Kruskal Szekeres generative adversarial network augmented deep autoencoder for colorectal cancer detection

Cancer involves abnormal cell growth, with types like intestinal and oesophageal cancer often diagnosed in advanced stages, making them hard to cure. Symptoms are like burning sensations in the stomach and swallowing difficulties are specified as colorectal cancer. Deep learning significantly impact...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Network (Bristol) s. 1 - 27
Hlavní autori: Krishnamoorthy, Suresh Kumar, Vanitha CN
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 16.11.2024
Predmet:
ISSN:0954-898X, 1361-6536, 1361-6536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cancer involves abnormal cell growth, with types like intestinal and oesophageal cancer often diagnosed in advanced stages, making them hard to cure. Symptoms are like burning sensations in the stomach and swallowing difficulties are specified as colorectal cancer. Deep learning significantly impacts the medical image processing and diagnosis, offering potential improvements in accuracy and efficiency. The Kruskal Szekeres Generative Adversarial Network Augmented Deep Autoencoder (KSGANA-DA) is introduced for early colorectal cancer detection and it comprises two stages; Initial stage, data augmentation uses Affine Transform via Random Horizontal Rotation and Geometric Transform via Kruskal-Szekeres that coordinates to improve the training dataset diversity, boosting detection performance. The second stage, a Deep Autoencoder Anatomical Landmark-based Image Segmentation preserves edge pixel spatial locations, improving precision and recall for early boundary detection. Experiments validate KSGANA-DA performance and different existing methods are implemented into Python. The results of KSGANA-DA are to provide higher precision by 41%, recall by 7%, and lesser training time by 46% than compared to conventional methods.
AbstractList Cancer involves abnormal cell growth, with types like intestinal and oesophageal cancer often diagnosed in advanced stages, making them hard to cure. Symptoms are like burning sensations in the stomach and swallowing difficulties are specified as colorectal cancer. Deep learning significantly impacts the medical image processing and diagnosis, offering potential improvements in accuracy and efficiency. The Kruskal Szekeres Generative Adversarial Network Augmented Deep Autoencoder (KSGANA-DA) is introduced for early colorectal cancer detection and it comprises two stages; Initial stage, data augmentation uses Affine Transform via Random Horizontal Rotation and Geometric Transform via Kruskal-Szekeres that coordinates to improve the training dataset diversity, boosting detection performance. The second stage, a Deep Autoencoder Anatomical Landmark-based Image Segmentation preserves edge pixel spatial locations, improving precision and recall for early boundary detection. Experiments validate KSGANA-DA performance and different existing methods are implemented into Python. The results of KSGANA-DA are to provide higher precision by 41%, recall by 7%, and lesser training time by 46% than compared to conventional methods.
Cancer involves abnormal cell growth, with types like intestinal and oesophageal cancer often diagnosed in advanced stages, making them hard to cure. Symptoms are like burning sensations in the stomach and swallowing difficulties are specified as colorectal cancer. Deep learning significantly impacts the medical image processing and diagnosis, offering potential improvements in accuracy and efficiency. The Kruskal Szekeres Generative Adversarial Network Augmented Deep Autoencoder (KSGANA-DA) is introduced for early colorectal cancer detection and it comprises two stages; Initial stage, data augmentation uses Affine Transform via Random Horizontal Rotation and Geometric Transform via Kruskal-Szekeres that coordinates to improve the training dataset diversity, boosting detection performance. The second stage, a Deep Autoencoder Anatomical Landmark-based Image Segmentation preserves edge pixel spatial locations, improving precision and recall for early boundary detection. Experiments validate KSGANA-DA performance and different existing methods are implemented into Python. The results of KSGANA-DA are to provide higher precision by 41%, recall by 7%, and lesser training time by 46% than compared to conventional methods.Cancer involves abnormal cell growth, with types like intestinal and oesophageal cancer often diagnosed in advanced stages, making them hard to cure. Symptoms are like burning sensations in the stomach and swallowing difficulties are specified as colorectal cancer. Deep learning significantly impacts the medical image processing and diagnosis, offering potential improvements in accuracy and efficiency. The Kruskal Szekeres Generative Adversarial Network Augmented Deep Autoencoder (KSGANA-DA) is introduced for early colorectal cancer detection and it comprises two stages; Initial stage, data augmentation uses Affine Transform via Random Horizontal Rotation and Geometric Transform via Kruskal-Szekeres that coordinates to improve the training dataset diversity, boosting detection performance. The second stage, a Deep Autoencoder Anatomical Landmark-based Image Segmentation preserves edge pixel spatial locations, improving precision and recall for early boundary detection. Experiments validate KSGANA-DA performance and different existing methods are implemented into Python. The results of KSGANA-DA are to provide higher precision by 41%, recall by 7%, and lesser training time by 46% than compared to conventional methods.
Author Vanitha CN
Krishnamoorthy, Suresh Kumar
Author_xml – sequence: 1
  givenname: Suresh Kumar
  surname: Krishnamoorthy
  fullname: Krishnamoorthy, Suresh Kumar
  organization: Computer Science and Engineering, Kongu Engineering College, Erode, India
– sequence: 2
  surname: Vanitha CN
  fullname: Vanitha CN
  organization: Information Technology, Karpagam College of Engineering, Coimbatore, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39550608$$D View this record in MEDLINE/PubMed
BookMark eNo9kU1PwzAMQCMEYmPwE0A9culwkyZNjmjiS0ziAEjcqsx1UbcuGUk7BL-eTgxOlu1nS_Y7YYfOO2LsPINpBhquwMhcG_025cDzKc-5khoO2DgTKkuVFOqQjXdMuoNG7CTGJQAUvBDHbCSMlKBAj9nyMfRxZdvk-ZtWFCgm7-Qo2K7ZUmKrLYVoQzP0HXWfPqwS27-vyXVUJRXRZkg7Tw59RSGpfUjQtz4QdsMEWodDtaJuyBvvTtlRbdtIZ_s4Ya-3Ny-z-3T-dPcwu56nyGXRpVijAdCLHCuQAiujBfFC2kIbldfEITcCh2tRCSRuNJBSSIQkSZAytZiwy9-9m-A_eopduW4iUttaR76Ppci44RyKIh_Qiz3aL9ZUlZvQrG34Kv_-MwDyF8DgYwxU_yMZlDsP5Z-Hcueh3HsQPwMpfNc
Cites_doi 10.3390/cancers14153707
10.5281/zenodo.1173520
10.1016/j.ins.2023.03.038
10.1186/s12911-023-02121-7
10.1038/s41598-021-04048-3
10.1053/j.gastro.2023.07.010
10.1016/j.heliyon.2024.e24403
10.3390/s22239250
10.3389/fgene.2022.844391
10.1038/s41699-020-0137-z
10.3390/diagnostics13182939
10.1038/s41598-024-56820-w
10.1186/s12880-020-00482-3
10.1186/s12880-020-00543-7
10.1038/s41598-024-52063-x
10.1038/s41467-020-16777-6
10.1186/s12911-020-01314-8
10.1007/s10462-023-10621-1
10.1109/TASE.2020.2964827
10.1016/j.bspc.2023.104953
10.1016/j.measen.2023.100976
10.1007/978-981-99-4303-6_11
10.1016/j.asoc.2019.04.031
10.1038/s41598-022-06264-x
10.1016/j.cmpb.2021.106114
10.3389/fncom.2024.1356447
10.1016/j.cgh.2022.07.006
10.3390/fi14090260
10.1148/radiol.2021202363
10.1016/j.imu.2023.101233
10.1038/s41598-024-70117-y
10.1038/s41467-021-26216-9
10.1053/j.gastro.2022.03.007
10.1007/s00535-022-01908-1
10.1016/S2589-7500(23)00208-X
10.1007/s10489-022-03689-9
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1080/0954898X.2024.2426580
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1361-6536
EndPage 27
ExternalDocumentID 39550608
10_1080_0954898X_2024_2426580
Genre Journal Article
GroupedDBID ---
-~X
.4S
.DC
00X
03L
0R~
123
29N
36B
4.4
AAGDL
AALUX
AAMIU
AAPUL
AAQRR
AAYXX
ABBKH
ABEIZ
ABIVO
ABJNI
ABLIJ
ABLKL
ABUPF
ABWVI
ABXYU
ACENM
ACGEJ
ACGFS
ACIEZ
ADCVX
ADRBQ
ADXPE
AECIN
AEOZL
AFKVX
AFRVT
AGDLA
AGFJD
AGRBW
AGYJP
AIJEM
AIRBT
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALYBC
AMDAE
ARCSS
BABNJ
BLEHA
BOHLJ
CCCUG
CITATION
CS3
DKSSO
EBD
EBS
EDO
EMB
EMOBN
F5P
H13
HZ~
I-F
KRBQP
KWAYT
KYCEM
M4Z
O9-
P2P
RNANH
RO9
RVRKI
SV3
TASJS
TBQAZ
TDBHL
TERGH
TFDNU
TFL
TFW
TUROJ
TUS
UEQFS
V1S
~1N
0BK
ADYSH
NPM
7X8
ID FETCH-LOGICAL-c257t-cfc9008b4cd053cd983e275a78964fe20493c265c63ce2980e66ceece5e3e69f3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001356447700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0954-898X
1361-6536
IngestDate Fri Sep 05 14:24:54 EDT 2025
Wed Feb 19 02:05:07 EST 2025
Sat Nov 29 03:01:17 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords data augmentation
image segmentation
Kruskal–Szekeres coordinates
Generative adversarial networks
anatomical landmark
deep autoencoder
random horizontal rotation and geometric transform
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-cfc9008b4cd053cd983e275a78964fe20493c265c63ce2980e66ceece5e3e69f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39550608
PQID 3129220774
PQPubID 23479
PageCount 27
ParticipantIDs proquest_miscellaneous_3129220774
pubmed_primary_39550608
crossref_primary_10_1080_0954898X_2024_2426580
PublicationCentury 2000
PublicationDate 2024-Nov-16
PublicationDateYYYYMMDD 2024-11-16
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-Nov-16
  day: 16
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Network (Bristol)
PublicationTitleAlternate Network
PublicationYear 2024
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
Upadhyay A (e_1_3_4_30_1) 2023; 9
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_41_1
e_1_3_4_6_1
e_1_3_4_40_1
e_1_3_4_5_1
Liu H (e_1_3_4_17_1) 2021
e_1_3_4_24_1
e_1_3_4_21_1
e_1_3_4_22_1
e_1_3_4_27_1
e_1_3_4_28_1
e_1_3_4_25_1
e_1_3_4_26_1
e_1_3_4_29_1
e_1_3_4_31_1
Luo D (e_1_3_4_18_1) 2022; 2022
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_38_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_19_1
Pogorelov K (e_1_3_4_23_1) 2017
References_xml – ident: e_1_3_4_13_1
  doi: 10.3390/cancers14153707
– ident: e_1_3_4_19_1
  doi: 10.5281/zenodo.1173520
– ident: e_1_3_4_4_1
  doi: 10.1016/j.ins.2023.03.038
– ident: e_1_3_4_26_1
  doi: 10.1186/s12911-023-02121-7
– ident: e_1_3_4_33_1
  doi: 10.1038/s41598-021-04048-3
– ident: e_1_3_4_25_1
  doi: 10.1053/j.gastro.2023.07.010
– ident: e_1_3_4_8_1
  doi: 10.1016/j.heliyon.2024.e24403
– ident: e_1_3_4_29_1
  doi: 10.3390/s22239250
– ident: e_1_3_4_28_1
  doi: 10.3389/fgene.2022.844391
– ident: e_1_3_4_21_1
  doi: 10.1038/s41699-020-0137-z
– ident: e_1_3_4_5_1
  doi: 10.3390/diagnostics13182939
– ident: e_1_3_4_27_1
  doi: 10.1038/s41598-024-56820-w
– volume: 9
  start-page: 1
  issue: 10
  year: 2023
  ident: e_1_3_4_30_1
  article-title: Image generation using generative adversarial network
  publication-title: Int J Innovative Res Technol
– ident: e_1_3_4_35_1
  doi: 10.1186/s12880-020-00482-3
– ident: e_1_3_4_22_1
  doi: 10.1186/s12880-020-00543-7
– ident: e_1_3_4_2_1
  doi: 10.1038/s41598-024-52063-x
– ident: e_1_3_4_40_1
  doi: 10.1038/s41467-020-16777-6
– ident: e_1_3_4_15_1
  doi: 10.1186/s12911-020-01314-8
– ident: e_1_3_4_7_1
  doi: 10.1007/s10462-023-10621-1
– ident: e_1_3_4_10_1
  doi: 10.1109/TASE.2020.2964827
– ident: e_1_3_4_39_1
  doi: 10.1016/j.bspc.2023.104953
– ident: e_1_3_4_12_1
  doi: 10.1016/j.measen.2023.100976
– ident: e_1_3_4_31_1
  doi: 10.1007/978-981-99-4303-6_11
– ident: e_1_3_4_3_1
  doi: 10.1016/j.asoc.2019.04.031
– start-page: 1
  volume-title: Medical image segmentation using deep learning
  year: 2021
  ident: e_1_3_4_17_1
– ident: e_1_3_4_9_1
  doi: 10.1038/s41598-022-06264-x
– ident: e_1_3_4_16_1
  doi: 10.1016/j.cmpb.2021.106114
– ident: e_1_3_4_41_1
  doi: 10.3389/fncom.2024.1356447
– start-page: 1
  volume-title: Conference: ACM Multimedia System
  year: 2017
  ident: e_1_3_4_23_1
– ident: e_1_3_4_36_1
  doi: 10.1016/j.cgh.2022.07.006
– ident: e_1_3_4_20_1
  doi: 10.3390/fi14090260
– ident: e_1_3_4_6_1
  doi: 10.1148/radiol.2021202363
– volume: 2022
  start-page: 1
  issue: 1
  year: 2022
  ident: e_1_3_4_18_1
  article-title: Research on several Key problems of medical image segmentation and virtual surgery
  publication-title: Contrast Media Mol Imag
– ident: e_1_3_4_24_1
  doi: 10.1016/j.imu.2023.101233
– ident: e_1_3_4_14_1
  doi: 10.1038/s41598-024-70117-y
– ident: e_1_3_4_34_1
  doi: 10.1038/s41467-021-26216-9
– ident: e_1_3_4_32_1
  doi: 10.1053/j.gastro.2022.03.007
– ident: e_1_3_4_37_1
  doi: 10.1007/s00535-022-01908-1
– ident: e_1_3_4_11_1
  doi: 10.1016/S2589-7500(23)00208-X
– ident: e_1_3_4_38_1
  doi: 10.1007/s10489-022-03689-9
SSID ssj0007273
Score 2.3794014
Snippet Cancer involves abnormal cell growth, with types like intestinal and oesophageal cancer often diagnosed in advanced stages, making them hard to cure. Symptoms...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage 1
Title Kruskal Szekeres generative adversarial network augmented deep autoencoder for colorectal cancer detection
URI https://www.ncbi.nlm.nih.gov/pubmed/39550608
https://www.proquest.com/docview/3129220774
WOSCitedRecordID wos001356447700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1361-6536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007273
  issn: 0954-898X
  databaseCode: TFW
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbY4MAO_BhslMFkJMSlSpXEiWMfGVqFxCgcMpFblDgOY4O0NAma-Ot5L3bSTCrSOHCJGqt1In9fX57j5-8j5LVimsui5E7pycgJAj9zRMiVk-s84oVfwEPPmE1Ei4VIEvnZerXXnZ1AVFXi-lqu_ivU0AZg49bZf4B76BQa4DOADkeAHY63Av7Duq2vUOPjt77SMJlGk2Rt9b0ztF-us86pozIF4NOs_doJcxbTQusVnDZLFLdEjQksQURVa4yKqCOCDEFD8aar36rGie3C9gYJ60knV_B99I4BI8lFlf1Y4iKRKS5r4c4upl2B9_jFgx_gDjyzL9LGSsY9h4fMKllvaTMx0dsaqW1pI-rNSZHM8AIzTBdCY-x0Uxl78Smdn5-dpfFpEr9Z_XTQNAwX162Dyg6560ehxIq-eP5leBBjama23Zl76jdwobT6tuveTE3-Mt_o8o74EXlgJwz0rQH6Mbmjq33ysDfjoDY275O9kbIknH0c5HjrJ-TScoL2nKAbTtARJ6jlBB04QZETdMQJCpygG05Qwwk6cOIpOZ-fxu_eO9Zkw1EQrRtHlUpCHpgHqoB4rAopmIbBzCIheVBqH2aQTMHwKM6U9qVwNeeQWCkdavybl-yA7FbLSj8jVOduwSMfvublAXNLqd2izEXg5TDJcINgQmb9-KYro6WSer1ErQUkRUBSC8iEvOpRSCHq4VJWVullW6cM0lTfd2HuMiGHBp6hSyZDVM0Uz2_x6yNyf0PtF2S3Wbf6JbmnfjXf6vUx2YkScdyR6g_gWYOs
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kruskal+Szekeres+generative+adversarial+network+augmented+deep+autoencoder+for+colorectal+cancer+detection&rft.jtitle=Network+%28Bristol%29&rft.au=Krishnamoorthy%2C+Suresh+Kumar&rft.date=2024-11-16&rft.issn=1361-6536&rft.eissn=1361-6536&rft.spage=1&rft_id=info:doi/10.1080%2F0954898X.2024.2426580&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-898X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-898X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-898X&client=summon