An interleaved iterative-structured joint detection algorithm for active users and frequency offsets in grant-free massive access

Great-free user access is an efficient access method for massive machine-type communications (mMTC). In the massive grant-free access, frequency offsets between users and base stations lead to the degradation of active user detection and channel estimation performance. Although traditional methods a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical communication Ročník 71; s. 102697
Hlavní autoři: Li, Shibao, Cui, Zhihao, Song, Yujie, Tang, Ziyi, Cui, Xuerong, Liu, Jianhang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2025
Témata:
ISSN:1874-4907
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Great-free user access is an efficient access method for massive machine-type communications (mMTC). In the massive grant-free access, frequency offsets between users and base stations lead to the degradation of active user detection and channel estimation performance. Although traditional methods achieve joint estimation by extending the perceptual matrix using the grid method, they all ignore the effect of channel fading on joint detection, which can seriously degrade the accuracy of detection. In this paper, we propose an interleaved iterative-structured-vector approximation message passing (VAMP) algorithm, which makes use of the structuring of the extended perceptual matrix, and designs a minimum mean square error (MMSE) nonlinear vector noise reducer based on the Bayesian principle to eliminate the effect of channel fading on detection. In addition, in order to improve the detection accuracy, a two-layer alternating iterative search method is proposed, which effectively overcomes the performance loss caused by the frequency offset of the grid method estimation. Simulation results show that the proposed scheme is superior in active user detection and frequency offset detection accuracy compared with the traditional schemes.
AbstractList Great-free user access is an efficient access method for massive machine-type communications (mMTC). In the massive grant-free access, frequency offsets between users and base stations lead to the degradation of active user detection and channel estimation performance. Although traditional methods achieve joint estimation by extending the perceptual matrix using the grid method, they all ignore the effect of channel fading on joint detection, which can seriously degrade the accuracy of detection. In this paper, we propose an interleaved iterative-structured-vector approximation message passing (VAMP) algorithm, which makes use of the structuring of the extended perceptual matrix, and designs a minimum mean square error (MMSE) nonlinear vector noise reducer based on the Bayesian principle to eliminate the effect of channel fading on detection. In addition, in order to improve the detection accuracy, a two-layer alternating iterative search method is proposed, which effectively overcomes the performance loss caused by the frequency offset of the grid method estimation. Simulation results show that the proposed scheme is superior in active user detection and frequency offset detection accuracy compared with the traditional schemes.
ArticleNumber 102697
Author Cui, Zhihao
Song, Yujie
Li, Shibao
Tang, Ziyi
Liu, Jianhang
Cui, Xuerong
Author_xml – sequence: 1
  givenname: Shibao
  orcidid: 0000-0002-3924-9001
  surname: Li
  fullname: Li, Shibao
  email: lishibao@upc.edu.cn
– sequence: 2
  givenname: Zhihao
  surname: Cui
  fullname: Cui, Zhihao
  email: Z22160071@s.upc.edu.cn
