, Yaregal |
| BookMark | eNp9kL1OwzAURj0UiRZ4Awa_QIqdxImzIEHFn1TBAhKbdeNcV25Tu_JNkfL2tAoz0zedT0dnwWYhBmTsVoqlFLK62y53IdJIy1zkaillKYpyxuaiUSKrhZKXbEG0FULkudRztnuP4QAJ9jgkb_kjjEgeAh8SBHKYeI-Qgg8b7mLiKbZHGriF1Pl4OPb7GCCNvPOEQEjc9kDknbcw-Bi4D_w7SzByv4cN0jW7cNAT3vztFft6fvpcvWbrj5e31cM6s7mqhwydUkWuJRQVgm51i63Ku9o2shFN5bTS0OqqroVUjVYShCvBtQ0AlLrMq6a4YuX0a1MkSujMIZ0M0mikMOdIZmumSOYcyUyRTtj9hOHJ7cdjMmQ9BoudT2gH00X__8EvJ9l42g |
| Cites_doi | 10.1016/j.engappai.2023.106902 10.1038/s41598-019-42294-8 10.1097/HP.0000000000001028 10.1007/s00330-020-07302-w 10.1109/JSTSP.2019.2961233 10.1016/j.advengsoft.2022.103317 10.1109/ICCCNT61001.2024.10724101 10.1109/ICASSP.2019.8682952 10.1109/JBHI.2024.3451950 10.1016/j.jocs.2018.11.008 10.1055/s-0040-1702009 10.1109/TMI.2020.3042773 10.1109/LGRS.2023.3330957 10.1063/5.0232644 10.3390/electronics8030292 10.1109/CVPR.2017.243 10.1038/nature14541 10.1016/j.eswa.2018.08.041 10.2105/AJPH.2017.303839 10.1109/SIBGRAPI-T.2019.00010 10.1109/ISBI.2019.8759573 10.1016/j.acra.2019.08.018 10.1109/ISED59382.2023.10444597 10.1093/ije/dyz274 10.1109/CVPR.2019.01155 10.1016/j.entcs.2019.04.008 10.1109/TMI.2020.3000949 10.1109/ICCV.2015.315 10.1109/ACCESS.2023.3346315 10.1109/JSTARS.2022.3192127 10.1155/2019/4180949 10.1007/978-3-319-93000-8_62 10.3390/jpm13101426 10.1148/radiol.2018180237 10.1109/ICDM.2019.00127 10.1007/s11042-023-14831-1 10.1007/s11063-020-10392-8 10.1007/978-3-030-13469-3_88 10.1007/s10710-017-9314-z |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.knosys.2025.114034 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_knosys_2025_114034 S0950705125010792 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77I 77K 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABIVO ABJNI ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- ~HD 29L 9DU AAQXK AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ |
| ID | FETCH-LOGICAL-c257t-ef553281a36ea8b8beb52d7c919096f858ab86770159851a0f4afb9aaa4842693 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001526068100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Sat Nov 29 07:22:06 EST 2025 Sat Nov 01 16:41:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Variational autoencoder Indian buffet process Cardiopulmonary disease classification Nonparametric Bayesian priors Deep transfer learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c257t-ef553281a36ea8b8beb52d7c919096f858ab86770159851a0f4afb9aaa4842693 |
| ORCID | 0000-0001-7591-9298 0009-0009-2652-4455 |
| ParticipantIDs | crossref_primary_10_1016_j_knosys_2025_114034 elsevier_sciencedirect_doi_10_1016_j_knosys_2025_114034 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-27 |
| PublicationDateYYYYMMDD | 2025-09-27 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Huang, Liu, van der Maaten, Weinberger (b43) 2018 Wang, Peng, Lu, Lu, Bagheri, Summers (b50) 2017 Wang, Peng, Lu, Lu, Bagheri, Summers (b40) 2017 G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely Connected Convolutional Networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 4700–4708. Seibert (b4) 2019; 116 Tomczak, Welling (b89) 2018 Wang, Peng, Lu, Lu, Bagheri, Summers (b93) 2019 Ma, Wang, Hoi (b52) 2020 Tan, Le (b55) 2020 Burgess, Higgins, Pal, Matthey, Watters, Desjardins, Lerchner (b60) 2018 Livieris, Kanavos, Pintelas (b3) 2019; 343 Wang, Lin, Zhu (b36) 2024 Yan, Yao, Li, Xu, Huang (b56) 2018 Bjorck, Gomes, Selman, Weinberger (b92) 2018; 31 Salaken, Khosravi, Nguyen, Nahavandi (b16) 2019; 115 Thevenot, Lopez, Hadid (b31) 2018; 22 J. Feng, T. Darrell, Learning the Structure of Deep Convolutional Networks, in: 2015 IEEE International Conference on Computer Vision, ICCV, Santiago, Chile, 2015, pp. 2749–2757. Yanbo Ma, Qiuhao Zhou, Xuesong Chen, Haihua Lu, Yong Zhao, Multi-attention Network for Thoracic Disease Classification and Localization, in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 1378–1382. Baltruschat, Nickisch, Grass, Knopp, Saalbach (b47) 2019; 9 Li Yao, Eric Poblenz, Dmitry Dagunts, Ben Covington, Devon Bernard, Kevin Lyman, Learning to diagnose from scratch by exploiting dependencies among labels, in: International Conference on Learning Representations, 2018. Requia, Adams, Arain, Papatheodorou, Koutrakis, Mahmoud (b1) 2018; 108 Ricardo Ribani, Mauricio Marengoni, A Survey of Transfer Learning for Convolutional Neural Networks, in: 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), 2019, pp. 47–57. (b5) 2019 Li, Zheng, Yao, Gao, Hong (b39) 2022; 19 Chen, Fang, Xu, Zhu, Li (b77) 2021; 34 Murphy, Elangovan, Halling-Brown, Lewis, Young, Dance, Wells (b13) 2019; Vol. 10952 Pulkit Kumar, Monika Grewal, Muktabh Mayank Srivastava, Boosted Cascaded Convnets for Multi-label Classification of Thoracic Diseases in Chest Radiographs, in: International Conference on Image Analysis and Recognition, 2017. Broderick, Kulis, Jordan (b69) 2013 Z. Wang, Z. Dai, B. Poczos, J. Carbonell, Characterizing and Avoiding Negative Transfer, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA, USA, 2019, pp. 11285–11294. Ouyang, Karanam, Wu, Chen, Huo, Zhou, Wang, Cheng (b49) 2021; 40 Jorge-Cano, Vieco Pérez, Paredes Palacios, Sánchez Peiró, Benedí Ruiz (b62) 2018 Li, Zheng, Liu, Li, Yu, Ni (b38) 2023; 20 Chatzis (b95) 2014 Sebastian Gündel, Sasa Grbic, Bogdan Georgescu, Shaohua Kevin Zhou, Ludwig Ritschl, Andreas Meier, Dorin Comaniciu, Learning to recognize Abnormalities in Chest X-Rays with Location-Aware Dense Networks, in: Iberoamerican Congress on Pattern Recognition, 2018. Jiashi Feng, Trevor Darrell, Learning The Structure of Deep Convolutional Networks, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2015. He, Zhang, Ren, Sun (b80) 2016 Janssens, Martens (b96) 2020; 49 (b33) 2021; vol. 1168 Raghu, Zhang, Kleinberg, Bengio (b57) 2019 Sun, Flammarion, Fazel (b99) 2019; 32 Szegedy, Vanhoucke, Ioffe, Sutskever, Wozniak, Beaufays, Aubry (b82) 2015 K. Xu, A. Srivastava, C. Sutton, Variational Russian Roulette for Deep Bayesian Nonparametrics, in: Proceedings of the 36th International Conference on Machine Learning, 2020, p. 10. Waite, Grigorian, Alexander, Macknik, Carrasco, Heeger, Martinez-Conde (b6) 2019; 13 Blei, Kucuklar, McAuliffe (b67) 2017; 18 Shen, Gao (b101) 2018 Simonyan, Zisserman (b81) 2014 Ghahramani (b22) 2015; 521 Hossain, Zunaed, Ahmed, Hossain, Hasan, Hasan (b53) 2024; 12 Choudhary, Tong, Zhu, Wang (b34) 2020; 29 Krizhevsky, Sutskever, Hinton (b86) 2012 Torsy, Saman, Boeykens, Eriksson, Verhaeghe, Beeckman (b8) 2021; 31 Li, Zheng, Gao, Han, Li, Chanussot (b27) 2025; 63 Stephen, Sain, Maduh, Jeong (b10) 2019; 2019 Yao, Wang, Wang, Zhang (b32) 2020 Li, Zheng, Gao, Ni, Huang, Chanussot (b28) 2024; 62 Paisley, Blei, Jordan (b70) 2012; 13 Francés-Belda, Solera-Rico, Nieto-Centenero, Andrés, Vila, Castellanos (b88) 2024; 36 Rachit Singh, Jeffrey Ling, Finale Doshi-Velez, Structured variational autoencoders for the beta-bernoulli process, in: NIPS 2017 Workshop on Advances in Approximate Bayesian Inference, 2017. Mukherjee, Khare, Verma (b98) 2019 Szegedy, Ioffe, Vanhoucke, Alemi (b44) 2016 Beznosikov, Sadiev, Gasnikov (b100) 2020 Lu, Lu, Zhang (b15) 2019; 30 Wang (b97) 2017 Asgedom, Bråtveit, Moen (b2) 2019; 16 Manisha Pathak, Deevesh Chaudhary, Kratika Sharma, Akhilesh K Sharma, Ashish Gupta, Brij Kishore Sharma, A Robust EfficientNet Architecture for Brain Tumor Classification and Identification Using MRI Image, in: 2023 11th International Conference on Intelligent Systems and Embedded Design, ISED, 2023, pp. 1–5. Luo, Yu, Chen, Liu, Wang, Xu, Heng (b102) 2020; 39 Sufian, Ghosh, Sadiq, Smarandache (b14) 2020 Li, Zheng, Li, Li, Gao (b25) 2024; 62 Longadge, Dongre (b21) 2013 Wani, Bhat, Afzal, Khan (b12) 2020 Fox, Suddarth, Jordan (b72) 2014 (b29) 2019; vol. 804 Graves (b66) 2016 K. ManojSenthil, T. Meeradevi, Ravi Samikannu, N. Anand, V.S. Dharanimukhi, S. Dhivya, Lung tumor detection using modified EfficientNet-B1, in: 2024 15th International Conference on Computing Communication and Networking Technologies, ICCCNT, 2024, pp. 1–6. Radford, Metz, Chintala (b64) 2015 Prashnna Gyawali, Zhiyuan Li, Cameron Knight, Sandesh Ghimire, B. Milan Horacek, John Sapp, Linwei Wang, Improving Disentangled Representation Learning with the Beta Bernoulli Process, in: 2019 IEEE International Conference on Data Mining, ICDM, 2019, pp. 1078–1083. Waite (b7) 2020; 27 Kufel, Bielówka, Rojek, Mitręga, Lewandowski, Cebula, Krawczyk, Bielówka, Kondoł, Bargieł Łączek, Paszkiewicz, Czogalik, Kaczyńska, Wocław, Gruszczyńska, Nawrat (b54) 2023; 13 Wang, Xia (b42) 2018 Griffiths, Ghahramani (b68) 2005 Alom (b11) 2019; 8 Kingma, Welling (b65) 2014 Raza, Zulfiqar, Khan, Arif, Alvi, Iftikhar, Alam (b85) 2023; 126 He, Xia, Ghamisi, Hu, Fan, Zu (b26) 2022; 15 Alec Nichol, Ofir Heess, Yewen Dhari, Johannes Bethge, Srinivasan Lakshminarasimhan, DiffusionCLIP: Text-Guided Image Generation with Diffusion Models, in: International Conference on Learning Representations, 2023. Irvin, Cheng, Yu, Xiong, Dudley, Goo, Tang, Chakravarthy, Anderson, Gliklich (b51) 2019 Bowman, Jones, Vinyals, Bengio (b63) 2015 Tormos, Garcia-Gasulla, Gimenez-Abalos, Alvarez-Napagao (b58) 2022 Li, Zheng, Li, Gao, Jia (b37) 2023; 61 Suder, Xu, Dunson (b23) 2023 Vinuesa, Solera-Rico, Vila, Sánchez-Gómez, Wang, Almashjary, Dawson (b87) 2023 Huang, Qin, Zhou, Zhu, Liu, Shao (b94) 2020 Reis, Turk, Khoshelham, Kaya (b20) 2023; 82 Cao, Zhao, Sun (b75) 2021; 53 Nam (b9) 2019; 290 Wang, Hu, Zhang, Wang, Yu, Hu (b90) 2020; 14 I. Sirazitdinov, M. Kholiavchenko, R. Kuleev, B. Ibragimov, Data Augmentation for Chest Pathologies Classification, in: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 2019, pp. 1216–1219. Li, Xu, Zhu, Li (b76) 2022; 23 Kathamuthu, Subramaniam, Le, Muthusamy, Panchal, Sundararajan, Alrubaie, Zahra (b19) 2023; 175 Lin, Roberts, Trigoni, Clark (b61) 2019 Williamson, Zhang, Damien (b73) 2019 Heaton (b91) 2018; 19 Vinuesa (10.1016/j.knosys.2025.114034_b87) 2023 Waite (10.1016/j.knosys.2025.114034_b6) 2019; 13 Paisley (10.1016/j.knosys.2025.114034_b70) 2012; 13 Li (10.1016/j.knosys.2025.114034_b76) 2022; 23 Raghu (10.1016/j.knosys.2025.114034_b57) 2019 Krizhevsky (10.1016/j.knosys.2025.114034_b86) 2012 Sufian (10.1016/j.knosys.2025.114034_b14) 2020 Requia (10.1016/j.knosys.2025.114034_b1) 2018; 108 Williamson (10.1016/j.knosys.2025.114034_b73) 2019 Wani (10.1016/j.knosys.2025.114034_b12) 2020 10.1016/j.knosys.2025.114034_b71 Li (10.1016/j.knosys.2025.114034_b37) 2023; 61 10.1016/j.knosys.2025.114034_b74 Waite (10.1016/j.knosys.2025.114034_b7) 2020; 27 10.1016/j.knosys.2025.114034_b79 Hossain (10.1016/j.knosys.2025.114034_b53) 2024; 12 10.1016/j.knosys.2025.114034_b78 Reis (10.1016/j.knosys.2025.114034_b20) 2023; 82 Jorge-Cano (10.1016/j.knosys.2025.114034_b62) 2018 Kingma (10.1016/j.knosys.2025.114034_b65) 2014 (10.1016/j.knosys.2025.114034_b33) 2021; vol. 1168 Szegedy (10.1016/j.knosys.2025.114034_b44) 2016 Graves (10.1016/j.knosys.2025.114034_b66) 2016 Yao (10.1016/j.knosys.2025.114034_b32) 2020 Li (10.1016/j.knosys.2025.114034_b39) 2022; 19 Alom (10.1016/j.knosys.2025.114034_b11) 2019; 8 Broderick (10.1016/j.knosys.2025.114034_b69) 2013 Chen (10.1016/j.knosys.2025.114034_b77) 2021; 34 10.1016/j.knosys.2025.114034_b83 Huang (10.1016/j.knosys.2025.114034_b43) 2018 Wang (10.1016/j.knosys.2025.114034_b97) 2017 10.1016/j.knosys.2025.114034_b84 Wang (10.1016/j.knosys.2025.114034_b42) 2018 Mukherjee (10.1016/j.knosys.2025.114034_b98) 2019 Li (10.1016/j.knosys.2025.114034_b28) 2024; 62 Suder (10.1016/j.knosys.2025.114034_b23) 2023 Stephen (10.1016/j.knosys.2025.114034_b10) 2019; 2019 Burgess (10.1016/j.knosys.2025.114034_b60) 2018 Bjorck (10.1016/j.knosys.2025.114034_b92) 2018; 31 Tormos (10.1016/j.knosys.2025.114034_b58) 2022 Fox (10.1016/j.knosys.2025.114034_b72) 2014 Asgedom (10.1016/j.knosys.2025.114034_b2) 2019; 16 Kathamuthu (10.1016/j.knosys.2025.114034_b19) 2023; 175 Li (10.1016/j.knosys.2025.114034_b25) 2024; 62 Francés-Belda (10.1016/j.knosys.2025.114034_b88) 2024; 36 Baltruschat (10.1016/j.knosys.2025.114034_b47) 2019; 9 Raza (10.1016/j.knosys.2025.114034_b85) 2023; 126 Torsy (10.1016/j.knosys.2025.114034_b8) 2021; 31 10.1016/j.knosys.2025.114034_b17 10.1016/j.knosys.2025.114034_b18 Shen (10.1016/j.knosys.2025.114034_b101) 2018 Wang (10.1016/j.knosys.2025.114034_b40) 2017 Blei (10.1016/j.knosys.2025.114034_b67) 2017; 18 Heaton (10.1016/j.knosys.2025.114034_b91) 2018; 19 Cao (10.1016/j.knosys.2025.114034_b75) 2021; 53 10.1016/j.knosys.2025.114034_b24 Li (10.1016/j.knosys.2025.114034_b38) 2023; 20 Sun (10.1016/j.knosys.2025.114034_b99) 2019; 32 Chatzis (10.1016/j.knosys.2025.114034_b95) 2014 Griffiths (10.1016/j.knosys.2025.114034_b68) 2005 Szegedy (10.1016/j.knosys.2025.114034_b82) 2015 He (10.1016/j.knosys.2025.114034_b26) 2022; 15 Nam (10.1016/j.knosys.2025.114034_b9) 2019; 290 Beznosikov (10.1016/j.knosys.2025.114034_b100) 2020 10.1016/j.knosys.2025.114034_b30 Thevenot (10.1016/j.knosys.2025.114034_b31) 2018; 22 10.1016/j.knosys.2025.114034_b35 Ma (10.1016/j.knosys.2025.114034_b52) 2020 Wang (10.1016/j.knosys.2025.114034_b93) 2019 Ouyang (10.1016/j.knosys.2025.114034_b49) 2021; 40 Seibert (10.1016/j.knosys.2025.114034_b4) 2019; 116 Li (10.1016/j.knosys.2025.114034_b27) 2025; 63 Wang (10.1016/j.knosys.2025.114034_b50) 2017 Janssens (10.1016/j.knosys.2025.114034_b96) 2020; 49 Huang (10.1016/j.knosys.2025.114034_b94) 2020 Murphy (10.1016/j.knosys.2025.114034_b13) 2019; Vol. 10952 Wang (10.1016/j.knosys.2025.114034_b36) 2024 Simonyan (10.1016/j.knosys.2025.114034_b81) 2014 10.1016/j.knosys.2025.114034_b41 10.1016/j.knosys.2025.114034_b46 Longadge (10.1016/j.knosys.2025.114034_b21) 2013 10.1016/j.knosys.2025.114034_b45 (10.1016/j.knosys.2025.114034_b5) 2019 Yan (10.1016/j.knosys.2025.114034_b56) 2018 10.1016/j.knosys.2025.114034_b48 Tomczak (10.1016/j.knosys.2025.114034_b89) 2018 Bowman (10.1016/j.knosys.2025.114034_b63) 2015 (10.1016/j.knosys.2025.114034_b29) 2019; vol. 804 Lin (10.1016/j.knosys.2025.114034_b61) 2019 Ghahramani (10.1016/j.knosys.2025.114034_b22) 2015; 521 Choudhary (10.1016/j.knosys.2025.114034_b34) 2020; 29 10.1016/j.knosys.2025.114034_b59 Salaken (10.1016/j.knosys.2025.114034_b16) 2019; 115 Luo (10.1016/j.knosys.2025.114034_b102) 2020; 39 Radford (10.1016/j.knosys.2025.114034_b64) 2015 Livieris (10.1016/j.knosys.2025.114034_b3) 2019; 343 Irvin (10.1016/j.knosys.2025.114034_b51) 2019 Lu (10.1016/j.knosys.2025.114034_b15) 2019; 30 Kufel (10.1016/j.knosys.2025.114034_b54) 2023; 13 Wang (10.1016/j.knosys.2025.114034_b90) 2020; 14 Tan (10.1016/j.knosys.2025.114034_b55) 2020 He (10.1016/j.knosys.2025.114034_b80) 2016 |
| References_xml | – volume: 31 start-page: 2444 year: 2021 end-page: 2450 ident: b8 article-title: Factors associated with insufficient nasogastric tube visibility on X-ray: a retrospective analysis publication-title: Eur. Radiol. – year: 2022 ident: b58 article-title: When & how to transfer with transfer learning – start-page: 96 year: 2018 end-page: 104 ident: b62 article-title: Empirical evaluation of variational autoencoders for data augmentation publication-title: Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications – volume: 12 start-page: 3256 year: 2024 end-page: 3273 ident: b53 article-title: ThoraX-PriorNet: A novel attention-based architecture using anatomical prior probability maps for thoracic disease classification publication-title: IEEE Access – volume: 13 year: 2023 ident: b54 article-title: Multi-label classification of chest X-ray abnormalities using transfer learning techniques publication-title: J. Pers. Med. – start-page: 1097 year: 2012 end-page: 1105 ident: b86 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 19 start-page: 1 year: 2022 end-page: 5 ident: b39 article-title: Deep unsupervised blind hyperspectral and multispectral data fusion publication-title: IEEE Geosci. Remote. Sens. Lett. – volume: vol. 804 year: 2019 ident: b29 publication-title: Recent Advances in Computer Vision: Theories and Applications – volume: 343 start-page: 19 year: 2019 end-page: 33 ident: b3 article-title: Detecting lung abnormalities from X-rays using an improved SSL algorithm publication-title: Electron. Notes Theor. Comput. Sci. – year: 2018 ident: b42 article-title: ChestNet: A deep neural network for classification of thoracic diseases on chest radiography – volume: 39 start-page: 3583 year: 2020 end-page: 3594 ident: b102 article-title: Deep mining external imperfect data for chest X-Ray disease screening publication-title: IEEE Trans. Med. Imaging – reference: Ricardo Ribani, Mauricio Marengoni, A Survey of Transfer Learning for Convolutional Neural Networks, in: 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), 2019, pp. 47–57. – year: 2015 ident: b82 article-title: Going deeper with convolutions – volume: 15 start-page: 6053 year: 2022 end-page: 6068 ident: b26 article-title: HyperViTGAN: Semisupervised generative adversarial network with transformer for hyperspectral image classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. – volume: 14 start-page: 775 year: 2020 end-page: 788 ident: b90 article-title: Structured pruning for efficient convolutional neural networks via incremental regularization publication-title: IEEE J. Sel. Top. Signal Process. – volume: 31 year: 2018 ident: b92 article-title: Understanding batch normalization publication-title: Adv. Neural Inf. Process. Syst. – volume: 2019 start-page: 1 year: 2019 end-page: 7 ident: b10 article-title: An efficient deep learning approach to pneumonia classification in healthcare publication-title: J. Heal. Eng. – reference: Li Yao, Eric Poblenz, Dmitry Dagunts, Ben Covington, Devon Bernard, Kevin Lyman, Learning to diagnose from scratch by exploiting dependencies among labels, in: International Conference on Learning Representations, 2018. – volume: 63 start-page: 1 year: 2025 end-page: 18 ident: b27 article-title: Enhanced deep image prior for unsupervised hyperspectral image super-resolution publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2018 ident: b60 article-title: Understanding disentangling in – year: 2023 ident: b87 article-title: -Variational autoencoders and transformers for reduced-order modeling of fluid flows – year: 2020 ident: b32 article-title: A comprehensive survey on convolutional neural network in medical image analysis publication-title: Multimedia Tools Appl. – volume: 62 start-page: 1 year: 2024 end-page: 16 ident: b25 article-title: Cross-Semantic heterogeneous modeling network for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Yanbo Ma, Qiuhao Zhou, Xuesong Chen, Haihua Lu, Yong Zhao, Multi-attention Network for Thoracic Disease Classification and Localization, in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 1378–1382. – year: 2020 ident: b52 article-title: Multi-label thoracic disease image classification with cross-attention networks – reference: Sebastian Gündel, Sasa Grbic, Bogdan Georgescu, Shaohua Kevin Zhou, Ludwig Ritschl, Andreas Meier, Dorin Comaniciu, Learning to recognize Abnormalities in Chest X-Rays with Location-Aware Dense Networks, in: Iberoamerican Congress on Pattern Recognition, 2018. – year: 2014 ident: b72 article-title: Dirichlet process mixtures for information retrieval – volume: 32 year: 2019 ident: b99 article-title: Escaping from saddle points on Riemannian manifolds publication-title: Adv. Neural Inf. Process. Syst. – year: 2019 ident: b5 publication-title: Diseases of the Chest, Breast, Heart and Vessels 2019–2022: Diagnostic and Interventional Imaging – volume: 27 start-page: 1 year: 2020 ident: b7 article-title: A review of perceptual expertise in radiology-How it develops, How we can test it, and why humans still matter in the era of artificial intelligence publication-title: Acad. Radiol. – year: 2018 ident: b101 article-title: Dynamic routing on deep neural network for thoracic disease classification and sensitive area localization – year: 2024 ident: b36 article-title: Transfer contrastive learning for Raman spectroscopy skin cancer tissue classification publication-title: IEEE J. Biomed. Heal. Inform. – reference: Alec Nichol, Ofir Heess, Yewen Dhari, Johannes Bethge, Srinivasan Lakshminarasimhan, DiffusionCLIP: Text-Guided Image Generation with Diffusion Models, in: International Conference on Learning Representations, 2023. – volume: 20 start-page: 1 year: 2023 end-page: 5 ident: b38 article-title: Model-guided coarse-to-fine fusion network for unsupervised hyperspectral image super-resolution publication-title: IEEE Geosci. Remote. Sens. Lett. – volume: 115 start-page: 565 year: 2019 end-page: 577 ident: b16 article-title: Seeded transfer learning for regression problems with deep learning publication-title: Expert Syst. Appl. – volume: 175 year: 2023 ident: b19 article-title: A deep transfer learning-based convolution neural network model for COVID-19 detection using computed tomography scan images for medical applications publication-title: Adv. Eng. Softw. – reference: Manisha Pathak, Deevesh Chaudhary, Kratika Sharma, Akhilesh K Sharma, Ashish Gupta, Brij Kishore Sharma, A Robust EfficientNet Architecture for Brain Tumor Classification and Identification Using MRI Image, in: 2023 11th International Conference on Intelligent Systems and Embedded Design, ISED, 2023, pp. 1–5. – reference: Rachit Singh, Jeffrey Ling, Finale Doshi-Velez, Structured variational autoencoders for the beta-bernoulli process, in: NIPS 2017 Workshop on Advances in Approximate Bayesian Inference, 2017. – year: 2016 ident: b80 article-title: Deep residual learning for image recognition – volume: 22 start-page: 1497 year: 2018 end-page: 1511 ident: b31 article-title: A survey on computer vision for assistive medical diagnosis from faces publication-title: IEEE J. Biomed. Heal. Inf. – year: 2018 ident: b56 article-title: Weakly supervised deep learning for Thoracic Disease classification and localization on chest X-rays – volume: 13 year: 2019 ident: b6 article-title: Analysis of perceptual expertise in radiology – Current knowledge and a new perspective publication-title: Front. Hum. Neurosci. – year: 2014 ident: b65 article-title: Auto-encoding variational bayes – year: 2020 ident: b14 article-title: A survey on deep transfer learning and edge computing for mitigating the COVID-19 Pandemic – volume: 40 start-page: 2698 year: 2021 end-page: 2710 ident: b49 article-title: Learning hierarchical attention for weakly-supervised chest X-Ray abnormality localization and diagnosis publication-title: IEEE Trans. Med. Imaging – reference: Pulkit Kumar, Monika Grewal, Muktabh Mayank Srivastava, Boosted Cascaded Convnets for Multi-label Classification of Thoracic Diseases in Chest Radiographs, in: International Conference on Image Analysis and Recognition, 2017. – year: 2020 ident: b55 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks – reference: G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely Connected Convolutional Networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 4700–4708. – volume: 53 start-page: 339 year: 2021 end-page: 353 ident: b75 article-title: Stick-Breaking dependent beta processes with variational inference publication-title: Neural Process. Lett. – start-page: 3462 year: 2017 end-page: 3471 ident: b50 article-title: ChestX-Ray8: Hospital-scale chest X-Ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition – volume: 34 start-page: 12674 year: 2021 end-page: 12685 ident: b77 article-title: Deep sparse coding networks for latent variable inference publication-title: Adv. Neural Inf. Process. Syst. – year: 2014 ident: b81 article-title: Very deep convolutional networks for large-scale image recognition – reference: J. Feng, T. Darrell, Learning the Structure of Deep Convolutional Networks, in: 2015 IEEE International Conference on Computer Vision, ICCV, Santiago, Chile, 2015, pp. 2749–2757. – year: 2016 ident: b66 article-title: Variational inference and deep learning – volume: 108 start-page: S2 year: 2018 ident: b1 article-title: Global association of air pollution and cardiorespiratory diseases: A systematic review, meta-analysis, and investigation of modifier variables publication-title: Am. J. Public Health – volume: Vol. 10952 start-page: 81 year: 2019 end-page: 91 ident: b13 article-title: Using transfer learning for a deep learning model observer publication-title: Medical Imaging 2019: Image Perception, Observer Performance, and Technology Assessment – volume: 23 start-page: 1 year: 2022 end-page: 35 ident: b76 article-title: Scalable inference for the indian buffet process with infinite support publication-title: J. Mach. Learn. Res. – volume: 19 start-page: 305 year: 2018 end-page: 307 ident: b91 article-title: Ian goodfellow, yoshua bengio, and aaron courville: Deep learning: The MIT press, 2016, 800 pp, ISBN: 0262035618 publication-title: Genet. Program. Evol. Mach. – reference: K. Xu, A. Srivastava, C. Sutton, Variational Russian Roulette for Deep Bayesian Nonparametrics, in: Proceedings of the 36th International Conference on Machine Learning, 2020, p. 10. – year: 2019 ident: b98 article-title: A simple dynamic learning rate tuning algorithm for automated training of DNNs – year: 2019 ident: b57 article-title: Transfusion: understanding transfer learning for medical imaging publication-title: Proceedings of the 33rd International Conference on Neural Information Processing Systems – volume: 82 start-page: 39211 year: 2023 end-page: 39254 ident: b20 article-title: MediNet: transfer learning approach with MediNet medical visual database publication-title: Multimedia Tools Appl. – volume: 290 start-page: 1 year: 2019 ident: b9 article-title: Development and validation of deep Learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs publication-title: Radiology – volume: 61 start-page: 1 year: 2023 end-page: 17 ident: b37 article-title: X-Shaped interactive autoencoders with cross-modality mutual learning for unsupervised hyperspectral image super-resolution publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2014 ident: b95 article-title: Indian buffet process deep generative models – reference: Z. Wang, Z. Dai, B. Poczos, J. Carbonell, Characterizing and Avoiding Negative Transfer, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA, USA, 2019, pp. 11285–11294. – year: 2023 ident: b23 article-title: Bayesian transfer learning – volume: 13 start-page: 1263 year: 2012 end-page: 1313 ident: b70 article-title: Variational inference for the Indian buffet process publication-title: J. Mach. Learn. Res. – volume: 16 year: 2019 ident: b2 article-title: High prevalence of respiratory symptoms among particleboard workers in Ethiopia: A cross-sectional study publication-title: Int. J. Environ. Res. Public Heal. – year: 2020 ident: b94 article-title: Normalization techniques in training DNNs: Methodology, analysis and application – start-page: 1223 year: 2013 end-page: 1231 ident: b69 article-title: Submodular clustering with the Indian Buffet Process publication-title: Advances in Neural Information Processing Systems – volume: 30 start-page: 41 year: 2019 end-page: 47 ident: b15 article-title: Pathological brain detection based on AlexNet and transfer learning publication-title: J. Comput. Sci. – year: 2015 ident: b64 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks – volume: 49 start-page: 1397 year: 2020 end-page: 1403 ident: b96 article-title: Reflection on modern methods: Revisiting the area under the ROC curve publication-title: Int. J. Epidemiol. – reference: Prashnna Gyawali, Zhiyuan Li, Cameron Knight, Sandesh Ghimire, B. Milan Horacek, John Sapp, Linwei Wang, Improving Disentangled Representation Learning with the Beta Bernoulli Process, in: 2019 IEEE International Conference on Data Mining, ICDM, 2019, pp. 1078–1083. – year: 2015 ident: b63 article-title: Generating sentences from a continuous space – year: 2018 ident: b89 article-title: VAE with a VampPrior – start-page: 369 year: 2019 end-page: 392 ident: b93 article-title: ChestX-ray: Hospital-scale chest X-ray database and benchmarks on weakly supervised classification and localization of common thorax diseases publication-title: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics – volume: 116 start-page: 2 year: 2019 ident: b4 article-title: Projection X-Ray Imaging: Radiography, mammography, fluoroscopy publication-title: Health Phys. – year: 2005 ident: b68 article-title: Infinite latent feature models and the Indian buffet process – volume: 62 start-page: 1 year: 2024 end-page: 17 ident: b28 article-title: Model-Informed multistage unsupervised network for hyperspectral image super-resolution publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 8 start-page: 292 year: 2019 ident: b11 article-title: A State-of-the-Art survey on deep learning theory and architectures publication-title: Electronics – volume: vol. 1168 year: 2021 ident: b33 publication-title: Smart Innovations in Communication and Computational Sciences: Proceedings of ICSICCS 2020 – volume: 18 start-page: 1 year: 2017 end-page: 45 ident: b67 article-title: Variational inference: A review publication-title: J. Mach. Learn. Res. – year: 2019 ident: b73 article-title: A new class of time dependent latent factor models with applications – volume: 29 start-page: 129 year: 2020 end-page: 138 ident: b34 article-title: Advancing medical imaging informatics by deep learning-based domain adaptation publication-title: Yearb. Med. Inform. – volume: 9 start-page: 6381 year: 2019 ident: b47 article-title: Comparison of deep learning approaches for Multi-Label chest X-Ray classification publication-title: Sci. Rep. – reference: K. ManojSenthil, T. Meeradevi, Ravi Samikannu, N. Anand, V.S. Dharanimukhi, S. Dhivya, Lung tumor detection using modified EfficientNet-B1, in: 2024 15th International Conference on Computing Communication and Networking Technologies, ICCCNT, 2024, pp. 1–6. – year: 2019 ident: b51 article-title: CheXpert: A large chest X-ray dataset for benchmarking and training deep learning models – year: 2018 ident: b43 article-title: Densely connected convolutional networks – volume: 36 year: 2024 ident: b88 article-title: Toward aerodynamic surrogate modeling based on publication-title: Phys. Fluids – reference: Jiashi Feng, Trevor Darrell, Learning The Structure of Deep Convolutional Networks, in: Proceedings of the IEEE International Conference on Computer Vision, ICCV, 2015. – year: 2017 ident: b97 article-title: Custer: Dense neural network chest X-ray pattern recognition with self-attention mechanism – year: 2013 ident: b21 article-title: Class imbalance problem in data mining review – start-page: 3462 year: 2017 end-page: 3471 ident: b40 article-title: ChestX-Ray8: Hospital-scale chest X-Ray database and benchmarks on Weakly-Supervised classification and localization of common thorax diseases publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition – volume: 126 year: 2023 ident: b85 article-title: Lung-EffNet: Lung cancer classification using EfficientNet from CT-scan images publication-title: Eng. Appl. Artif. Intell. – year: 2020 ident: b100 article-title: Gradient-Free methods for saddle-point problem – year: 2019 ident: b61 article-title: Balancing reconstruction quality and regularisation in ELBO for VAEs – year: 2020 ident: b12 publication-title: Advances in Deep Learning – volume: 521 start-page: 452 year: 2015 end-page: 459 ident: b22 article-title: Probabilistic machine learning and artificial intelligence publication-title: Nature – reference: I. Sirazitdinov, M. Kholiavchenko, R. Kuleev, B. Ibragimov, Data Augmentation for Chest Pathologies Classification, in: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 2019, pp. 1216–1219. – year: 2016 ident: b44 article-title: Inception-v4, Inception-ResNet and the impact of residual connections on learning – volume: Vol. 10952 start-page: 81 year: 2019 ident: 10.1016/j.knosys.2025.114034_b13 article-title: Using transfer learning for a deep learning model observer – year: 2014 ident: 10.1016/j.knosys.2025.114034_b81 – volume: 126 year: 2023 ident: 10.1016/j.knosys.2025.114034_b85 article-title: Lung-EffNet: Lung cancer classification using EfficientNet from CT-scan images publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106902 – year: 2023 ident: 10.1016/j.knosys.2025.114034_b23 – volume: 9 start-page: 6381 issue: 1 year: 2019 ident: 10.1016/j.knosys.2025.114034_b47 article-title: Comparison of deep learning approaches for Multi-Label chest X-Ray classification publication-title: Sci. Rep. doi: 10.1038/s41598-019-42294-8 – volume: 116 start-page: 2 issue: 2 year: 2019 ident: 10.1016/j.knosys.2025.114034_b4 article-title: Projection X-Ray Imaging: Radiography, mammography, fluoroscopy publication-title: Health Phys. doi: 10.1097/HP.0000000000001028 – year: 2020 ident: 10.1016/j.knosys.2025.114034_b55 – year: 2016 ident: 10.1016/j.knosys.2025.114034_b44 – volume: 63 start-page: 1 year: 2025 ident: 10.1016/j.knosys.2025.114034_b27 article-title: Enhanced deep image prior for unsupervised hyperspectral image super-resolution publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2019 ident: 10.1016/j.knosys.2025.114034_b51 – year: 2015 ident: 10.1016/j.knosys.2025.114034_b82 – year: 2014 ident: 10.1016/j.knosys.2025.114034_b72 – year: 2020 ident: 10.1016/j.knosys.2025.114034_b100 – volume: 31 start-page: 2444 issue: 4 year: 2021 ident: 10.1016/j.knosys.2025.114034_b8 article-title: Factors associated with insufficient nasogastric tube visibility on X-ray: a retrospective analysis publication-title: Eur. Radiol. doi: 10.1007/s00330-020-07302-w – volume: 14 start-page: 775 issue: 4 year: 2020 ident: 10.1016/j.knosys.2025.114034_b90 article-title: Structured pruning for efficient convolutional neural networks via incremental regularization publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2019.2961233 – year: 2019 ident: 10.1016/j.knosys.2025.114034_b73 – year: 2017 ident: 10.1016/j.knosys.2025.114034_b97 – volume: 62 start-page: 1 year: 2024 ident: 10.1016/j.knosys.2025.114034_b25 article-title: Cross-Semantic heterogeneous modeling network for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 13 start-page: 1263 issue: dec year: 2012 ident: 10.1016/j.knosys.2025.114034_b70 article-title: Variational inference for the Indian buffet process publication-title: J. Mach. Learn. Res. – year: 2015 ident: 10.1016/j.knosys.2025.114034_b64 – volume: 31 year: 2018 ident: 10.1016/j.knosys.2025.114034_b92 article-title: Understanding batch normalization publication-title: Adv. Neural Inf. Process. Syst. – volume: 175 year: 2023 ident: 10.1016/j.knosys.2025.114034_b19 article-title: A deep transfer learning-based convolution neural network model for COVID-19 detection using computed tomography scan images for medical applications publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2022.103317 – ident: 10.1016/j.knosys.2025.114034_b83 doi: 10.1109/ICCCNT61001.2024.10724101 – volume: vol. 1168 year: 2021 ident: 10.1016/j.knosys.2025.114034_b33 – volume: 23 start-page: 1 issue: 129 year: 2022 ident: 10.1016/j.knosys.2025.114034_b76 article-title: Scalable inference for the indian buffet process with infinite support publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.knosys.2025.114034_b48 doi: 10.1109/ICASSP.2019.8682952 – start-page: 1223 year: 2013 ident: 10.1016/j.knosys.2025.114034_b69 article-title: Submodular clustering with the Indian Buffet Process – year: 2024 ident: 10.1016/j.knosys.2025.114034_b36 article-title: Transfer contrastive learning for Raman spectroscopy skin cancer tissue classification publication-title: IEEE J. Biomed. Heal. Inform. doi: 10.1109/JBHI.2024.3451950 – year: 2023 ident: 10.1016/j.knosys.2025.114034_b87 – year: 2018 ident: 10.1016/j.knosys.2025.114034_b101 – volume: 18 start-page: 1 issue: 46 year: 2017 ident: 10.1016/j.knosys.2025.114034_b67 article-title: Variational inference: A review publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.knosys.2025.114034_b78 – volume: 30 start-page: 41 year: 2019 ident: 10.1016/j.knosys.2025.114034_b15 article-title: Pathological brain detection based on AlexNet and transfer learning publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2018.11.008 – year: 2020 ident: 10.1016/j.knosys.2025.114034_b14 – volume: 29 start-page: 129 year: 2020 ident: 10.1016/j.knosys.2025.114034_b34 article-title: Advancing medical imaging informatics by deep learning-based domain adaptation publication-title: Yearb. Med. Inform. doi: 10.1055/s-0040-1702009 – start-page: 96 year: 2018 ident: 10.1016/j.knosys.2025.114034_b62 article-title: Empirical evaluation of variational autoencoders for data augmentation – year: 2018 ident: 10.1016/j.knosys.2025.114034_b89 – volume: 13 year: 2019 ident: 10.1016/j.knosys.2025.114034_b6 article-title: Analysis of perceptual expertise in radiology – Current knowledge and a new perspective publication-title: Front. Hum. Neurosci. – year: 2022 ident: 10.1016/j.knosys.2025.114034_b58 – volume: vol. 804 year: 2019 ident: 10.1016/j.knosys.2025.114034_b29 – volume: 40 start-page: 2698 issue: 10 year: 2021 ident: 10.1016/j.knosys.2025.114034_b49 article-title: Learning hierarchical attention for weakly-supervised chest X-Ray abnormality localization and diagnosis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3042773 – year: 2020 ident: 10.1016/j.knosys.2025.114034_b52 – year: 2019 ident: 10.1016/j.knosys.2025.114034_b61 – year: 2018 ident: 10.1016/j.knosys.2025.114034_b60 – volume: 20 start-page: 1 year: 2023 ident: 10.1016/j.knosys.2025.114034_b38 article-title: Model-guided coarse-to-fine fusion network for unsupervised hyperspectral image super-resolution publication-title: IEEE Geosci. Remote. Sens. Lett. doi: 10.1109/LGRS.2023.3330957 – volume: 36 issue: 11 year: 2024 ident: 10.1016/j.knosys.2025.114034_b88 article-title: Toward aerodynamic surrogate modeling based on β -variational autoencoders publication-title: Phys. Fluids doi: 10.1063/5.0232644 – volume: 8 start-page: 292 issue: 3 year: 2019 ident: 10.1016/j.knosys.2025.114034_b11 article-title: A State-of-the-Art survey on deep learning theory and architectures publication-title: Electronics doi: 10.3390/electronics8030292 – volume: 62 start-page: 1 year: 2024 ident: 10.1016/j.knosys.2025.114034_b28 article-title: Model-Informed multistage unsupervised network for hyperspectral image super-resolution publication-title: IEEE Trans. Geosci. Remote Sens. – ident: 10.1016/j.knosys.2025.114034_b79 doi: 10.1109/CVPR.2017.243 – volume: 521 start-page: 452 year: 2015 ident: 10.1016/j.knosys.2025.114034_b22 article-title: Probabilistic machine learning and artificial intelligence publication-title: Nature doi: 10.1038/nature14541 – volume: 61 start-page: 1 year: 2023 ident: 10.1016/j.knosys.2025.114034_b37 article-title: X-Shaped interactive autoencoders with cross-modality mutual learning for unsupervised hyperspectral image super-resolution publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2018 ident: 10.1016/j.knosys.2025.114034_b43 – volume: 115 start-page: 565 year: 2019 ident: 10.1016/j.knosys.2025.114034_b16 article-title: Seeded transfer learning for regression problems with deep learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.041 – year: 2013 ident: 10.1016/j.knosys.2025.114034_b21 – start-page: 3462 year: 2017 ident: 10.1016/j.knosys.2025.114034_b40 article-title: ChestX-Ray8: Hospital-scale chest X-Ray database and benchmarks on Weakly-Supervised classification and localization of common thorax diseases – volume: 108 start-page: S2 issue: S2 year: 2018 ident: 10.1016/j.knosys.2025.114034_b1 article-title: Global association of air pollution and cardiorespiratory diseases: A systematic review, meta-analysis, and investigation of modifier variables publication-title: Am. J. Public Health doi: 10.2105/AJPH.2017.303839 – ident: 10.1016/j.knosys.2025.114034_b35 doi: 10.1109/SIBGRAPI-T.2019.00010 – ident: 10.1016/j.knosys.2025.114034_b18 doi: 10.1109/ISBI.2019.8759573 – volume: 27 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.knosys.2025.114034_b7 article-title: A review of perceptual expertise in radiology-How it develops, How we can test it, and why humans still matter in the era of artificial intelligence publication-title: Acad. Radiol. doi: 10.1016/j.acra.2019.08.018 – year: 2016 ident: 10.1016/j.knosys.2025.114034_b80 – ident: 10.1016/j.knosys.2025.114034_b84 doi: 10.1109/ISED59382.2023.10444597 – ident: 10.1016/j.knosys.2025.114034_b41 – volume: 49 start-page: 1397 issue: 4 year: 2020 ident: 10.1016/j.knosys.2025.114034_b96 article-title: Reflection on modern methods: Revisiting the area under the ROC curve publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyz274 – ident: 10.1016/j.knosys.2025.114034_b17 doi: 10.1109/CVPR.2019.01155 – volume: 343 start-page: 19 year: 2019 ident: 10.1016/j.knosys.2025.114034_b3 article-title: Detecting lung abnormalities from X-rays using an improved SSL algorithm publication-title: Electron. Notes Theor. Comput. Sci. doi: 10.1016/j.entcs.2019.04.008 – year: 2020 ident: 10.1016/j.knosys.2025.114034_b32 article-title: A comprehensive survey on convolutional neural network in medical image analysis publication-title: Multimedia Tools Appl. – year: 2014 ident: 10.1016/j.knosys.2025.114034_b65 – year: 2020 ident: 10.1016/j.knosys.2025.114034_b94 – volume: 39 start-page: 3583 issue: 11 year: 2020 ident: 10.1016/j.knosys.2025.114034_b102 article-title: Deep mining external imperfect data for chest X-Ray disease screening publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3000949 – ident: 10.1016/j.knosys.2025.114034_b30 doi: 10.1109/ICCV.2015.315 – start-page: 369 year: 2019 ident: 10.1016/j.knosys.2025.114034_b93 article-title: ChestX-ray: Hospital-scale chest X-ray database and benchmarks on weakly supervised classification and localization of common thorax diseases – year: 2018 ident: 10.1016/j.knosys.2025.114034_b42 – year: 2018 ident: 10.1016/j.knosys.2025.114034_b56 – year: 2015 ident: 10.1016/j.knosys.2025.114034_b63 – start-page: 3462 year: 2017 ident: 10.1016/j.knosys.2025.114034_b50 article-title: ChestX-Ray8: Hospital-scale chest X-Ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases – year: 2019 ident: 10.1016/j.knosys.2025.114034_b5 – volume: 12 start-page: 3256 year: 2024 ident: 10.1016/j.knosys.2025.114034_b53 article-title: ThoraX-PriorNet: A novel attention-based architecture using anatomical prior probability maps for thoracic disease classification publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3346315 – volume: 16 year: 2019 ident: 10.1016/j.knosys.2025.114034_b2 article-title: High prevalence of respiratory symptoms among particleboard workers in Ethiopia: A cross-sectional study publication-title: Int. J. Environ. Res. Public Heal. – volume: 15 start-page: 6053 year: 2022 ident: 10.1016/j.knosys.2025.114034_b26 article-title: HyperViTGAN: Semisupervised generative adversarial network with transformer for hyperspectral image classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2022.3192127 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.knosys.2025.114034_b10 article-title: An efficient deep learning approach to pneumonia classification in healthcare publication-title: J. Heal. Eng. doi: 10.1155/2019/4180949 – ident: 10.1016/j.knosys.2025.114034_b45 doi: 10.1007/978-3-319-93000-8_62 – ident: 10.1016/j.knosys.2025.114034_b24 doi: 10.1109/ICCV.2015.315 – volume: 13 issue: 10 year: 2023 ident: 10.1016/j.knosys.2025.114034_b54 article-title: Multi-label classification of chest X-ray abnormalities using transfer learning techniques publication-title: J. Pers. Med. doi: 10.3390/jpm13101426 – ident: 10.1016/j.knosys.2025.114034_b74 – year: 2019 ident: 10.1016/j.knosys.2025.114034_b98 – volume: 290 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.knosys.2025.114034_b9 article-title: Development and validation of deep Learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs publication-title: Radiology doi: 10.1148/radiol.2018180237 – volume: 22 start-page: 1497 issue: 5 year: 2018 ident: 10.1016/j.knosys.2025.114034_b31 article-title: A survey on computer vision for assistive medical diagnosis from faces publication-title: IEEE J. Biomed. Heal. Inf. – ident: 10.1016/j.knosys.2025.114034_b59 doi: 10.1109/ICDM.2019.00127 – year: 2019 ident: 10.1016/j.knosys.2025.114034_b57 article-title: Transfusion: understanding transfer learning for medical imaging – start-page: 1097 year: 2012 ident: 10.1016/j.knosys.2025.114034_b86 article-title: Imagenet classification with deep convolutional neural networks – volume: 82 start-page: 39211 issue: 25 year: 2023 ident: 10.1016/j.knosys.2025.114034_b20 article-title: MediNet: transfer learning approach with MediNet medical visual database publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-023-14831-1 – year: 2014 ident: 10.1016/j.knosys.2025.114034_b95 – year: 2005 ident: 10.1016/j.knosys.2025.114034_b68 – volume: 34 start-page: 12674 year: 2021 ident: 10.1016/j.knosys.2025.114034_b77 article-title: Deep sparse coding networks for latent variable inference publication-title: Adv. Neural Inf. Process. Syst. – volume: 53 start-page: 339 issue: 1 year: 2021 ident: 10.1016/j.knosys.2025.114034_b75 article-title: Stick-Breaking dependent beta processes with variational inference publication-title: Neural Process. Lett. doi: 10.1007/s11063-020-10392-8 – ident: 10.1016/j.knosys.2025.114034_b71 – volume: 19 start-page: 1 year: 2022 ident: 10.1016/j.knosys.2025.114034_b39 article-title: Deep unsupervised blind hyperspectral and multispectral data fusion publication-title: IEEE Geosci. Remote. Sens. Lett. – ident: 10.1016/j.knosys.2025.114034_b46 doi: 10.1007/978-3-030-13469-3_88 – year: 2016 ident: 10.1016/j.knosys.2025.114034_b66 – year: 2020 ident: 10.1016/j.knosys.2025.114034_b12 – volume: 19 start-page: 305 issue: 1–2 year: 2018 ident: 10.1016/j.knosys.2025.114034_b91 article-title: Ian goodfellow, yoshua bengio, and aaron courville: Deep learning: The MIT press, 2016, 800 pp, ISBN: 0262035618 publication-title: Genet. Program. Evol. Mach. doi: 10.1007/s10710-017-9314-z – volume: 32 year: 2019 ident: 10.1016/j.knosys.2025.114034_b99 article-title: Escaping from saddle points on Riemannian manifolds publication-title: Adv. Neural Inf. Process. Syst. |
| SSID | ssj0002218 |
| Score | 2.4349294 |
| Snippet | Deep learning has revolutionized the detection of cardiopulmonary diseases by using readily available X-ray images. Transfer learning offers an exciting avenue... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 114034 |
| SubjectTerms | Cardiopulmonary disease classification Deep learning Deep transfer learning Indian buffet process Nonparametric Bayesian priors Variational autoencoder |
| Title | Nonparametric Bayesian transfer learning for robust cardiopulmonary diseases classification in X-ray images |
| URI | https://dx.doi.org/10.1016/j.knosys.2025.114034 |
| Volume | 326 |
| WOSCitedRecordID | wos001526068100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002218 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbQlgMXoDxEeVQ-cFu5Ckmc2MeCimiRVkgUaTlFtmOjbdVslWRR---Z8WPbZRECJC7RylIcZz7v-JvJPAh5DSdMWxpbMMNbzcpcVQxOOTBVHFhETlqeqdBsop7NxHwuP8V-94NvJ1B3nbi6kpf_FWoYA7AxdfYv4F5PCgPwG0CHK8AO1z8CfrbssJ73BbbKMtO36tr6PMnRM1Tbpz4RIX6yX-rVMGJ96naBrbxglRhGFz_bDFOD5BqjiVQKipyzXl1PFxegh4bbzPZjcs4xPBjbWCJ6uNFwblx5rQL2eXhrv88GLPHrnapfVW-_xZeLboicY8xEyOoPvrGt_JjoZMxYncWSslHfFiFFfkt3BzfC2cF5t4QlHuBDsJJxFp2dm1WxP-PUODNQOLBgJZzCOznYPtmE7BweH81P1sdxnnsn73opKX_SB_ltP-vX_OQW5zh9SO5HY4EeBpB3yR3bPSIPUiMOGvXyY3K-gTlNmNOEOU2YU8CcBszpT5jThDndxJwuOuoxpwHzJ-TL-6PTdx9Y7KLBDKjjkVnHeZGLN6qorBJaaKt53tZGAhWUlRNcKI1FDeFfK4F-q8yVymmplCoF5jkXT8mkW3b2GaFgHdfWcM1lqcvM-qTsouKuggFXC7NHWJJdcxmKpTQpivCsCbJuUNZNkPUeqZOAm0j4ApFrYE_89s7n_3znC3LvZvu-JJOxX9lX5K75Pi6Gfj9unh95QIGU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+Bayesian+transfer+learning+for+robust+cardiopulmonary+diseases+classification+in+X-ray+images&rft.jtitle=Knowledge-based+systems&rft.au=Haftu%2C+Kibrom&rft.au=Assabie%2C+Yaregal&rft.date=2025-09-27&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.volume=326&rft_id=info:doi/10.1016%2Fj.knosys.2025.114034&rft.externalDocID=S0950705125010792 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |