An explainable multi-feature dimensionality reduction framework: Considering trend inconsistency in wind power sample

Offshore wind power prediction is significantly challenged by data quality issues arising from various factors such as environmental conditions and measurement errors, which severely compromise prediction accuracy and stability. This paper reveals a previously overlooked phenomenon in offshore wind...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 336; p. 138466
Main Authors: Meng, Anbo, Liu, Honghui, Xiao, Liexi, Tan, Zhenglin, Huang, Ziqian, Zhang, Qi, Yan, Baiping, Yin, Hao
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.11.2025
Subjects:
ISSN:0360-5442
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Offshore wind power prediction is significantly challenged by data quality issues arising from various factors such as environmental conditions and measurement errors, which severely compromise prediction accuracy and stability. This paper reveals a previously overlooked phenomenon in offshore wind power data, referred to as sample trend inconsistency, where dynamic offsets in meteorological features distort their expected physical relationship with power output. Such inconsistencies hinder the extraction of key features, disrupt feature–power coupling, and ultimately lead to degraded prediction performance. To address this issue, a Differential Compensation Dimensionality Reduction (DCDR) method is proposed to actively detect and mitigate trend inconsistencies during the dimensionality reduction process. Following normalized preprocessing of raw multi-feature meteorological data, the proposed DCDR method is employed to enhance sample trend consistency and perform dimensionality reduction by optimizing a selection coefficient to retain the most informative feature subset, which is then fed into deep learning models for training and accurate power forecasting. Experimental results demonstrate that DCDR achieves significant improvements over conventional dimensionality reduction methods, reducing RMSE and MAE by 21.1 % and 12.1 %, respectively. Furthermore, global feature importance analysis based on Shapley Additive Explanations (SHAP) confirms that the features retained by DCDR contribute more strongly to prediction accuracy and show improved consistency with the underlying physical relationships governing power output, thereby providing a more robust and interpretable framework that can enhance the operational reliability of offshore wind power forecasting models. •First identification of trend inconsistency in offshore wind power data (over 45 % occurrence) caused by dynamic offsets.•Proposed a novel dimensionality reduction strategy to reduce prediction errors by 21.1 % (RMSE) and 12.1 % (MAE).•Robust generalization to high-dimensional data and complex environments with optimal dimensionality selection.•Constructed an interpretability driven feature selection framework in offshore wind power prediction.
AbstractList Offshore wind power prediction is significantly challenged by data quality issues arising from various factors such as environmental conditions and measurement errors, which severely compromise prediction accuracy and stability. This paper reveals a previously overlooked phenomenon in offshore wind power data, referred to as sample trend inconsistency, where dynamic offsets in meteorological features distort their expected physical relationship with power output. Such inconsistencies hinder the extraction of key features, disrupt feature–power coupling, and ultimately lead to degraded prediction performance. To address this issue, a Differential Compensation Dimensionality Reduction (DCDR) method is proposed to actively detect and mitigate trend inconsistencies during the dimensionality reduction process. Following normalized preprocessing of raw multi-feature meteorological data, the proposed DCDR method is employed to enhance sample trend consistency and perform dimensionality reduction by optimizing a selection coefficient to retain the most informative feature subset, which is then fed into deep learning models for training and accurate power forecasting. Experimental results demonstrate that DCDR achieves significant improvements over conventional dimensionality reduction methods, reducing RMSE and MAE by 21.1 % and 12.1 %, respectively. Furthermore, global feature importance analysis based on Shapley Additive Explanations (SHAP) confirms that the features retained by DCDR contribute more strongly to prediction accuracy and show improved consistency with the underlying physical relationships governing power output, thereby providing a more robust and interpretable framework that can enhance the operational reliability of offshore wind power forecasting models. •First identification of trend inconsistency in offshore wind power data (over 45 % occurrence) caused by dynamic offsets.•Proposed a novel dimensionality reduction strategy to reduce prediction errors by 21.1 % (RMSE) and 12.1 % (MAE).•Robust generalization to high-dimensional data and complex environments with optimal dimensionality selection.•Constructed an interpretability driven feature selection framework in offshore wind power prediction.
ArticleNumber 138466
Author Huang, Ziqian
Zhang, Qi
Yin, Hao
Liu, Honghui
Xiao, Liexi
Yan, Baiping
Meng, Anbo
Tan, Zhenglin
Author_xml – sequence: 1
  givenname: Anbo
  surname: Meng
  fullname: Meng, Anbo
– sequence: 2
  givenname: Honghui
  surname: Liu
  fullname: Liu, Honghui
– sequence: 3
  givenname: Liexi
  orcidid: 0000-0002-5960-6707
  surname: Xiao
  fullname: Xiao, Liexi
– sequence: 4
  givenname: Zhenglin
  surname: Tan
  fullname: Tan, Zhenglin
– sequence: 5
  givenname: Ziqian
  surname: Huang
  fullname: Huang, Ziqian
– sequence: 6
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
– sequence: 7
  givenname: Baiping
  orcidid: 0000-0002-6511-9753
  surname: Yan
  fullname: Yan, Baiping
  email: d_enip@163.com
– sequence: 8
  givenname: Hao
  surname: Yin
  fullname: Yin, Hao
BookMark eNp9kM1OwzAQhH0oEm3hDTj4BRLs2HETDkhVxZ9UiQucLf9sKpfEiWyH0rcnVThzWs1oZ7T7rdDC9x4QuqMkp4SK-2MOHsLhnBekKHPKKi7EAi0JEyQrOS-u0SrGIyGkrOp6icatx_AztMp5pVvA3dgmlzWg0hgAW9eBj673qnXpjAPY0aRJ4iaoDk59-HrAu37asBCcP-AUwFvsvLl4MYE350nhk5vcoT9BwFF1Qws36KpRbYTbv7lGn89PH7vXbP_-8rbb7jNTlJuUmZKXJbGMF9QIwwmjXNcKGkqF2mhday4sEM0K4LqaNg3RorGs2XBWFUJotkZ87jWhjzFAI4fgOhXOkhJ5wSWPcsYlL7jkjGuKPc4xmG77dhBkNG56BqwLYJK0vfu_4BfMhnzE
Cites_doi 10.1016/j.energy.2021.120185
10.1016/j.energy.2024.131458
10.1016/j.renene.2021.11.118
10.1016/j.energy.2021.122109
10.1016/j.lrp.2025.102511
10.3390/en15196942
10.1016/j.eswa.2023.121464
10.1016/j.energy.2019.116316
10.1016/j.engappai.2024.109628
10.1016/j.enconman.2023.116935
10.1038/s42254-020-00275-1
10.1016/j.energy.2022.126419
10.1109/TSTE.2018.2866543
10.1109/TPAMI.2024.3388092
10.1016/j.energy.2022.124957
10.1016/j.energy.2023.129139
10.1016/j.engappai.2024.109046
10.1146/annurev-fluid-030121-015835
10.1016/j.enconman.2024.118131
10.1016/j.rser.2015.09.063
10.1016/j.renene.2025.122951
10.1016/j.energy.2024.131030
10.1016/j.techfore.2024.123588
10.1016/j.energy.2020.118371
10.1016/j.apenergy.2018.10.080
10.1016/j.eswa.2025.127068
10.3390/electronics13122293
10.1016/j.energy.2024.132899
10.1016/j.egyai.2024.100442
10.1016/j.energy.2022.126503
10.1016/j.apenergy.2017.04.017
10.1007/s10462-015-9446-6
10.1109/TIP.2016.2549360
10.1016/j.apenergy.2019.04.188
10.1016/j.apenergy.2024.125174
10.1016/j.apenergy.2024.122624
10.1016/j.ijepes.2021.107042
10.1016/j.energy.2024.133510
10.1109/TGRS.2018.2828029
10.3390/jmse11101855
10.1016/j.renene.2022.09.036
10.3390/s22082822
10.1016/j.energy.2023.128226
10.1016/j.energy.2024.130770
10.1016/j.enconman.2017.06.021
10.1016/j.jclepro.2020.124628
10.1016/j.enconman.2024.118808
10.1016/j.rser.2020.109792
10.1016/j.apenergy.2024.124357
10.1016/j.apenergy.2021.118473
10.1016/j.energy.2024.133826
10.1016/j.enconman.2025.119752
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.energy.2025.138466
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2025_138466
S0360544225041088
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
~HD
29G
6TJ
9DU
AAQXK
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADXHL
AGQPQ
AHHHB
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
ID FETCH-LOGICAL-c257t-c54550d3421c6c40314b9aef116a7bb9b46de0b32e4b8550c0b6fd3f7438266b3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001575510900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Thu Nov 27 00:48:25 EST 2025
Wed Dec 10 14:23:47 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
Sample trend inconsistency
Differential compensation dimensionality reduction
Abnormal data
Offshore wind power prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-c54550d3421c6c40314b9aef116a7bb9b46de0b32e4b8550c0b6fd3f7438266b3
ORCID 0000-0002-5960-6707
0000-0002-6511-9753
ParticipantIDs crossref_primary_10_1016_j_energy_2025_138466
elsevier_sciencedirect_doi_10_1016_j_energy_2025_138466
PublicationCentury 2000
PublicationDate 2025-11-01
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yan, Xing, Xia, Wang (bib39) Oct. 2024; 136
Zhu, Zhao, Shi, Yang, Zhou, Zeng (bib18) Dec. 2024; 312
Qian, Pei, Zareipour, Chen (bib21) Feb. 2019; 235
Liu, Chen (bib6) Sept. 2019; 249
Kirchner, Zec, Delibašić (bib29) Mar. 2016; 45
Han, Yang (bib44) Dec. 2023; 60
Ahmad, Zhang (bib9) Jan. 2022; 239
Zhang, Liu, Yan (bib3) Jan. 2024; 13
Zhao, Guo, Xiao, Wang, Chi, Guo (bib8) July 2017; 197
Yang (bib20) Feb. 2021; 283
Chen, Fu, Zhang, Shen, Wu (bib13) Nov. 2024; 308
Li (bib26) June 2025; 246
Kou (bib1) Jan. 2022; 22
Carlini, Del Pizzo, Giannuzzi, Lauria, Mottola, Pisani (bib48) Oct. 2021; 131
Yang, Wang, Zhang (bib15) Oct. 2023; 280
Hidalgo (bib25) Feb. 2021; 3
Yin, Ou, Huang, Meng (bib53) Dec. 2019; 189
Hu, Qiao, Liu, Zhu (bib30) July 2019; 10
Meng (bib5) Nov. 2023; 283
Schmid (bib23) Mar. 2022; 54
Zhang, Li, Zhang (bib27) Dec. 2020; 213
Liang, Zhang, Zhang, Hu (bib49) Dec. 2024; 313
Xiao, Zou, Chi, Fang (bib50) Mar. 2023; 267
Wu, Zheng, Guo, Liu (bib12) Nov. 2022; 199
Hu, Xiang, Huo, Jawad, Liu (bib43) June 2021; 224
Zheng, Li, Pan, Liu, Xia (bib2) Jan. 2016; 53