– sequence: 3
  givenname: Yujie
  surname: Song
  fullname: Song, Yujie
  email: Z22160074@s.upc.edu.cn
– sequence: 4
  givenname: Ziyi
  surname: Tang
  fullname: Tang, Ziyi
  email: Z23160096@s.upc.edu.cn
– sequence: 5
  givenname: Xuerong
  surname: Cui
  fullname: Cui, Xuerong
  email: cxr@upc.edu.cn
– sequence: 6
  givenname: Jianhang
  surname: Liu
  fullname: Liu, Jianhang
  email: liujianhang@upc.edu.cn
BookMark eNp9kL1uAyEMxxlSqWmaN-jAC1wK5D6XSlHULylSl3ZGnDEJp9yRAhcpY9-8nNK5Xmxs_439uyOzwQ1IyANnK854-ditTocLuH4lmChSSpRNNSNzXld5ljesuiXLEDo2WcVEns_Jz2agdojoj6jOqKlNoYr2jFmIfoQ4-pTsXGqhGiNCtG6g6rh33sZDT43zVMHUT8eAPlA1aGo8fo84wIU6YwLGkH6ge6-GmKUS0l6FMCkUAIZwT26MOgZc_vkF-Xp5_ty-ZbuP1_ftZpeBKKqYaWZQGVHUoJpct6VogRegqxrqNYimhDI9VZWztilaZrgGDm2ldaEFR2RmvSD5dS54F4JHI0_e9spfJGdyoic7eaUnJ3rySi_Jnq4yTLudLXoZwKbjUFufcEjt7P8DfgFYcoMp
Cites_doi 10.1109/MCOM.2014.6736746
10.1109/TSP.2020.2967175
10.1109/ACCESS.2018.2837382
10.1016/j.sigpro.2016.08.027
10.1109/TCOMM.2022.3151775
10.1016/j.phycom.2016.07.001
10.1109/JSAC.2020.3018802
10.1109/TSP.2018.2795540
10.1109/ACCESS.2019.2931563
10.1109/TSP.2018.2818082
10.1073/pnas.0909892106
10.1109/TCOMM.2018.2866559
10.1109/LWC.2019.2947036
10.1109/TWC.2021.3121066
10.1016/j.phycom.2019.100987
10.1109/MSP.2018.2844952
10.1109/MCOM.2013.6525600
10.1109/TWC.2021.3125199
10.1109/MWC.2016.1500284WC
10.1109/TVT.2018.2859806
10.1109/TWC.2017.2747145
10.1109/LCOMM.2016.2624297
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.phycom.2025.102697
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_phycom_2025_102697
S1874490725001004
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SSV
SSZ
T5K
UNMZH
~G-
9DU
AAYXX
ACLOT
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c257t-d0feaf258ca94db62bc15cd78c83c296c615ca740b95b0f1dc1cb7dd5d21ee0f3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001490466200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1874-4907
IngestDate Sat Nov 29 07:50:45 EST 2025
Sat Jul 05 17:10:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Approximate message passing
Active user detection
Frequency offset estimation
mMTC
Channel estimation
Grant-free
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-d0feaf258ca94db62bc15cd78c83c296c615ca740b95b0f1dc1cb7dd5d21ee0f3
ORCID 0000-0002-3924-9001
ParticipantIDs crossref_primary_10_1016_j_phycom_2025_102697
elsevier_sciencedirect_doi_10_1016_j_phycom_2025_102697
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Physical communication
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kim, Chang, Jung, Baron, Ye (b27) 2011
Han, Li, Guo (b4) 2017; 16
Liu, Yu (b20) 2018; 66
3GPP TS 38213 V16.6.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical Layer Procedures for Control (Release 16), Technical report, Tech. Rep., 2021.
Senel, Larsson (b17) 2018; 66
Chen, Sohrabi, Yu (b21) 2018; 66
Ke, Gao, Wu, Gao, Schober (b22) 2020; 68
Ueda, Hara, Ishibashi (b25) 2022
Wei, Liu, Zhang, Dang, Wu (b23) 2017; 21
Chen, Sohrabi, Liu, Yu (b12) 2019
Liu, Larsson, Yu, Popovski, Stefanovic, de Carvalho (b9) 2018; 35
Dawy, Saad, Ghosh, Andrews, Yaacoub (b2) 2017; 24
Zhang, Guo, Wang, Xi, Wu (b16) 2018; 67
Hasan, Hossain, Niyato (b5) 2013; 51
Sun, Li, Yi, Wang, Gao, Wang, Wei, Chen (b24) 2022; 21
Donoho, Maleki, Montanari (b18) 2009; 106
Bockelmann, Pratas, Wunder, Saur, Navarro, Gregoratti, Vivier, De Carvalho, Ji, Stefanović, Popovski, Wang, Schellmann, Kosmatos, Demestichas, Raceala-Motoc, Jung, Stanczak, Dekorsy (b1) 2018; 6
Liu, Yu (b3) 2017
Cui, Li, Zhang (b15) 2021; 39
Boccardi, Heath, Lozano, Marzetta, Popovski (b11) 2014; 52
Fu, Wu, Zhang, Deng, Fang (b10) 2019; 7
Nasser, Mansour, Yao (b7) 2020; 39
Ding, Choi (b8) 2020; 9
Zhang, Yuan, Wang, Guo (b14) 2017; 131
Jiang, Cui (b13) 2022; 21
Di Renna, de Lamare (b19) 2022; 70
Bagadi, Annepu, Das (b6) 2016; 20
Jiang (10.1016/j.phycom.2025.102697_b13) 2022; 21
Zhang (10.1016/j.phycom.2025.102697_b16) 2018; 67
Sun (10.1016/j.phycom.2025.102697_b24) 2022; 21
Di Renna (10.1016/j.phycom.2025.102697_b19) 2022; 70
Dawy (10.1016/j.phycom.2025.102697_b2) 2017; 24
Han (10.1016/j.phycom.2025.102697_b4) 2017; 16
Liu (10.1016/j.phycom.2025.102697_b9) 2018; 35
10.1016/j.phycom.2025.102697_b26
Liu (10.1016/j.phycom.2025.102697_b3) 2017
Chen (10.1016/j.phycom.2025.102697_b12) 2019
Wei (10.1016/j.phycom.2025.102697_b23) 2017; 21
Nasser (10.1016/j.phycom.2025.102697_b7) 2020; 39
Ke (10.1016/j.phycom.2025.102697_b22) 2020; 68
Liu (10.1016/j.phycom.2025.102697_b20) 2018; 66
Ueda (10.1016/j.phycom.2025.102697_b25) 2022
Fu (10.1016/j.phycom.2025.102697_b10) 2019; 7
Boccardi (10.1016/j.phycom.2025.102697_b11) 2014; 52
Ding (10.1016/j.phycom.2025.102697_b8) 2020; 9
Kim (10.1016/j.phycom.2025.102697_b27) 2011
Zhang (10.1016/j.phycom.2025.102697_b14) 2017; 131
Donoho (10.1016/j.phycom.2025.102697_b18) 2009; 106
Cui (10.1016/j.phycom.2025.102697_b15) 2021; 39
Chen (10.1016/j.phycom.2025.102697_b21) 2018; 66
Senel (10.1016/j.phycom.2025.102697_b17) 2018; 66
Bockelmann (10.1016/j.phycom.2025.102697_b1) 2018; 6
Bagadi (10.1016/j.phycom.2025.102697_b6) 2016; 20
Hasan (10.1016/j.phycom.2025.102697_b5) 2013; 51
References_xml – volume: 21
  start-page: 3893
  year: 2022
  end-page: 3908
  ident: b13
  article-title: ML and MAP device activity detections for grant-free massive access in multi-cell networks
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 131
  start-page: 344
  year: 2017
  end-page: 349
  ident: b14
  article-title: Low complexity sparse Bayesian learning using combined belief propagation and mean field with a stretched factor graph
  publication-title: Signal Process.
– volume: 24
  start-page: 120
  year: 2017
  end-page: 128
  ident: b2
  article-title: Toward massive machine type cellular communications
  publication-title: IEEE Wirel. Commun.
– volume: 9
  start-page: 166
  year: 2020
  end-page: 170
  ident: b8
  article-title: Comparison of preamble structures for grant-free random access in massive MIMO systems
  publication-title: IEEE Wirel. Commun. Lett.
– volume: 20
  start-page: 93
  year: 2016
  end-page: 108
  ident: b6
  article-title: Recent trends in multiuser detection techniques for SDMA-OFDM communication system
  publication-title: Phys. Commun.
– volume: 21
  start-page: 3365
  year: 2022
  end-page: 3380
  ident: b24
  article-title: Massive grant-free OFDMA with timing and frequency offsets
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 21
  start-page: 640
  year: 2017
  end-page: 643
  ident: b23
  article-title: Approximate message passing-based joint user activity and data detection for NOMA
  publication-title: IEEE Commun. Lett.
– reference: 3GPP TS 38213 V16.6.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical Layer Procedures for Control (Release 16), Technical report, Tech. Rep., 2021.
– start-page: 1
  year: 2019
  end-page: 6
  ident: b12
  article-title: Covariance based joint activity and data detection for massive random access with massive MIMO
  publication-title: ICC 2019 - 2019 IEEE International Conference on Communications
– volume: 39
  year: 2020
  ident: b7
  article-title: Simultaneous transmitting-receiving-sensing for OFDM-based full-duplex cognitive radio
  publication-title: Phys. Commun.
