Kruskal Szekeres generative adversarial network augmented deep autoencoder for colorectal cancer detection
Cancer involves abnormal cell growth, with types like intestinal and oesophageal cancer often diagnosed in advanced stages, making them hard to cure. Symptoms are like burning sensations in the stomach and swallowing difficulties are specified as colorectal cancer. Deep learning significantly impact...
Uložené v:
| Vydané v: | Network (Bristol) s. 1 - 27 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
16.11.2024
|
| Predmet: | |
| ISSN: | 0954-898X, 1361-6536, 1361-6536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Cancer involves abnormal cell growth, with types like intestinal and oesophageal cancer often diagnosed in advanced stages, making them hard to cure. Symptoms are like burning sensations in the stomach and swallowing difficulties are specified as colorectal cancer. Deep learning significantly impacts the medical image processing and diagnosis, offering potential improvements in accuracy and efficiency. The Kruskal Szekeres Generative Adversarial Network Augmented Deep Autoencoder (KSGANA-DA) is introduced for early colorectal cancer detection and it comprises two stages; Initial stage, data augmentation uses Affine Transform via Random Horizontal Rotation and Geometric Transform via Kruskal-Szekeres that coordinates to improve the training dataset diversity, boosting detection performance. The second stage, a Deep Autoencoder Anatomical Landmark-based Image Segmentation preserves edge pixel spatial locations, improving precision and recall for early boundary detection. Experiments validate KSGANA-DA performance and different existing methods are implemented into Python. The results of KSGANA-DA are to provide higher precision by 41%, recall by 7%, and lesser training time by 46% than compared to conventional methods. |
|---|---|
| AbstractList | Cancer involves abnormal cell growth, with types like intestinal and oesophageal cancer often diagnosed in advanced stages, making them hard to cure. Symptoms are like burning sensations in the stomach and swallowing difficulties are specified as colorectal cancer. Deep learning significantly impacts the medical image processing and diagnosis, offering potential improvements in accuracy and efficiency. The Kruskal Szekeres Generative Adversarial Network Augmented Deep Autoencoder (KSGANA-DA) is introduced for early colorectal cancer detection and it comprises two stages; Initial stage, data augmentation uses Affine Transform via Random Horizontal Rotation and Geometric Transform via Kruskal-Szekeres that coordinates to improve the training dataset diversity, boosting detection performance. The second stage, a Deep Autoencoder Anatomical Landmark-based Image Segmentation preserves edge pixel spatial locations, improving precision and recall for early boundary detection. Experiments validate KSGANA-DA performance and different existing methods are implemented into Python. The results of KSGANA-DA are to provide higher precision by 41%, recall by 7%, and lesser training time by 46% than compared to conventional methods. Cancer involves abnormal cell growth, with types like intestinal and oesophageal cancer often diagnosed in advanced stages, making them hard to cure. Symptoms are like burning sensations in the stomach and swallowing difficulties are specified as colorectal cancer. Deep learning significantly impacts the medical image processing and diagnosis, offering potential improvements in accuracy and efficiency. The Kruskal Szekeres Generative Adversarial Network Augmented Deep Autoencoder (KSGANA-DA) is introduced for early colorectal cancer