Liang, Tian (bib11) May 2025; 332
Cao, Wang, Liang, Hu (bib28) June 2024; 296
Han, Meng, Hu, Chu (bib7) Sept. 2017; 148
Jiang, Ma, Chen, Wang, Cai, Wang (bib22) Aug. 2018; 56
Xiong, Peng, Tao, Zhang, Song, Nazir (bib16) Mar. 2023; 266
Zhang, Wu, Cai (bib24) May 2016; 25
Dai, Yu, Leng (bib51) July 2024; 299
Buckley, Craig, Mudambi (bib31) Apr. 2025; 58
Liu, Wang, Qin, Fu, Shen (bib19) Jan. 2022; 15
Wang, Yang, Li, Ren, Li (bib32) May 2025; 275
Gharaee, Erfanimatin, Bahman (bib34) Sept. 2024; 315
Nematzadeh, García-Nieto, Hurtado, Aldana-Montes, Navas-Delgado (bib36) Jan. 2025; 139
Ahmed, Sreeram, Mishra, Arif (bib42) May 2020; 124
Meng (bib4) May 2023; 283
Mitrentsis, Lens (bib35) Mar. 2022; 309
Yin (bib46) Jan. 2025; 377
Li, Chong, Guo, Liu (bib14) Dec. 2024; 18
Shajalal, Boden, Stevens (bib38) Sept. 2024; 206
Joseph, Deo, Casillas-Pérez, Prasad, Raj, Salcedo-Sanz (bib40) Apr. 2024; 359
Masoumi (bib10) Oct. 2023; 11
Tian, Liu, Gan, Zhou, Wang, Ma (bib47) Mar. 2025; 381
Meng (bib17) Dec. 2022; 260
Cakiroglu, Demir, Hakan Ozdemir, Latif Aylak, Sariisik, Abualigah (bib41) Mar. 2024; 237
Yang, Han, Zhang, Wang (bib33) May 2024; 294
Sun, Li, Wang, Ma (bib52) Feb. 2024; 302
Morrison, Liu, Lin (bib45) Jan. 2022; 184
Zhuo, Ge (bib37) Nov. 2024; 46
Cakiroglu (10.1016/j.energy.2025.138466_bib41) 2024; 237
Wu (10.1016/j.energy.2025.138466_bib12) 2022; 199
Li (10.1016/j.energy.2025.138466_bib26) 2025; 246
Liang (10.1016/j.energy.2025.138466_bib11) 2025; 332
Cao (10.1016/j.energy.2025.138466_bib28) 2024; 296
Tian (10.1016/j.energy.2025.138466_bib47) 2025; 381
Meng (10.1016/j.energy.2025.138466_bib4) 2023; 283
Gharaee (10.1016/j.energy.2025.138466_bib34) 2024; 315
Li (10.1016/j.energy.2025.138466_bib14) 2024; 18
Masoumi (10.1016/j.energy.2025.138466_bib10) 2023; 11
Ahmed (10.1016/j.energy.2025.138466_bib42) 2020; 124
Yang (10.1016/j.energy.2025.138466_bib15) 2023; 280
Liu (10.1016/j.energy.2025.138466_bib19) 2022; 15
Zhu (10.1016/j.energy.2025.138466_bib18) 2024; 312
Liu (10.1016/j.energy.2025.138466_bib6) 2019; 249
Xiong (10.1016/j.energy.2025.138466_bib16) 2023; 266
Shajalal (10.1016/j.energy.2025.138466_bib38) 2024; 206
Zhuo (10.1016/j.energy.2025.138466_bib37) 2024; 46
Schmid (10.1016/j.energy.2025.138466_bib23) 2022; 54
Carlini (10.1016/j.energy.2025.138466_bib48) 2021; 131
Meng (10.1016/j.energy.2025.138466_bib17) 2022; 260
Morrison (10.1016/j.energy.2025.138466_bib45) 2022; 184
Yin (10.1016/j.energy.2025.138466_bib46) 2025; 377
Mitrentsis (10.1016/j.energy.2025.138466_bib35) 2022; 309
Yin (10.1016/j.energy.2025.138466_bib53) 2019; 189
Nematzadeh (10.1016/j.energy.2025.138466_bib36) 2025; 139
Han (10.1016/j.energy.2025.138466_bib44) 2023; 60
Zhang (10.1016/j.energy.2025.138466_bib24) 2016; 25
Han (10.1016/j.energy.2025.138466_bib7) 2017; 148
Yan (10.1016/j.energy.2025.138466_bib39) 2024; 136
Zheng (10.1016/j.energy.2025.138466_bib2) 2016; 53
Meng (10.1016/j.energy.2025.138466_bib5) 2023; 283
Joseph (10.1016/j.energy.2025.138466_bib40) 2024; 359
Hidalgo (10.1016/j.energy.2025.138466_bib25) 2021; 3
Yang (10.1016/j.energy.2025.138466_bib20) 2021; 283
Qian (10.1016/j.energy.2025.138466_bib21) 2019; 235
Chen (10.1016/j.energy.2025.138466_bib13) 2024; 308
Sun (10.1016/j.energy.2025.138466_bib52) 2024; 302
Kirchner (10.1016/j.energy.2025.138466_bib29) 2016; 45
Kou (10.1016/j.energy.2025.138466_bib1) 2022; 22
Hu (10.1016/j.energy.2025.138466_bib43) 2021; 224
Zhang (10.1016/j.energy.2025.138466_bib3) 2024; 13
Xiao (10.1016/j.energy.2025.138466_bib50) 2023; 267
Jiang (10.1016/j.energy.2025.138466_bib22) 2018; 56
Wang (10.1016/j.energy.2025.138466_bib32) 2025; 275
Ahmad (10.1016/j.energy.2025.138466_bib9) 2022; 239
Buckley (10.1016/j.energy.2025.138466_bib31) 2025; 58
Liang (10.1016/j.energy.2025.138466_bib49) 2024; 313
Zhang (10.1016/j.energy.2025.138466_bib27) 2020; 213
Hu (10.1016/j.energy.2025.138466_bib30) 2019; 10
Yang (10.1016/j.energy.2025.138466_bib33) 2024; 294
Dai (10.1016/j.energy.2025.138466_bib51) 2024; 299
Zhao (10.1016/j.energy.2025.138466_bib8) 2017; 197
References_xml – volume: 197
  start-page: 183
  year: July 2017
  end-page: 202
  ident: bib8
  article-title: Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method
  publication-title: Appl Energy
– volume: 13
  year: Jan. 2024
  ident: bib3
  article-title: Research on the short-term prediction of offshore wind power based on unit classification
  publication-title: Electronics
– volume: 260
  year: Dec. 2022
  ident: bib17
  article-title: A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine
  publication-title: Energy
– volume: 283
  year: Nov. 2023
  ident: bib5
  article-title: A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN
  publication-title: Energy
– volume: 312
  year: Dec. 2024
  ident: bib18
  article-title: A novel combined model based on advanced optimization algorithm, and deep learning model for abnormal wind speed identification and reconstruction
  publication-title: Energy