– volume: 52
  start-page: 74
  year: 2014
  end-page: 80
  ident: b11
  article-title: Five disruptive technology directions for 5G
  publication-title: IEEE Commun. Mag.
– volume: 106
  start-page: 18914
  year: 2009
  end-page: 18919
  ident: b18
  article-title: Message-passing algorithms for compressed sensing
  publication-title: Proc. Natl. Acad. Sci.
– volume: 70
  start-page: 2464
  year: 2022
  end-page: 2479
  ident: b19
  article-title: Joint channel estimation, activity detection and data decoding based on dynamic message-scheduling strategies for mMTC
  publication-title: IEEE Trans. Commun.
– volume: 16
  start-page: 7348
  year: 2017
  end-page: 7361
  ident: b4
  article-title: A graph-based random access protocol for crowded massive MIMO systems
  publication-title: IEEE Trans. Wirel. Commun.
– year: 2011
  ident: b27
  article-title: Belief propagation for joint sparse recovery
– start-page: 1072
  year: 2017
  end-page: 1076
  ident: b3
  article-title: Massive device connectivity with massive MIMO
  publication-title: 2017 IEEE International Symposium on Information Theory
– volume: 51
  start-page: 86
  year: 2013
  end-page: 93
  ident: b5
  article-title: Random access for machine-to-machine communication in LTE-advanced networks: issues and approaches
  publication-title: IEEE Commun. Mag.
– volume: 7
  start-page: 108116
  year: 2019
  end-page: 108124
  ident: b10
  article-title: Active user identification based on asynchronous sparse Bayesian learning with SVM
  publication-title: IEEE Access
– volume: 6
  start-page: 28969
  year: 2018
  end-page: 28992
  ident: b1
  article-title: Towards massive connectivity support for scalable mMTC communications in 5G networks
  publication-title: IEEE Access
– volume: 66
  start-page: 6164
  year: 2018
  end-page: 6175
  ident: b17
  article-title: Grant-free massive MTC-enabled massive MIMO: A compressive sensing approach
  publication-title: IEEE Trans. Commun.
– volume: 68
  start-page: 764
  year: 2020
  end-page: 779
  ident: b22
  article-title: Compressive sensing-based adaptive active user detection and channel estimation: Massive access meets massive MIMO
  publication-title: IEEE Trans. Signal Process.
– start-page: 1
  year: 2022
  end-page: 6
  ident: b25
  article-title: Iterative activity detection and carrier frequency offset estimation for grant-free NOMA
  publication-title: 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications
– volume: 39
  start-page: 788
  year: 2021
  end-page: 803
  ident: b15
  article-title: Jointly sparse signal recovery and support recovery via deep learning with applications in MIMO-based grant-free random access
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 66
  start-page: 1890
  year: 2018
  end-page: 1904
  ident: b21
  article-title: Sparse activity detection for massive connectivity
  publication-title: IEEE Trans. Signal Process.
– volume: 67
  start-page: 9631
  year: 2018
  end-page: 9640
  ident: b16
  article-title: Block sparse Bayesian learning based joint user activity detection and channel estimation for grant-free NOMA systems
  publication-title: IEEE Trans. Veh. Technol.
– volume: 35
  start-page: 88
  year: 2018
  end-page: 99
  ident: b9
  article-title: Sparse signal processing for grant-free massive connectivity: A future paradigm for random access protocols in the internet of things
  publication-title: IEEE Signal Process. Mag.
– volume: 66
  start-page: 2933
  year: 2018
  end-page: 2946
  ident: b20
  article-title: Massive connectivity with massive MIMO—Part I: Device activity detection and channel estimation
  publication-title: IEEE Trans. Signal Process.
– start-page: 1072
  year: 2017
  ident: 10.1016/j.phycom.2025.102697_b3
  article-title: Massive device connectivity with massive MIMO
– volume: 52
  start-page: 74
  issue: 2
  year: 2014
  ident: 10.1016/j.phycom.2025.102697_b11
  article-title: Five disruptive technology directions for 5G
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2014.6736746
– volume: 68
  start-page: 764
  year: 2020
  ident: 10.1016/j.phycom.2025.102697_b22
  article-title: Compressive sensing-based adaptive active user detection and channel estimation: Massive access meets massive MIMO
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2967175
– volume: 6
  start-page: 28969
  year: 2018
  ident: 10.1016/j.phycom.2025.102697_b1
  article-title: Towards massive connectivity support for scalable mMTC communications in 5G networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2837382
– volume: 131
  start-page: 344
  year: 2017
  ident: 10.1016/j.phycom.2025.102697_b14
  article-title: Low complexity sparse Bayesian learning using combined belief propagation and mean field with a stretched factor graph
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.08.027
– volume: 70
  start-page: 2464
  issue: 4
  year: 2022
  ident: 10.1016/j.phycom.2025.102697_b19
  article-title: Joint channel estimation, activity detection and data decoding based on dynamic message-scheduling strategies for mMTC
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2022.3151775
– volume: 20
  start-page: 93
  year: 2016
  ident: 10.1016/j.phycom.2025.102697_b6
  article-title: Recent trends in multiuser detection techniques for SDMA-OFDM communication system
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2016.07.001
– volume: 39
  start-page: 788
  issue: 3
  year: 2021
  ident: 10.1016/j.phycom.2025.102697_b15
  article-title: Jointly sparse signal recovery and support recovery via deep learning with applications in MIMO-based grant-free random access
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2020.3018802
– volume: 66
  start-page: 1890
  issue: 7
  year: 2018
  ident: 10.1016/j.phycom.2025.102697_b21
  article-title: Sparse activity detection for massive connectivity
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2795540
– volume: 7
  start-page: 108116
  year: 2019
  ident: 10.1016/j.phycom.2025.102697_b10
  article-title: Active user identification based on asynchronous sparse Bayesian learning with SVM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2931563
– volume: 66
  start-page: 2933
  issue: 11
  year: 2018
  ident: 10.1016/j.phycom.2025.102697_b20
  article-title: Massive connectivity with massive MIMO—Part I: Device activity detection and channel estimation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2818082
– volume: 106
  start-page: 18914
  issue: 45
  year: 2009
  ident: 10.1016/j.phycom.2025.102697_b18
  article-title: Message-passing algorithms for compressed sensing
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0909892106
– ident: 10.1016/j.phycom.2025.102697_b26
– volume: 66
  start-page: 6164
  issue: 12
  year: 2018
  ident: 10.1016/j.phycom.2025.102697_b17
  article-title: Grant-free massive MTC-enabled massive MIMO: A compressive sensing approach
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2018.2866559
– volume: 9
  start-page: 166
  issue: 2
  year: 2020
  ident: 10.1016/j.phycom.2025.102697_b8
  article-title: Comparison of preamble structures for grant-free random access in massive MIMO systems
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2019.2947036
– volume: 21
  start-page: 3365
  issue: 5
  year: 2022
  ident: 10.1016/j.phycom.2025.102697_b24
  article-title: Massive grant-free OFDMA with timing and frequency offsets
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2021.3121066
– volume: 39
  year: 2020
  ident: 10.1016/j.phycom.2025.102697_b7
  article-title: Simultaneous transmitting-receiving-sensing for OFDM-based full-duplex cognitive radio
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2019.100987
– volume: 35
  start-page: 88
  issue: 5
  year: 2018
  ident: 10.1016/j.phycom.2025.102697_b9
  article-title: Sparse signal processing for grant-free massive connectivity: A future paradigm for random access protocols in the internet of things
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2018.2844952
– volume: 51
  start-page: 86
  issue: 6
  year: 2013
  ident: 10.1016/j.phycom.2025.102697_b5
  article-title: Random access for machine-to-machine communication in LTE-advanced networks: issues and approaches
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2013.6525600
– start-page: 1
  year: 2022
  ident: 10.1016/j.phycom.2025.102697_b25
  article-title: Iterative activity detection and carrier frequency offset estimation for grant-free NOMA
– volume: 21
  start-page: 3893
  issue: 6
  year: 2022
  ident: 10.1016/j.phycom.2025.102697_b13
  article-title: ML and MAP device activity detections for grant-free massive access in multi-cell networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2021.3125199
– volume: 24
  start-page: 120
  issue: 1
  year: 2017
  ident: 10.1016/j.phycom.2025.102697_b2
  article-title: Toward massive machine type cellular communications
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2016.1500284WC
– volume: 67
  start-page: 9631
  issue: 10
  year: 2018
  ident: 10.1016/j.phycom.2025.102697_b16
  article-title: Block sparse Bayesian learning based joint user activity detection and channel estimation for grant-free NOMA systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2859806
– volume: 16
  start-page: 7348
  issue: 11
  year: 2017
  ident: 10.1016/j.phycom.2025.102697_b4
  article-title: A graph-based random access protocol for crowded massive MIMO systems
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2017.2747145
– start-page: 1
  year: 2019
  ident: 10.1016/j.phycom.2025.102697_b12
  article-title: Covariance based joint activity and data detection for massive random access with massive MIMO
– year: 2011
  ident: 10.1016/j.phycom.2025.102697_b27
– volume: 21
  start-page: 640
  issue: 3
  year: 2017
  ident: 10.1016/j.phycom.2025.102697_b23
  article-title: Approximate message passing-based joint user activity and data detection for NOMA
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2016.2624297
SSID ssj0000070244
Score 2.3517992
Snippet Great-free user access is an efficient access method for massive machine-type communications (mMTC). In the massive grant-free access, frequency offsets...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 102697
SubjectTerms Active user detection
Approximate message passing
Channel estimation
Frequency offset estimation
Grant-free
mMTC
Title An interleaved iterative-structured joint detection algorithm for active users and frequency offsets in grant-free massive access
URI https://dx.doi.org/10.1016/j.phycom.2025.102697
Volume 71
WOSCitedRecordID wos001490466200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1874-4907
  databaseCode: AIEXJ
  dateStart: 20080301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000070244
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Pa9swFMdFlu6wHcZ-su4XOuxWVGJbtqxjGB3bGKXQDLJejKwfjUPqlMQJ3XH_w_7gPUuy4q2lrIddTJAd2fh9eHqWvnoPofdZxmkOQx0xEH0TWpqScC4NiaMkZVKXRrs8s1_Z8XE-nfKTweBXtxdmu2B1nV9d8cv_ampoA2O3W2fvYO7QKTTAbzA6HMHscPwnw49rmwNitdBiq9uFAe2SexOXKnbTCs7nS7jkQOlG-0rhi_PlqmpmF05UaX3gQTt_4TI4m5UTXLer8WatG6uhPYdRriFwqpXArq0KXtjqi_1496TDQPY3ogQVkJUSnM6qUizDYsjGNp7Nqtmu8dQLh79v5lUgceKnus-qH1V_8iJOg3Su87c5o4RyV_i2c8iuJov3qBAAZU7Be83Zu3mH-SHw2Cp_2v4Pd5f_mVv7rzEvKBE7kdu8cL0UbS-F6-Ue2otZyvMh2ht_Ppp-CXN3bY6k2NYJDs_f7cq00sHrD3Rz1NOLZCaP0SP_CYLHDp0naKDrp-hhLzHlM_RzXOMeRPgmiLCFCAeIcIAIA0TYQYQtRBggwgEi7CGCO-AdRNhDhB1Ez9G3j0eTD5-IL9ZBJHj9hqiR0cLEaS4Fp6rM4lJGqVQsl3kiY55JCJ2lYHRU8rQcmUjJSJZMqVTFkdYjk7xAw3pZ65cIUx5RptJUMVrSUZLk8NGbC0OFUInSmdhHpHuZxaXLyVLcZsd9xLo3Xvi40sWLBZB06z9f3fFOr9GDHeVv0BBMot-i-3LbVOvVO4_Rb2rjo3w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interleaved+iterative-structured+joint+detection+algorithm+for+active+users+and+frequency+offsets+in+grant-free+massive+access&rft.jtitle=Physical+communication&rft.au=Li%2C+Shibao&rft.au=Cui%2C+Zhihao&rft.au=Song%2C+Yujie&rft.au=Tang%2C+Ziyi&rft.date=2025-08-01&rft.issn=1874-4907&rft.volume=71&rft.spage=102697&rft_id=info:doi/10.1016%2Fj.phycom.2025.102697&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_phycom_2025_102697
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-4907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-4907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-4907&client=summon