detection and it comprises two stages; Initial stage, data augmentation uses Affine Transform via Random Horizontal Rotation and Geometric Transform via Kruskal-Szekeres that coordinates to improve the training dataset diversity, boosting detection performance. The second stage, a Deep Autoencoder Anatomical Landmark-based Image Segmentation preserves edge pixel spatial locations, improving precision and recall for early boundary detection. Experiments validate KSGANA-DA performance and different existing methods are implemented into Python. The results of KSGANA-DA are to provide higher precision by 41%, recall by 7%, and lesser training time by 46% than compared to conventional methods.Cancer involves abnormal cell growth, with types like intestinal and oesophageal cancer often diagnosed in advanced stages, making them hard to cure. Symptoms are like burning sensations in the stomach and swallowing difficulties are specified as colorectal cancer. Deep learning significantly impacts the medical image processing and diagnosis, offering potential improvements in accuracy and efficiency. The Kruskal Szekeres Generative Adversarial Network Augmented Deep Autoencoder (KSGANA-DA) is introduced for early colorectal cancer detection and it comprises two stages; Initial stage, data augmentation uses Affine Transform via Random Horizontal Rotation and Geometric Transform via Kruskal-Szekeres that coordinates to improve the training dataset diversity, boosting detection performance. The second stage, a Deep Autoencoder Anatomical Landmark-based Image Segmentation preserves edge pixel spatial locations, improving precision and recall for early boundary detection. Experiments validate KSGANA-DA performance and different existing methods are implemented into Python. The results of KSGANA-DA are to provide higher precision by 41%, recall by 7%, and lesser training time by 46% than compared to conventional methods. |
| Author | Vanitha CN Krishnamoorthy, Suresh Kumar |
| Author_xml | – sequence: 1 givenname: Suresh Kumar surname: Krishnamoorthy fullname: Krishnamoorthy, Suresh Kumar organization: Computer Science and Engineering, Kongu Engineering College, Erode, India – sequence: 2 surname: Vanitha CN fullname: Vanitha CN organization: Information Technology, Karpagam College of Engineering, Coimbatore, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39550608$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kU1PwzAMQCMEYmPwE0A9culwkyZNjmjiS0ziAEjcqsx1UbcuGUk7BL-eTgxOlu1nS_Y7YYfOO2LsPINpBhquwMhcG_025cDzKc-5khoO2DgTKkuVFOqQjXdMuoNG7CTGJQAUvBDHbCSMlKBAj9nyMfRxZdvk-ZtWFCgm7-Qo2K7ZUmKrLYVoQzP0HXWfPqwS27-vyXVUJRXRZkg7Tw59RSGpfUjQtz4QdsMEWodDtaJuyBvvTtlRbdtIZ_s4Ya-3Ny-z-3T-dPcwu56nyGXRpVijAdCLHCuQAiujBfFC2kIbldfEITcCh2tRCSRuNJBSSIQkSZAytZiwy9-9m-A_eopduW4iUttaR76Ppci44RyKIh_Qiz3aL9ZUlZvQrG34Kv_-MwDyF8DgYwxU_yMZlDsP5Z-Hcueh3HsQPwMpfNc |
| Cites_doi | 10.3390/cancers14153707 10.5281/zenodo.1173520 10.1016/j.ins.2023.03.038 10.1186/s12911-023-02121-7 10.1038/s41598-021-04048-3 10.1053/j.gastro.2023.07.010 10.1016/j.heliyon.2024.e24403 10.3390/s22239250 10.3389/fgene.2022.844391 10.1038/s41699-020-0137-z 10.3390/diagnostics13182939 10.1038/s41598-024-56820-w 10.1186/s12880-020-00482-3 10.1186/s12880-020-00543-7 10.1038/s41598-024-52063-x 10.1038/s41467-020-16777-6 10.1186/s12911-020-01314-8 10.1007/s10462-023-10621-1 10.1109/TASE.2020.2964827 10.1016/j.bspc.2023.104953 10.1016/j.measen.2023.100976 10.1007/978-981-99-4303-6_11 10.1016/j.asoc.2019.04.031 10.1038/s41598-022-06264-x 10.1016/j.cmpb.2021.106114 10.3389/fncom.2024.1356447 10.1016/j.cgh.2022.07.006 10.3390/fi14090260 10.1148/radiol.2021202363 10.1016/j.imu.2023.101233 10.1038/s41598-024-70117-y 10.1038/s41467-021-26216-9 10.1053/j.gastro.2022.03.007 10.1007/s00535-022-01908-1 10.1016/S2589-7500(23)00208-X 10.1007/s10489-022-03689-9 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1080/0954898X.2024.2426580 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EISSN | 1361-6536 |
| EndPage | 27 |
| ExternalDocumentID | 39550608 10_1080_0954898X_2024_2426580 |
| Genre | Journal Article |
| GroupedDBID | --- -~X .4S .DC 00X 03L 0R~ 123 29N 36B 4.4 AAGDL AALUX AAMIU AAPUL AAQRR AAYXX ABBKH ABEIZ ABIVO ABJNI ABLIJ ABLKL ABUPF ABWVI ABXYU ACENM ACGEJ ACGFS ACIEZ ADCVX ADRBQ ADXPE AECIN AEOZL AFKVX AFRVT AGDLA AGFJD AGRBW AGYJP AIJEM AIRBT AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU ALYBC AMDAE ARCSS BABNJ BLEHA BOHLJ CCCUG CITATION CS3 DKSSO EBD EBS EDO EMB EMOBN F5P H13 HZ~ I-F KRBQP KWAYT KYCEM M4Z O9- P2P RNANH RO9 RVRKI SV3 TASJS TBQAZ TDBHL TERGH TFDNU TFL TFW TUROJ TUS UEQFS V1S ~1N 0BK ADYSH NPM 7X8 |
| ID | FETCH-LOGICAL-c257t-cfc9008b4cd053cd983e275a78964fe20493c265c63ce2980e66ceece5e3e69f3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001356447700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0954-898X 1361-6536 |
| IngestDate | Fri Sep 05 14:24:54 EDT 2025 Wed Feb 19 02:05:07 EST 2025 Sat Nov 29 03:01:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | data augmentation image segmentation Kruskal–Szekeres coordinates Generative adversarial networks anatomical landmark deep autoencoder random horizontal rotation and geometric transform |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c257t-cfc9008b4cd053cd983e275a78964fe20493c265c63ce2980e66ceece5e3e69f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 39550608 |
| PQID | 3129220774 |
| PQPubID | 23479 |
| PageCount | 27 |
| ParticipantIDs | proquest_miscellaneous_3129220774 pubmed_primary_39550608 crossref_primary_10_1080_0954898X_2024_2426580 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Nov-16 |
| PublicationDateYYYYMMDD | 2024-11-16 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Network (Bristol) |
| PublicationTitleAlternate | Network |
| PublicationYear | 2024 |
| References | e_1_3_4_4_1 e_1_3_4_3_1 e_1_3_4_2_1 Upadhyay A (e_1_3_4_30_1) 2023; 9 e_1_3_4_9_1 e_1_3_4_8_1 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_41_1 e_1_3_4_6_1 e_1_3_4_40_1 e_1_3_4_5_1 Liu H (e_1_3_4_17_1) 2021 e_1_3_4_24_1 e_1_3_4_21_1 e_1_3_4_22_1 e_1_3_4_27_1 e_1_3_4_28_1 e_1_3_4_25_1 e_1_3_4_26_1 e_1_3_4_29_1 e_1_3_4_31_1 Luo D (e_1_3_4_18_1) 2022; 2022 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_38_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_15_1 e_1_3_4_36_1 e_1_3_4_19_1 Pogorelov K (e_1_3_4_23_1) 2017 |
| References_xml | – ident: e_1_3_4_13_1 doi: 10.3390/cancers14153707 – ident: e_1_3_4_19_1 doi: 10.5281/zenodo.1173520 – ident: e_1_3_4_4_1 doi: 10.1016/j.ins.2023.03.038 – ident: e_1_3_4_26_1 doi: 10.1186/s12911-023-02121-7 – ident: e_1_3_4_33_1 doi: 10.1038/s41598-021-04048-3 – ident: e_1_3_4_25_1 doi: 10.1053/j.gastro.2023.07.010 – ident: e_1_3_4_8_1 doi: 10.1016/j.heliyon.2024.e24403 – ident: e_1_3_4_29_1 doi: 10.3390/s22239250 – ident: e_1_3_4_28_1 doi: 10.3389/fgene.2022.844391 – ident: e_1_3_4_21_1 doi: 10.1038/s41699-020-0137-z – ident: e_1_3_4_5_1 doi: 10.3390/diagnostics13182939 – ident: e_1_3_4_27_1 doi: 10.1038/s41598-024-56820-w – volume: 9 start-page: 1 issue: 10 year: 2023 ident: e_1_3_4_30_1 article-title: Image generation using generative adversarial network publication-title: Int J Innovative Res Technol – ident: e_1_3_4_35_1 doi: 10.1186/s12880-020-00482-3 – ident: e_1_3_4_22_1 doi: 10.1186/s12880-020-00543-7 – ident: e_1_3_4_2_1 doi: 10.1038/s41598-024-52063-x – ident: e_1_3_4_40_1 doi: 10.1038/s41467-020-16777-6 – ident: e_1_3_4_15_1 doi: 10.1186/s12911-020-01314-8 – ident: e_1_3_4_7_1 doi: 10.1007/s10462-023-10621-1 – ident: e_1_3_4_10_1 doi: 10.1109/TASE.2020.2964827 – ident: e_1_3_4_39_1 doi: 10.1016/j.bspc.2023.104953 – ident: e_1_3_4_12_1 doi: 10.1016/j.measen.2023.100976 – ident: e_1_3_4_31_1 doi: 10.1007/978-981-99-4303-6_11 – ident: e_1_3_4_3_1 doi: 10.1016/j.asoc.2019.04.031 – start-page: 1 volume-title: Medical image segmentation using deep learning year: 2021 ident: e_1_3_4_17_1 – ident: e_1_3_4_9_1 doi: 10.1038/s41598-022-06264-x – ident: e_1_3_4_16_1 doi: 10.1016/j.cmpb.2021.106114 – ident: e_1_3_4_41_1 doi: 10.3389/fncom.2024.1356447 – start-page: 1 volume-title: Conference: ACM Multimedia System year: 2017 ident: e_1_3_4_23_1 – ident: e_1_3_4_36_1 doi: 10.1016/j.cgh.2022.07.006 – ident: e_1_3_4_20_1 doi: 10.3390/fi14090260 – ident: e_1_3_4_6_1 doi: 10.1148/radiol.2021202363 – volume: 2022 start-page: 1 issue: 1 year: 2022 ident: e_1_3_4_18_1 article-title: Research on several Key problems of medical image segmentation and virtual surgery publication-title: Contrast Media Mol Imag – ident: e_1_3_4_24_1 doi: 10.1016/j.imu.2023.101233 – ident: e_1_3_4_14_1 doi: 10.1038/s41598-024-70117-y – ident: e_1_3_4_34_1 doi: 10.1038/s41467-021-26216-9 – ident: e_1_3_4_32_1 doi: 10.1053/j.gastro.2022.03.007 – ident: e_1_3_4_37_1 doi: 10.1007/s00535-022-01908-1 – ident: e_1_3_4_11_1 doi: 10.1016/S2589-7500(23)00208-X – ident: e_1_3_4_38_1 doi: 10.1007/s10489-022-03689-9 |
| SSID | ssj0007273 |
| Score | 2.3794014 |
| Snippet | Cancer involves abnormal cell growth, with types like intestinal and oesophageal cancer often diagnosed in advanced stages, making them hard to cure. Symptoms... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1 |
| Title | Kruskal Szekeres generative adversarial network augmented deep autoencoder for colorectal cancer detection |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39550608 https://www.proquest.com/docview/3129220774 |
| WOSCitedRecordID | wos001356447700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1361-6536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007273 issn: 0954-898X databaseCode: TFW dateStart: 19900101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbY4MAO_BhslMFkJMSlSpXEiWMfGVqFxCgcMpFblDgOY4O0NAma-Ot5L3bSTCrSOHCJGqt1In9fX57j5-8j5LVimsui5E7pycgJAj9zRMiVk-s84oVfwEPPmE1Ei4VIEvnZerXXnZ1AVFXi-lqu_ivU0AZg49bZf4B76BQa4DOADkeAHY63Av7Duq2vUOPjt77SMJlGk2Rt9b0ztF-us86pozIF4NOs_doJcxbTQusVnDZLFLdEjQksQURVa4yKqCOCDEFD8aar36rGie3C9gYJ60knV_B99I4BI8lFlf1Y4iKRKS5r4c4upl2B9_jFgx_gDjyzL9LGSsY9h4fMKllvaTMx0dsaqW1pI-rNSZHM8AIzTBdCY-x0Uxl78Smdn5-dpfFpEr9Z_XTQNAwX162Dyg6560ehxIq-eP5leBBjama23Zl76jdwobT6tuveTE3-Mt_o8o74EXlgJwz0rQH6Mbmjq33ysDfjoDY275O9kbIknH0c5HjrJ-TScoL2nKAbTtARJ6jlBB04QZETdMQJCpygG05Qwwk6cOIpOZ-fxu_eO9Zkw1EQrRtHlUpCHpgHqoB4rAopmIbBzCIheVBqH2aQTMHwKM6U9qVwNeeQWCkdavybl-yA7FbLSj8jVOduwSMfvublAXNLqd2izEXg5TDJcINgQmb9-KYro6WSer1ErQUkRUBSC8iEvOpRSCHq4VJWVullW6cM0lTfd2HuMiGHBp6hSyZDVM0Uz2_x6yNyf0PtF2S3Wbf6JbmnfjXf6vUx2YkScdyR6g_gWYOs |
| linkProvider | Taylor & Francis |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kruskal+Szekeres+generative+adversarial+network+augmented+deep+autoencoder+for+colorectal+cancer+detection&rft.jtitle=Network+%28Bristol%29&rft.au=Krishnamoorthy%2C+Suresh+Kumar&rft.date=2024-11-16&rft.issn=1361-6536&rft.eissn=1361-6536&rft.spage=1&rft_id=info:doi/10.1080%2F0954898X.2024.2426580&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-898X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-898X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-898X&client=summon |