– volume: 332
  year: May 2025
  ident: bib11
  article-title: ISI net: a novel paradigm integrating interpretability and intelligent selection in ensemble learning for accurate wind power forecasting
  publication-title: Energy Convers Manag
– volume: 283
  year: Feb. 2021
  ident: bib20
  article-title: State-of-the-art one-stop handbook on wind forecasting technologies: an overview of classifications, methodologies, and analysis
  publication-title: J Clean Prod
– volume: 308
  year: Nov. 2024
  ident: bib13
  article-title: A novel offshore wind power prediction model based on TCN-DANet-sparse transformer and considering spatio-temporal coupling in multiple wind farms
  publication-title: Energy
– volume: 224
  year: June 2021
  ident: bib43
  article-title: An improved deep belief network based hybrid forecasting method for wind power
  publication-title: Energy
– volume: 58
  year: Apr. 2025
  ident: bib31
  article-title: Time and MNE strategy: managing temporal misalignments in global value chains
  publication-title: Long Range Plan
– volume: 280
  start-page: 128226
  year: Oct. 2023
  ident: bib15
  article-title: A short-term wind power prediction method based on dynamic and static feature fusion mining
  publication-title: Energy
– volume: 11
  year: Oct. 2023
  ident: bib10
  article-title: Machine learning solutions for offshore wind farms: a review of applications and impacts
  publication-title: J Mar Sci Eng
– volume: 237
  year: Mar. 2024
  ident: bib41
  article-title: Data-driven interpretable ensemble learning methods for the prediction of wind turbine power incorporating SHAP analysis
  publication-title: Expert Syst Appl
– volume: 206
  year: Sept. 2024
  ident: bib38
  article-title: : explainable household energy demand forecasting by approximating shapley values using DeepLIFT
  publication-title: Technol Forecast Soc Change
– volume: 53
  start-page: 1240
  year: Jan. 2016
  end-page: 1251
  ident: bib2
  article-title: An overview of global ocean wind energy resource evaluations
  publication-title: Renew Sustain Energy Rev
– volume: 266
  year: Mar. 2023
  ident: bib16
  article-title: A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction
  publication-title: Energy
– volume: 267
  year: Mar. 2023
  ident: bib50
  article-title: Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis
  publication-title: Energy
– volume: 56
  start-page: 4581
  year: Aug. 2018
  end-page: 4593
  ident: bib22
  article-title: SuperPCA: a superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery
  publication-title: IEEE Trans Geosci Remote Sensing
– volume: 377
  year: Jan. 2025
  ident: bib46
  article-title: Carbon emissions trading price forecasting based on temporal-spatial multidimensional collaborative attention network and segment imbalance regression
  publication-title: Appl Energy
– volume: 302
  year: Feb. 2024
  ident: bib52
  article-title: Modelling potential land suitability of large-scale wind energy development using explainable machine learning techniques: applications for China, USA and EU
  publication-title: Energy Convers Manag
– volume: 184
  start-page: 473
  year: Jan. 2022
  end-page: 486
  ident: bib45
  article-title: Anomaly detection in wind turbine SCADA data for power curve cleaning
  publication-title: Renew Energy
– volume: 136
  year: Oct. 2024
  ident: bib39
  article-title: Relation between fault characteristic frequencies and local interpretability shapley additive explanations for continuous machine health monitoring
  publication-title: Eng Appl Artif Intell
– volume: 313
  year: Dec. 2024
  ident: bib49
  article-title: A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model
  publication-title: Energy
– volume: 54
  start-page: 225
  year: Mar. 2022
  end-page: 254
  ident: bib23
  article-title: Dynamic mode decomposition and its variants
  publication-title: Annu Rev Fluid Mech
– volume: 283
  year: May 2023
  ident: bib4
  article-title: A novel network training approach for solving sample imbalance problem in wind power prediction
  publication-title: Energy Conv Manag
– volume: 22
  year: Jan. 2022
  ident: bib1
  article-title: Review on monitoring, operation and maintenance of smart offshore wind farms
  publication-title: Sensors
– volume: 15
  year: Jan. 2022
  ident: bib19
  article-title: A novel hybrid machine learning model for wind speed probabilistic forecasting
  publication-title: Energies
– volume: 46
  start-page: 7173
  year: Nov. 2024
  end-page: 7190
  ident: bib37
  article-title: IG2: integrated gradient on iterative gradient path for feature attribution
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 275
  year: May 2025
  ident: bib32
  article-title: Data-driven deep learning model for short-term wind power prediction assisted with WGAN-GP data preprocessing
  publication-title: Expert Syst Appl
– volume: 131
  year: Oct. 2021
  ident: bib48
  article-title: Online analysis and prediction of the inertia in power systems with renewable power generation based on a minimum variance harmonic finite impulse response filter
  publication-title: Int J Electr Power Energy Syst
– volume: 25
  start-page: 2407
  year: May 2016
  ident: bib24
  article-title: Compact representation of high-dimensional feature vectors for large-scale image recognition and retrieval
  publication-title: IEEE Trans Image Process
– volume: 246
  year: June 2025
  ident: bib26
  article-title: Short-term wind power prediction based on multiscale numerical simulation coupled with deep learning
  publication-title: Renew Energy
– volume: 294
  year: May 2024
  ident: bib33
  article-title: A short-term power prediction method for wind farm cluster based on the fusion of multi-source spatiotemporal feature information
  publication-title: Energy
– volume: 299
  year: July 2024
  ident: bib51
  article-title: A hybrid ensemble optimized BiGRU method for short-term photovoltaic generation forecasting
  publication-title: Energy
– volume: 189
  year: Dec. 2019
  ident: bib53
  article-title: A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition
  publication-title: Energy
– volume: 213
  year: Dec. 2020
  ident: bib27
  article-title: Short-term wind power forecasting approach based on Seq2Seq model using NWP data
  publication-title: Energy
– volume: 45
  start-page: 271
  year: Mar. 2016
  end-page: 297
  ident: bib29
  article-title: Facilitating data preprocessing by a generic framework: a proposal for clustering
  publication-title: Artif Intell Rev
– volume: 381
  year: Mar. 2025
  ident: bib47
  article-title: Short-term electric vehicle charging load forecasting based on TCN-LSTM network with comprehensive similar day identification
  publication-title: Appl Energy
– volume: 60
  year: Dec. 2023
  ident: bib44
  article-title: Correlation analysis based relevant variable selection for wind turbine condition monitoring and fault diagnosis
  publication-title: Sustain Energy Technol Assessments
– volume: 249
  start-page: 392
  year: Sept. 2019
  end-page: 408
  ident: bib6
  article-title: Data processing strategies in wind energy forecasting models and applications: a comprehensive review
  publication-title: Appl Energy
– volume: 199
  start-page: 977
  year: Nov. 2022
  end-page: 992
  ident: bib12
  article-title: Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks
  publication-title: Renew Energy
– volume: 10
  start-page: 1330
  year: July 2019
  end-page: 1341
  ident: bib30
  article-title: Adaptive confidence boundary modeling of wind turbine power curve using SCADA data and its application
  publication-title: IEEE Trans Sustain Energy
– volume: 239
  year: Jan. 2022
  ident: bib9
  article-title: A data-driven deep sequence-to-sequence long-short memory method along with a gated recurrent neural network for wind power forecasting
  publication-title: Energy
– volume: 309
  year: Mar. 2022
  ident: bib35
  article-title: An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting
  publication-title: Appl Energy
– volume: 148
  start-page: 554
  year: Sept. 2017
  end-page: 568
  ident: bib7
  article-title: Non-parametric hybrid models for wind speed forecasting
  publication-title: Energy Convers Manag
– volume: 315
  year: Sept. 2024
  ident: bib34
  article-title: Machine learning development to predict the electrical efficiency of photovoltaic-thermal (PVT) collector systems
  publication-title: Energy Convers Manag
– volume: 124
  year: May 2020
  ident: bib42
  article-title: A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization
  publication-title: Renew Sustain Energy Rev
– volume: 359
  year: Apr. 2024
  ident: bib40
  article-title: Short-term wind speed forecasting using an optimized three-phase convolutional neural network fused with bidirectional long short-term memory network model
  publication-title: Appl Energy
– volume: 139
  year: Jan. 2025
  ident: bib36
  article-title: Model-agnostic local explanation: Multi-Objective genetic algorithm explainer
  publication-title: Eng Appl Artif Intell
– volume: 296
  year: June 2024
  ident: bib28
  article-title: A STAM-LSTM model for wind power prediction with feature selection
  publication-title: Energy
– volume: 235
  start-page: 939
  year: Feb. 2019
  end-page: 953
  ident: bib21
  article-title: A review and discussion of decomposition-based hybrid models for wind energy forecasting applications
  publication-title: Appl Energy
– volume: 3
  start-page: 92
  year: Feb. 2021
  end-page: 113
  ident: bib25
  article-title: Economic complexity theory and applications
  publication-title: Nat Rev Phys
– volume: 18
  year: Dec. 2024
  ident: bib14
  article-title: A hybrid wind power prediction model based on seasonal feature decomposition and enhanced feature extraction
  publication-title: Energy and AI
– volume: 224
  year: 2021
  ident: 10.1016/j.energy.2025.138466_bib43
  article-title: An improved deep belief network based hybrid forecasting method for wind power
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120185
– volume: 299
  year: 2024
  ident: 10.1016/j.energy.2025.138466_bib51
  article-title: A hybrid ensemble optimized BiGRU method for short-term photovoltaic generation forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131458
– volume: 184
  start-page: 473
  year: 2022
  ident: 10.1016/j.energy.2025.138466_bib45
  article-title: Anomaly detection in wind turbine SCADA data for power curve cleaning
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.11.118
– volume: 239
  year: 2022
  ident: 10.1016/j.energy.2025.138466_bib9
  article-title: A data-driven deep sequence-to-sequence long-short memory method along with a gated recurrent neural network for wind power forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122109
– volume: 58
  issue: 2
  year: 2025
  ident: 10.1016/j.energy.2025.138466_bib31
  article-title: Time and MNE strategy: managing temporal misalignments in global value chains
  publication-title: Long Range Plan
  doi: 10.1016/j.lrp.2025.102511
– volume: 15
  issue: 19
  year: 2022
  ident: 10.1016/j.energy.2025.138466_bib19
  article-title: A novel hybrid machine learning model for wind speed probabilistic forecasting
  publication-title: Energies
  doi: 10.3390/en15196942
– volume: 237
  year: 2024
  ident: 10.1016/j.energy.2025.138466_bib41
  article-title: Data-driven interpretable ensemble learning methods for the prediction of wind turbine power incorporating SHAP analysis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.121464
– volume: 189
  year: 2019
  ident: 10.1016/j.energy.2025.138466_bib53
  article-title: A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116316
– volume: 139
  year: 2025
  ident: 10.1016/j.energy.2025.138466_bib36
  article-title: Model-agnostic local explanation: Multi-Objective genetic algorithm explainer
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2024.109628
– volume: 283
  year: 2023
  ident: 10.1016/j.energy.2025.138466_bib4
  article-title: A novel network training approach for solving sample imbalance problem in wind power prediction
  publication-title: Energy Conv Manag
  doi: 10.1016/j.enconman.2023.116935
– volume: 3
  start-page: 92
  issue: 2
  year: 2021
  ident: 10.1016/j.energy.2025.138466_bib25
  article-title: Economic complexity theory and applications
  publication-title: Nat Rev Phys
  doi: 10.1038/s42254-020-00275-1
– volume: 266
  year: 2023
  ident: 10.1016/j.energy.2025.138466_bib16
  article-title: A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126419
– volume: 60
  year: 2023
  ident: 10.1016/j.energy.2025.138466_bib44
  article-title: Correlation analysis based relevant variable selection for wind turbine condition monitoring and fault diagnosis
  publication-title: Sustain Energy Technol Assessments
– volume: 10
  start-page: 1330
  issue: 3
  year: 2019
  ident: 10.1016/j.energy.2025.138466_bib30
  article-title: Adaptive confidence boundary modeling of wind turbine power curve using SCADA data and its application
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2018.2866543
– volume: 46
  start-page: 7173
  issue: 11
  year: 2024
  ident: 10.1016/j.energy.2025.138466_bib37
  article-title: IG2: integrated gradient on iterative gradient path for feature attribution
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2024.3388092
– volume: 260
  year: 2022
  ident: 10.1016/j.energy.2025.138466_bib17
  article-title: A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124957
– volume: 283
  year: 2023
  ident: 10.1016/j.energy.2025.138466_bib5
  article-title: A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129139
– volume: 136
  year: 2024
  ident: 10.1016/j.energy.2025.138466_bib39
  article-title: Relation between fault characteristic frequencies and local interpretability shapley additive explanations for continuous machine health monitoring
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2024.109046
– volume: 54
  start-page: 225
  year: 2022
  ident: 10.1016/j.energy.2025.138466_bib23
  article-title: Dynamic mode decomposition and its variants
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-030121-015835
– volume: 302
  year: 2024
  ident: 10.1016/j.energy.2025.138466_bib52
  article-title: Modelling potential land suitability of large-scale wind energy development using explainable machine learning techniques: applications for China, USA and EU
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2024.118131
– volume: 53
  start-page: 1240
  year: 2016
  ident: 10.1016/j.energy.2025.138466_bib2
  article-title: An overview of global ocean wind energy resource evaluations
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.09.063
– volume: 246
  year: 2025
  ident: 10.1016/j.energy.2025.138466_bib26
  article-title: Short-term wind power prediction based on multiscale numerical simulation coupled with deep learning
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2025.122951
– volume: 296
  year: 2024
  ident: 10.1016/j.energy.2025.138466_bib28
  article-title: A STAM-LSTM model for wind power prediction with feature selection
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131030
– volume: 206
  year: 2024
  ident: 10.1016/j.energy.2025.138466_bib38
  article-title: ForecastExplainer: explainable household energy demand forecasting by approximating shapley values using DeepLIFT
  publication-title: Technol Forecast Soc Change
  doi: 10.1016/j.techfore.2024.123588
– volume: 213
  year: 2020
  ident: 10.1016/j.energy.2025.138466_bib27
  article-title: Short-term wind power forecasting approach based on Seq2Seq model using NWP data
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118371
– volume: 235
  start-page: 939
  year: 2019
  ident: 10.1016/j.energy.2025.138466_bib21
  article-title: A review and discussion of decomposition-based hybrid models for wind energy forecasting applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.10.080
– volume: 275
  year: 2025
  ident: 10.1016/j.energy.2025.138466_bib32
  article-title: Data-driven deep learning model for short-term wind power prediction assisted with WGAN-GP data preprocessing
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2025.127068
– volume: 13
  issue: 12
  year: 2024
  ident: 10.1016/j.energy.2025.138466_bib3
  article-title: Research on the short-term prediction of offshore wind power based on unit classification
  publication-title: Electronics
  doi: 10.3390/electronics13122293
– volume: 308
  year: 2024
  ident: 10.1016/j.energy.2025.138466_bib13
  article-title: A novel offshore wind power prediction model based on TCN-DANet-sparse transformer and considering spatio-temporal coupling in multiple wind farms
  publication-title: Energy
  doi: 10.1016/j.energy.2024.132899
– volume: 18
  year: 2024
  ident: 10.1016/j.energy.2025.138466_bib14
  article-title: A hybrid wind power prediction model based on seasonal feature decomposition and enhanced feature extraction
  publication-title: Energy and AI
  doi: 10.1016/j.egyai.2024.100442
– volume: 267
  year: 2023
  ident: 10.1016/j.energy.2025.138466_bib50
  article-title: Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126503
– volume: 197
  start-page: 183
  year: 2017
  ident: 10.1016/j.energy.2025.138466_bib8
  article-title: Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.04.017
– volume: 45
  start-page: 271
  issue: 3
  year: 2016
  ident: 10.1016/j.energy.2025.138466_bib29
  article-title: Facilitating data preprocessing by a generic framework: a proposal for clustering
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-015-9446-6
– volume: 25
  start-page: 2407
  issue: 5
  year: 2016
  ident: 10.1016/j.energy.2025.138466_bib24
  article-title: Compact representation of high-dimensional feature vectors for large-scale image recognition and retrieval
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2549360
– volume: 249
  start-page: 392
  year: 2019
  ident: 10.1016/j.energy.2025.138466_bib6
  article-title: Data processing strategies in wind energy forecasting models and applications: a comprehensive review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.04.188
– volume: 381
  year: 2025
  ident: 10.1016/j.energy.2025.138466_bib47
  article-title: Short-term electric vehicle charging load forecasting based on TCN-LSTM network with comprehensive similar day identification
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.125174
– volume: 359
  year: 2024
  ident: 10.1016/j.energy.2025.138466_bib40
  article-title: Short-term wind speed forecasting using an optimized three-phase convolutional neural network fused with bidirectional long short-term memory network model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.122624
– volume: 131
  year: 2021
  ident: 10.1016/j.energy.2025.138466_bib48
  article-title: Online analysis and prediction of the inertia in power systems with renewable power generation based on a minimum variance harmonic finite impulse response filter
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2021.107042
– volume: 312
  year: 2024
  ident: 10.1016/j.energy.2025.138466_bib18
  article-title: A novel combined model based on advanced optimization algorithm, and deep learning model for abnormal wind speed identification and reconstruction
  publication-title: Energy
  doi: 10.1016/j.energy.2024.133510
– volume: 56
  start-page: 4581
  issue: 8
  year: 2018
  ident: 10.1016/j.energy.2025.138466_bib22
  article-title: SuperPCA: a superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery
  publication-title: IEEE Trans Geosci Remote Sensing
  doi: 10.1109/TGRS.2018.2828029
– volume: 11
  issue: 10
  year: 2023
  ident: 10.1016/j.energy.2025.138466_bib10
  article-title: Machine learning solutions for offshore wind farms: a review of applications and impacts
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse11101855
– volume: 199
  start-page: 977
  year: 2022
  ident: 10.1016/j.energy.2025.138466_bib12
  article-title: Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.09.036
– volume: 22
  issue: 8
  year: 2022
  ident: 10.1016/j.energy.2025.138466_bib1
  article-title: Review on monitoring, operation and maintenance of smart offshore wind farms
  publication-title: Sensors
  doi: 10.3390/s22082822
– volume: 280
  start-page: 128226
  year: 2023
  ident: 10.1016/j.energy.2025.138466_bib15
  article-title: A short-term wind power prediction method based on dynamic and static feature fusion mining
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128226
– volume: 294
  year: 2024
  ident: 10.1016/j.energy.2025.138466_bib33
  article-title: A short-term power prediction method for wind farm cluster based on the fusion of multi-source spatiotemporal feature information
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130770
– volume: 148
  start-page: 554
  year: 2017
  ident: 10.1016/j.energy.2025.138466_bib7
  article-title: Non-parametric hybrid models for wind speed forecasting
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.06.021
– volume: 283
  year: 2021
  ident: 10.1016/j.energy.2025.138466_bib20
  article-title: State-of-the-art one-stop handbook on wind forecasting technologies: an overview of classifications, methodologies, and analysis
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.124628
– volume: 315
  year: 2024
  ident: 10.1016/j.energy.2025.138466_bib34
  article-title: Machine learning development to predict the electrical efficiency of photovoltaic-thermal (PVT) collector systems
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2024.118808
– volume: 124
  year: 2020
  ident: 10.1016/j.energy.2025.138466_bib42
  article-title: A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.109792
– volume: 377
  year: 2025
  ident: 10.1016/j.energy.2025.138466_bib46
  article-title: Carbon emissions trading price forecasting based on temporal-spatial multidimensional collaborative attention network and segment imbalance regression
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.124357
– volume: 309
  year: 2022
  ident: 10.1016/j.energy.2025.138466_bib35
  article-title: An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.118473
– volume: 313
  year: 2024
  ident: 10.1016/j.energy.2025.138466_bib49
  article-title: A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model
  publication-title: Energy
  doi: 10.1016/j.energy.2024.133826
– volume: 332
  year: 2025
  ident: 10.1016/j.energy.2025.138466_bib11
  article-title: ISI net: a novel paradigm integrating interpretability and intelligent selection in ensemble learning for accurate wind power forecasting
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2025.119752
SSID ssj0005899
Score 2.477443
Snippet Offshore wind power prediction is significantly challenged by data quality issues arising from various factors such as environmental conditions and measurement...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 138466
SubjectTerms Abnormal data
Differential compensation dimensionality reduction
Dimensionality reduction
Offshore wind power prediction
Sample trend inconsistency
Title An explainable multi-feature dimensionality reduction framework: Considering trend inconsistency in wind power sample
URI https://dx.doi.org/10.1016/j.energy.2025.138466
Volume 336
WOSCitedRecordID wos001575510900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect (Freedom Collection)
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fq9MwFA66K-iL6NWL11_kwbdLRtukaePbkImKXASnDF9Kk6beXqS7rJvsz_ecpOlWr4gKvpQtrOnW85GenXzfdwh5wePY5DaqWWVkzoS2ESs51yxVmosytzJxu-ef32fn5_lyqT70O6adayeQtW2-26mr_xpqGINgo3T2L8I9TAoD8BqCDkcIOxz_KPAzZ9v_LaiiHGOQ1dYZeJ5VaObvjTgw_V6jcatnGwaSFpYIQhdP30PCOn8mg2Pdxik1G9R-o8EAtlg760p0GB6V-L2gEJ1Md548P5QbkEXriZR6NZCBmq17Aq7arxfbJowum3LlqwZ2NwwufL32y4VF-XF7WLNI0l68NxTSgphmz1zyAq6IpUKMFmfu7VGuLfS-5nA5te4HTfEi05hDMvWTr7Z7Un_EqXFm9GuLYV29SY6SLFX5hBzN3s6X7_akoNx1HB2-ShBbOkbg9Wv9Opk5SFAW98jd_p8FnXlE3Cc3bHtMbgfheXdMTuZ7USN8sF_VuwdkO2vpAWToCDJ0DBk6QIYOkHlJDwBDHWDoCDDwjiJgqAMM9YB5SD69ni9evWF9Ow5mYF3fMJOiAr7iIomNNAL7HmhV2jqOZZlprbSQlY00T6zQaJNnIi3ritcZ7jVLqfkJmbSr1j4iFJJMXcMckLzGIlVSlfAsqKoIJlZCWHlKWLivxZV3XSkCHfGy8HEoMA6Fj8MpycLNL_rM0WeEBeDlt2c-_uczn5A7e2g_JZPNemufkVvm-6bp1s97YP0A7IWZug
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+explainable+multi-feature+dimensionality+reduction+framework%3A+Considering+trend+inconsistency+in+wind+power+sample&rft.jtitle=Energy+%28Oxford%29&rft.au=Meng%2C+Anbo&rft.au=Liu%2C+Honghui&rft.au=Xiao%2C+Liexi&rft.au=Tan%2C+Zhenglin&rft.date=2025-11-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=336&rft_id=info:doi/10.1016%2Fj.energy.2025.138466&rft.externalDocID=S0360544225041088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon