Modelica-based multiphysics modeling and multi-timescale dynamic analysis of a 100-kW alkaline water electrolysis system

Alkaline water electrolysis is a promising technology to meet the large-scale and long-term energy storage demands of renewable energy resources (RESs). However, the electrolysis system is faced with varying loads due to the non-dispatchable renewable power input. To facilitate efficient transient o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy Jg. 253; S. 123620
Hauptverfasser: Yin, Ruilin, Chen, Bin, Sun, Li
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2025
Schlagworte:
ISSN:0960-1481
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Alkaline water electrolysis is a promising technology to meet the large-scale and long-term energy storage demands of renewable energy resources (RESs). However, the electrolysis system is faced with varying loads due to the non-dispatchable renewable power input. To facilitate efficient transient operation and provide insights into electrochemical, thermochemical, fluidic, and gaseous domains, a multiphysics analytical model is developed for the analysis of the electrolysis system. A one-dimensional electrolyzer and the balance of pant system models such as heat exchangers, gas separators, pumps and compressors are developed using an object-oriented language Modelica. The developed models are then utilized for numerical studies and thermodynamic analysis with both steady-state and dynamic simulations. Sensitivity analysis is studied to reveal the parameters’ distribution characteristics. The steady-state analysis results show a large lye flow rate uniform the temperature distribution while enlarge the gas impurity. Considering the volume inertia and heat capacity of the system, a dynamic analysis is carried out through multiphysics including electrochemical, fluidic, gaseous and thermochemical domains. The results show heat capacity and volumetric inertia have a major influence on the response time of temperature and gas production. The research in this paper provides a reference of response characteristics for the subsequent control design.
AbstractList Alkaline water electrolysis is a promising technology to meet the large-scale and long-term energy storage demands of renewable energy resources (RESs). However, the electrolysis system is faced with varying loads due to the non-dispatchable renewable power input. To facilitate efficient transient operation and provide insights into electrochemical, thermochemical, fluidic, and gaseous domains, a multiphysics analytical model is developed for the analysis of the electrolysis system. A one-dimensional electrolyzer and the balance of pant system models such as heat exchangers, gas separators, pumps and compressors are developed using an object-oriented language Modelica. The developed models are then utilized for numerical studies and thermodynamic analysis with both steady-state and dynamic simulations. Sensitivity analysis is studied to reveal the parameters’ distribution characteristics. The steady-state analysis results show a large lye flow rate uniform the temperature distribution while enlarge the gas impurity. Considering the volume inertia and heat capacity of the system, a dynamic analysis is carried out through multiphysics including electrochemical, fluidic, gaseous and thermochemical domains. The results show heat capacity and volumetric inertia have a major influence on the response time of temperature and gas production. The research in this paper provides a reference of response characteristics for the subsequent control design.
ArticleNumber 123620
Author Chen, Bin
Yin, Ruilin
Sun, Li
Author_xml – sequence: 1
  givenname: Ruilin
  surname: Yin
  fullname: Yin, Ruilin
  organization: National Engineering Research Center of Power Generation Control and Safety, School of Energy and Environment, Southeast University, Nanjing, 210096, China
– sequence: 2
  givenname: Bin
  surname: Chen
  fullname: Chen, Bin
  organization: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
– sequence: 3
  givenname: Li
  orcidid: 0000-0001-8960-8773
  surname: Sun
  fullname: Sun, Li
  email: sunli12@seu.edu.cn
  organization: National Engineering Research Center of Power Generation Control and Safety, School of Energy and Environment, Southeast University, Nanjing, 210096, China
BookMark eNp9kMlOwzAQhn0oEm3hDTj4BRJs13GSCxKqWCoVcQFxtMb2BNxmqeyw5O1JSc9oDnP4F818CzJruxYJueIs5Yyr610asB0nFUxkKRcrJdiMzFmpWMJlwc_JIsYdYzwrcjknP0-dw9pbSAxEdLT5rHt_-Biit5E2f1r7TqE9KUnvG4wWaqRuaKHxdtSgHu2RdhUFyhlL9m8U6j2MSaTf0GOgWKPtQzf54hB7bC7IWQV1xMvTXpLX-7uX9WOyfX7YrG-3iRVZ3ifgCmOUqpA7JS0XsjR5YUsnsgyEkpDnxliQiKByB8YVSpkcZYHVilelNKslkVOvDV2MASt9CL6BMGjO9JGY3umJmD4S0xOxMXYzxXC87ctj0NF6bC06H8ZftOv8_wW_viB9tg
Cites_doi 10.1109/TCPMT.2024.3503561
10.1016/j.energy.2017.07.053
10.1088/1402-4896/ad7d4a
10.1016/j.ijhydene.2017.03.154
10.1149/2.0941409jes
10.1016/j.ijhydene.2022.12.130
10.1016/j.ijhydene.2016.12.111
10.1109/TIA.2023.3247405
10.1051/bsgf/2019008
10.1016/j.ijhydene.2019.10.132
10.1016/j.ijhydene.2021.08.069
10.1016/j.ijhydene.2024.07.389
10.1016/j.jpowsour.2023.233920
10.1016/j.ijhydene.2024.03.238
10.1016/j.ijhydene.2021.11.126
10.1016/j.ijhydene.2017.05.031
10.1016/j.est.2019.03.001
10.1016/j.est.2021.102733
10.1038/s44172-023-00070-7
10.1016/j.rser.2017.03.099
10.1016/S0013-4686(00)00513-2
10.1016/j.jclepro.2023.138862
10.1016/j.ijhydene.2016.06.071
10.1016/j.egyr.2024.01.031
10.1016/j.apenergy.2022.120099
10.1016/j.ijhydene.2023.08.345
10.1016/j.renene.2023.119198
10.1016/j.ijhydene.2018.12.222
10.1016/j.egyr.2022.10.127
10.1016/j.ijhydene.2006.10.062
10.1016/j.joule.2020.01.005
10.1016/j.etran.2023.100304
10.1016/j.ijhydene.2020.06.038
10.1002/er.4076
10.1149/2.0541807jes
10.3390/pr8020248
10.1016/j.jpowsour.2021.230106
10.1016/j.ijhydene.2018.11.007
10.1016/j.rser.2024.115147
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.renene.2025.123620
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_renene_2025_123620
S0960148125012820
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEGFY
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c257t-ad8bb66fe1d64c1249b78c9d255a264a77bbca4eea67dabd866b7e48ef31f94b3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001507552000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-1481
IngestDate Sat Nov 29 07:09:14 EST 2025
Sat Nov 15 16:53:24 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Alkaline water electrolyzer
Dynamic response
Multiphysics model
Gas impurity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-ad8bb66fe1d64c1249b78c9d255a264a77bbca4eea67dabd866b7e48ef31f94b3
ORCID 0000-0001-8960-8773
ParticipantIDs crossref_primary_10_1016_j_renene_2025_123620
elsevier_sciencedirect_doi_10_1016_j_renene_2025_123620
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Qi, Gao, Lin, Song, Wang, Qiu (bib17) 2021; 46
David, Alvarez, Ocampo-Martinez, Sánchez-Peña (bib24) 2020; 45
Gu, Guo, Hu, Ding, Zhang, Tian (bib37) 2024; 592
Zhao, Yuan (bib15) 2023; 13
Qi, Qiu, Lin, Song, Li, Xing (bib7) 2021; 40
Aboukalam Da Cruz, Etancelin, Marias, Reneaume, Sochard-Reneaume, Serra (bib29) 2023; 48
Iribarren, Elizondo, Barrios, Ibaiondo, Sanchez-Ruiz, Arza (bib23) 2023; 59
Xia, Cheng, He, Wei (bib11) 2023; 2
Deng, Wang, Yin, Yang, Yu, Li (bib26) 2025; 15
Kovač, Marciuš, Budin (bib12) 2019; 44
Shiva Kumar, Lim (bib6) 2022; 8
Qiu, Zhou, Zang, Zhou, Chen, Qi (bib27) 2023; 217
David, Ocampo-Martínez, Sánchez-Peña (bib3) 2019; 23
Sakas, Ibáñez-Rioja, Ruuskanen, Kosonen, Ahola, Bergmann (bib20) 2022; 47
Gilliam, Graydon, Kirk, Thorpe (bib32) 2007; 32
Yi, Lu, Li, Ai, Hao (bib5) 2025; 210
Shen, Zhang, Li, Lie, Hong (bib41) 2018; 42
Brauns, Turek (bib42) 2020; 8
Jang, Cho, Lee, Park, Kim, Park (bib36) 2023; 424
Zhou, Zhang, Liu, Yuan, Yang, Liu (bib18) 2024; 82
Haug, Kreitz, Koj, Turek (bib35) 2017; 42
Daoudi, Bounahmidi (bib8) 2024; 49
Partidário, Aguiar, Martins, Rangel, Cabrita (bib10) 2020; 45
Jang, Choi, Cho, Cho, Kim, Kang (bib21) 2021; 506
Angulo, Van Der Linde, Gardeniers, Modestino, Fernández Rivas (bib39) 2020; 4
Hu, Guo, Ding, Tian, Gu, Yang (bib28) 2024; 19
Hu, Guo, Ding, Yang, Dang, Liu (bib14) 2022; 327
Emam, Hamdan, Abu-Nabah, Elnajjar (bib9) 2024; 64
Abdin, Webb, Gray (bib19) 2017; 138
Lopez-Lazaro, Bachaud, Moretti, Ferrando (bib1) 2019; 190
Le Bideau, Mandin, Benbouzid, Kim, Sellier (bib31) 2019; 44
Eigeldinger, Vogt (bib40) 2000; 45
Xu, Bai, Zhang, Jin (bib25) 2024; 99
Sandeep, Kamath, Mistry, Kumar, Bhattacharya, Bhanja (bib30) 2017; 42
Haug, Koj, Turek (bib22) 2017; 42
Ursúa, Barrios, Pascual, San Martín, Sanchis (bib2) 2016; 41
Hu, Qiu, Xiang, Wei, Sun, Hu (bib4) 2023; 11
Trinke, Haug, Brauns, Bensmann, Hanke-Rauschenbach, Turek (bib34) 2018; 165
Seh, Kibsgaard, Dickens, Chorkendorff, Nørskov, Jaramillo (bib38) 2017; 355
Olivier, Bourasseau, Bouamama (bib16) 2017; 78
Darling, Perry (bib33) 2014; 161
Su, Li, Zheng, Han, Yu, Bai (bib13) 2024; 11
Su (10.1016/j.renene.2025.123620_bib13) 2024; 11
Shiva Kumar (10.1016/j.renene.2025.123620_bib6) 2022; 8
Gilliam (10.1016/j.renene.2025.123620_bib32) 2007; 32
Sakas (10.1016/j.renene.2025.123620_bib20) 2022; 47
Deng (10.1016/j.renene.2025.123620_bib26) 2025; 15
Zhao (10.1016/j.renene.2025.123620_bib15) 2023; 13
David (10.1016/j.renene.2025.123620_bib3) 2019; 23
Yi (10.1016/j.renene.2025.123620_bib5) 2025; 210
Kovač (10.1016/j.renene.2025.123620_bib12) 2019; 44
David (10.1016/j.renene.2025.123620_bib24) 2020; 45
Haug (10.1016/j.renene.2025.123620_bib35) 2017; 42
Haug (10.1016/j.renene.2025.123620_bib22) 2017; 42
Trinke (10.1016/j.renene.2025.123620_bib34) 2018; 165
Sandeep (10.1016/j.renene.2025.123620_bib30) 2017; 42
Brauns (10.1016/j.renene.2025.123620_bib42) 2020; 8
Ursúa (10.1016/j.renene.2025.123620_bib2) 2016; 41
Daoudi (10.1016/j.renene.2025.123620_bib8) 2024; 49
Emam (10.1016/j.renene.2025.123620_bib9) 2024; 64
Gu (10.1016/j.renene.2025.123620_bib37) 2024; 592
Partidário (10.1016/j.renene.2025.123620_bib10) 2020; 45
Hu (10.1016/j.renene.2025.123620_bib14) 2022; 327
Zhou (10.1016/j.renene.2025.123620_bib18) 2024; 82
Xia (10.1016/j.renene.2025.123620_bib11) 2023; 2
Hu (10.1016/j.renene.2025.123620_bib28) 2024; 19
Shen (10.1016/j.renene.2025.123620_bib41) 2018; 42
Lopez-Lazaro (10.1016/j.renene.2025.123620_bib1) 2019; 190
Iribarren (10.1016/j.renene.2025.123620_bib23) 2023; 59
Angulo (10.1016/j.renene.2025.123620_bib39) 2020; 4
Aboukalam Da Cruz (10.1016/j.renene.2025.123620_bib29) 2023; 48
Hu (10.1016/j.renene.2025.123620_bib4) 2023; 11
Eigeldinger (10.1016/j.renene.2025.123620_bib40) 2000; 45
Olivier (10.1016/j.renene.2025.123620_bib16) 2017; 78
Seh (10.1016/j.renene.2025.123620_bib38) 2017; 355
Xu (10.1016/j.renene.2025.123620_bib25) 2024; 99
Jang (10.1016/j.renene.2025.123620_bib21) 2021; 506
Qiu (10.1016/j.renene.2025.123620_bib27) 2023; 217
Qi (10.1016/j.renene.2025.123620_bib7) 2021; 40
Abdin (10.1016/j.renene.2025.123620_bib19) 2017; 138
Jang (10.1016/j.renene.2025.123620_bib36) 2023; 424
Qi (10.1016/j.renene.2025.123620_bib17) 2021; 46
Darling (10.1016/j.renene.2025.123620_bib33) 2014; 161
Le Bideau (10.1016/j.renene.2025.123620_bib31) 2019; 44
References_xml – volume: 4
  start-page: 555
  year: 2020
  end-page: 579
  ident: bib39
  article-title: Influence of bubbles on the energy conversion efficiency of electrochemical reactors
  publication-title: Joule
– volume: 44
  start-page: 9841
  year: 2019
  end-page: 9848
  ident: bib12
  article-title: Solar hydrogen production via alkaline water electrolysis
  publication-title: Int. J. Hydrogen Energy
– volume: 13
  year: 2023
  ident: bib15
  article-title: Progress and perspectives for solar‐driven water electrolysis to produce green hydrogen
  publication-title: Adv. Energy Mater.
– volume: 59
  start-page: 3741
  year: 2023
  end-page: 3753
  ident: bib23
  article-title: Dynamic modeling of a pressurized alkaline water electrolyzer: a multiphysics approach
  publication-title: IEEE Trans. Ind. Appl.
– volume: 19
  year: 2024
  ident: bib28
  article-title: Study on the synergistic regulation strategy of load range and electrolysis efficiency of 250 kW alkaline electrolysis system under high-dynamic operation conditions
  publication-title: eTransportation
– volume: 48
  start-page: 12982
  year: 2023
  end-page: 12999
  ident: bib29
  article-title: Dynamic modelling of an alkaline water electrolysis system and optimization of its operating parameters for hydrogen production
  publication-title: Int. J. Hydrogen Energy
– volume: 42
  start-page: 3244
  year: 2018
  end-page: 3257
  ident: bib41
  article-title: Experimental study on the external electrical thermal and dynamic power characteristics of alkaline water electrolyzer
  publication-title: Int. J. Energy Res.
– volume: 11
  year: 2023
  ident: bib4
  article-title: Spatial network and driving factors of low-carbon patent applications in China from a public health perspective
  publication-title: Front. Public Health
– volume: 40
  year: 2021
  ident: bib7
  article-title: Two-stage stochastic programming-based capacity optimization for a high-temperature electrolysis system considering dynamic operation strategies
  publication-title: J. Energy Storage
– volume: 47
  start-page: 4328
  year: 2022
  end-page: 4345
  ident: bib20
  article-title: Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process
  publication-title: Int. J. Hydrogen Energy
– volume: 23
  start-page: 392
  year: 2019
  end-page: 403
  ident: bib3
  article-title: Advances in alkaline water electrolyzers: a review
  publication-title: J. Energy Storage
– volume: 45
  start-page: 22394
  year: 2020
  end-page: 22407
  ident: bib24
  article-title: Dynamic modelling of alkaline self-pressurized electrolyzers: a phenomenological-based semiphysical approach
  publication-title: Int. J. Hydrogen Energy
– volume: 32
  start-page: 359
  year: 2007
  end-page: 364
  ident: bib32
  article-title: A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures
  publication-title: Int. J. Hydrogen Energy
– volume: 42
  start-page: 12094
  year: 2017
  end-page: 12103
  ident: bib30
  article-title: Experimental studies and modeling of advanced alkaline water electrolyser with porous nickel electrodes for hydrogen production
  publication-title: Int. J. Hydrogen Energy
– volume: 165
  start-page: F502
  year: 2018
  end-page: F513
  ident: bib34
  article-title: Hydrogen crossover in PEM and alkaline water electrolysis: mechanisms, direct comparison and mitigation strategies
  publication-title: J. Electrochem. Soc.
– volume: 327
  year: 2022
  ident: bib14
  article-title: A comprehensive review of alkaline water electrolysis mathematical modeling
  publication-title: Appl. Energy
– volume: 424
  year: 2023
  ident: bib36
  article-title: Investigation of the operation characteristics and optimization of an alkaline water electrolysis system at high temperature and a high current density
  publication-title: J. Clean. Prod.
– volume: 42
  start-page: 15689
  year: 2017
  end-page: 15707
  ident: bib35
  article-title: Process modelling of an alkaline water electrolyzer
  publication-title: Int. J. Hydrogen Energy
– volume: 210
  year: 2025
  ident: bib5
  article-title: Collaborative planning of multi-energy systems integrating complete hydrogen energy chain
  publication-title: Renew. Sustain. Energy Rev.
– volume: 11
  start-page: 1774
  year: 2024
  end-page: 1786
  ident: bib13
  article-title: Enhancing wind-solar hybrid hydrogen production through multi-state electrolyzer management and complementary energy optimization
  publication-title: Energy Rep.
– volume: 217
  year: 2023
  ident: bib27
  article-title: Extended load flexibility of utility-scale P2H plants: optimal production scheduling considering dynamic thermal and HTO impurity effects
  publication-title: Renew. Energy
– volume: 2
  start-page: 22
  year: 2023
  ident: bib11
  article-title: Efficiency and consistency enhancement for alkaline electrolyzers driven by renewable energy sources
  publication-title: Commun. Eng.
– volume: 138
  start-page: 316
  year: 2017
  end-page: 331
  ident: bib19
  article-title: Modelling and simulation of an alkaline electrolyser cell
  publication-title: Energy (Calg.)
– volume: 99
  year: 2024
  ident: bib25
  article-title: The synthesis and application of MRI-Fluorescence dual mode materials with absorption ability on quantitative analysis of malachite green
  publication-title: Phys. Scr.
– volume: 8
  start-page: 248
  year: 2020
  ident: bib42
  article-title: Alkaline water electrolysis powered by renewable energy: a review
  publication-title: Processes
– volume: 45
  start-page: 25646
  year: 2020
  end-page: 25657
  ident: bib10
  article-title: The hydrogen roadmap in the Portuguese energy system – developing the P2G case
  publication-title: Int. J. Hydrogen Energy
– volume: 161
  start-page: A1381
  year: 2014
  end-page: A1387
  ident: bib33
  article-title: The influence of electrode and channel configurations on flow battery performance
  publication-title: J. Electrochem. Soc.
– volume: 49
  start-page: 646
  year: 2024
  end-page: 667
  ident: bib8
  article-title: Overview of alkaline water electrolysis modeling
  publication-title: Int. J. Hydrogen Energy
– volume: 42
  start-page: 9406
  year: 2017
  end-page: 9418
  ident: bib22
  article-title: Influence of process conditions on gas purity in alkaline water electrolysis
  publication-title: Int. J. Hydrogen Energy
– volume: 355
  year: 2017
  ident: bib38
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Sci. Technol. Humanit.
– volume: 82
  start-page: 143
  year: 2024
  end-page: 149
  ident: bib18
  article-title: Effect of electrolyte circulation on hydrogen-in-oxygen in alkaline water electrolysis
  publication-title: Int. J. Hydrogen Energy
– volume: 44
  start-page: 4553
  year: 2019
  end-page: 4569
  ident: bib31
  article-title: Review of necessary thermophysical properties and their sensivities with temperature and electrolyte mass fractions for alkaline water electrolysis multiphysics modelling
  publication-title: Int. J. Hydrogen Energy
– volume: 592
  year: 2024
  ident: bib37
  article-title: Experimental studies on dynamic performance of 250-kW alkaline electrolytic system
  publication-title: J. Power Sources
– volume: 78
  start-page: 280
  year: 2017
  end-page: 300
  ident: bib16
  article-title: Low-temperature electrolysis system modelling: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 506
  year: 2021
  ident: bib21
  article-title: Numerical modeling and analysis of the temperature effect on the performance of an alkaline water electrolysis system
  publication-title: J. Power Sources
– volume: 46
  start-page: 35997
  year: 2021
  end-page: 36011
  ident: bib17
  article-title: Pressure control strategy to extend the loading range of an alkaline electrolysis system
  publication-title: Int. J. Hydrogen Energy
– volume: 45
  start-page: 4449
  year: 2000
  end-page: 4456
  ident: bib40
  article-title: The bubble coverage of gas-evolving electrodes in a flowing electrolyte
  publication-title: Electrochim. Acta
– volume: 190
  start-page: 7
  year: 2019
  ident: bib1
  article-title: Predicting the phase behavior of hydrogen in NaCl brines by molecular simulation for geological applications
  publication-title: BSGF - Earth Sci Bull
– volume: 15
  start-page: 165
  year: 2025
  end-page: 172
  ident: bib26
  article-title: A high coupling coefficient and symmetric transformer based on TSV
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol.
– volume: 8
  start-page: 13793
  year: 2022
  end-page: 13813
  ident: bib6
  article-title: An overview of water electrolysis technologies for green hydrogen production
  publication-title: Energy Rep.
– volume: 64
  start-page: 599
  year: 2024
  end-page: 625
  ident: bib9
  article-title: A review on recent trends, challenges, and innovations in alkaline water electrolysis
  publication-title: Int. J. Hydrogen Energy
– volume: 41
  start-page: 12852
  year: 2016
  end-page: 12861
  ident: bib2
  article-title: Integration of commercial alkaline water electrolysers with renewable energies: limitations and improvements
  publication-title: Int. J. Hydrogen Energy
– volume: 15
  start-page: 165
  year: 2025
  ident: 10.1016/j.renene.2025.123620_bib26
  article-title: A high coupling coefficient and symmetric transformer based on TSV
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol.
  doi: 10.1109/TCPMT.2024.3503561
– volume: 138
  start-page: 316
  year: 2017
  ident: 10.1016/j.renene.2025.123620_bib19
  article-title: Modelling and simulation of an alkaline electrolyser cell
  publication-title: Energy (Calg.)
  doi: 10.1016/j.energy.2017.07.053
– volume: 99
  year: 2024
  ident: 10.1016/j.renene.2025.123620_bib25
  article-title: The synthesis and application of MRI-Fluorescence dual mode materials with absorption ability on quantitative analysis of malachite green
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ad7d4a
– volume: 42
  start-page: 12094
  year: 2017
  ident: 10.1016/j.renene.2025.123620_bib30
  article-title: Experimental studies and modeling of advanced alkaline water electrolyser with porous nickel electrodes for hydrogen production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.03.154
– volume: 161
  start-page: A1381
  year: 2014
  ident: 10.1016/j.renene.2025.123620_bib33
  article-title: The influence of electrode and channel configurations on flow battery performance
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0941409jes
– volume: 48
  start-page: 12982
  year: 2023
  ident: 10.1016/j.renene.2025.123620_bib29
  article-title: Dynamic modelling of an alkaline water electrolysis system and optimization of its operating parameters for hydrogen production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.12.130
– volume: 42
  start-page: 9406
  year: 2017
  ident: 10.1016/j.renene.2025.123620_bib22
  article-title: Influence of process conditions on gas purity in alkaline water electrolysis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.12.111
– volume: 59
  start-page: 3741
  year: 2023
  ident: 10.1016/j.renene.2025.123620_bib23
  article-title: Dynamic modeling of a pressurized alkaline water electrolyzer: a multiphysics approach
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2023.3247405
– volume: 190
  start-page: 7
  year: 2019
  ident: 10.1016/j.renene.2025.123620_bib1
  article-title: Predicting the phase behavior of hydrogen in NaCl brines by molecular simulation for geological applications
  publication-title: BSGF - Earth Sci Bull
  doi: 10.1051/bsgf/2019008
– volume: 45
  start-page: 25646
  year: 2020
  ident: 10.1016/j.renene.2025.123620_bib10
  article-title: The hydrogen roadmap in the Portuguese energy system – developing the P2G case
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.10.132
– volume: 46
  start-page: 35997
  year: 2021
  ident: 10.1016/j.renene.2025.123620_bib17
  article-title: Pressure control strategy to extend the loading range of an alkaline electrolysis system
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.08.069
– volume: 82
  start-page: 143
  year: 2024
  ident: 10.1016/j.renene.2025.123620_bib18
  article-title: Effect of electrolyte circulation on hydrogen-in-oxygen in alkaline water electrolysis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.07.389
– volume: 592
  year: 2024
  ident: 10.1016/j.renene.2025.123620_bib37
  article-title: Experimental studies on dynamic performance of 250-kW alkaline electrolytic system
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2023.233920
– volume: 64
  start-page: 599
  year: 2024
  ident: 10.1016/j.renene.2025.123620_bib9
  article-title: A review on recent trends, challenges, and innovations in alkaline water electrolysis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.03.238
– volume: 47
  start-page: 4328
  year: 2022
  ident: 10.1016/j.renene.2025.123620_bib20
  article-title: Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.11.126
– volume: 13
  year: 2023
  ident: 10.1016/j.renene.2025.123620_bib15
  article-title: Progress and perspectives for solar‐driven water electrolysis to produce green hydrogen
  publication-title: Adv. Energy Mater.
– volume: 42
  start-page: 15689
  year: 2017
  ident: 10.1016/j.renene.2025.123620_bib35
  article-title: Process modelling of an alkaline water electrolyzer
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.05.031
– volume: 23
  start-page: 392
  year: 2019
  ident: 10.1016/j.renene.2025.123620_bib3
  article-title: Advances in alkaline water electrolyzers: a review
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.03.001
– volume: 40
  year: 2021
  ident: 10.1016/j.renene.2025.123620_bib7
  article-title: Two-stage stochastic programming-based capacity optimization for a high-temperature electrolysis system considering dynamic operation strategies
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102733
– volume: 2
  start-page: 22
  year: 2023
  ident: 10.1016/j.renene.2025.123620_bib11
  article-title: Efficiency and consistency enhancement for alkaline electrolyzers driven by renewable energy sources
  publication-title: Commun. Eng.
  doi: 10.1038/s44172-023-00070-7
– volume: 78
  start-page: 280
  year: 2017
  ident: 10.1016/j.renene.2025.123620_bib16
  article-title: Low-temperature electrolysis system modelling: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.03.099
– volume: 45
  start-page: 4449
  year: 2000
  ident: 10.1016/j.renene.2025.123620_bib40
  article-title: The bubble coverage of gas-evolving electrodes in a flowing electrolyte
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(00)00513-2
– volume: 355
  year: 2017
  ident: 10.1016/j.renene.2025.123620_bib38
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Sci. Technol. Humanit.
– volume: 424
  year: 2023
  ident: 10.1016/j.renene.2025.123620_bib36
  article-title: Investigation of the operation characteristics and optimization of an alkaline water electrolysis system at high temperature and a high current density
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.138862
– volume: 41
  start-page: 12852
  year: 2016
  ident: 10.1016/j.renene.2025.123620_bib2
  article-title: Integration of commercial alkaline water electrolysers with renewable energies: limitations and improvements
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.06.071
– volume: 11
  year: 2023
  ident: 10.1016/j.renene.2025.123620_bib4
  article-title: Spatial network and driving factors of low-carbon patent applications in China from a public health perspective
  publication-title: Front. Public Health
– volume: 11
  start-page: 1774
  year: 2024
  ident: 10.1016/j.renene.2025.123620_bib13
  article-title: Enhancing wind-solar hybrid hydrogen production through multi-state electrolyzer management and complementary energy optimization
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2024.01.031
– volume: 327
  year: 2022
  ident: 10.1016/j.renene.2025.123620_bib14
  article-title: A comprehensive review of alkaline water electrolysis mathematical modeling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120099
– volume: 49
  start-page: 646
  year: 2024
  ident: 10.1016/j.renene.2025.123620_bib8
  article-title: Overview of alkaline water electrolysis modeling
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.08.345
– volume: 217
  year: 2023
  ident: 10.1016/j.renene.2025.123620_bib27
  article-title: Extended load flexibility of utility-scale P2H plants: optimal production scheduling considering dynamic thermal and HTO impurity effects
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.119198
– volume: 44
  start-page: 4553
  year: 2019
  ident: 10.1016/j.renene.2025.123620_bib31
  article-title: Review of necessary thermophysical properties and their sensivities with temperature and electrolyte mass fractions for alkaline water electrolysis multiphysics modelling
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.12.222
– volume: 8
  start-page: 13793
  year: 2022
  ident: 10.1016/j.renene.2025.123620_bib6
  article-title: An overview of water electrolysis technologies for green hydrogen production
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.10.127
– volume: 32
  start-page: 359
  year: 2007
  ident: 10.1016/j.renene.2025.123620_bib32
  article-title: A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.10.062
– volume: 4
  start-page: 555
  year: 2020
  ident: 10.1016/j.renene.2025.123620_bib39
  article-title: Influence of bubbles on the energy conversion efficiency of electrochemical reactors
  publication-title: Joule
  doi: 10.1016/j.joule.2020.01.005
– volume: 19
  year: 2024
  ident: 10.1016/j.renene.2025.123620_bib28
  article-title: Study on the synergistic regulation strategy of load range and electrolysis efficiency of 250 kW alkaline electrolysis system under high-dynamic operation conditions
  publication-title: eTransportation
  doi: 10.1016/j.etran.2023.100304
– volume: 45
  start-page: 22394
  year: 2020
  ident: 10.1016/j.renene.2025.123620_bib24
  article-title: Dynamic modelling of alkaline self-pressurized electrolyzers: a phenomenological-based semiphysical approach
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.06.038
– volume: 42
  start-page: 3244
  year: 2018
  ident: 10.1016/j.renene.2025.123620_bib41
  article-title: Experimental study on the external electrical thermal and dynamic power characteristics of alkaline water electrolyzer
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4076
– volume: 165
  start-page: F502
  year: 2018
  ident: 10.1016/j.renene.2025.123620_bib34
  article-title: Hydrogen crossover in PEM and alkaline water electrolysis: mechanisms, direct comparison and mitigation strategies
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0541807jes
– volume: 8
  start-page: 248
  year: 2020
  ident: 10.1016/j.renene.2025.123620_bib42
  article-title: Alkaline water electrolysis powered by renewable energy: a review
  publication-title: Processes
  doi: 10.3390/pr8020248
– volume: 506
  year: 2021
  ident: 10.1016/j.renene.2025.123620_bib21
  article-title: Numerical modeling and analysis of the temperature effect on the performance of an alkaline water electrolysis system
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230106
– volume: 44
  start-page: 9841
  year: 2019
  ident: 10.1016/j.renene.2025.123620_bib12
  article-title: Solar hydrogen production via alkaline water electrolysis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.11.007
– volume: 210
  year: 2025
  ident: 10.1016/j.renene.2025.123620_bib5
  article-title: Collaborative planning of multi-energy systems integrating complete hydrogen energy chain
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2024.115147
SSID ssj0015874
Score 2.482815
Snippet Alkaline water electrolysis is a promising technology to meet the large-scale and long-term energy storage demands of renewable energy resources (RESs)....
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 123620
SubjectTerms Alkaline water electrolyzer
Dynamic response
Gas impurity
Multiphysics model
Title Modelica-based multiphysics modeling and multi-timescale dynamic analysis of a 100-kW alkaline water electrolysis system
URI https://dx.doi.org/10.1016/j.renene.2025.123620
Volume 253
WOSCitedRecordID wos001507552000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0960-1481
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0015874
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELXowqE9VLS0grYgH7itjBJvEjtHiqjaHlDFh7q3yHYm0gIKCHbL_vyOv5IUqgqQeolWztpZzXPs8ezMe4TsqjyXeLAApq0QoGWYY0rh-whNkgE3xjRCO7EJcXQkp9PyR1BFvXVyAqJt5XJZXv9XqLENwbals0-AuxsUG_Azgo5XhB2vjwLeqpvZSByzG1QdMgYdGkH3JpYlujvMicsjUDCuvTg93ut5StQ4TRJ28XOsLi-U80jvlKVVDOo5_nueDXro5h7jCnrnirLA1RZ2a4tnLDhezC5n3aw8CAUin_umk4WviJgNgxI8D9V5XaQsVsv0qUku5FgkDI9f6XD15Z4r-MFK7oMK53uW2LO1fKY837NMMTzpd64un_DEDm1HRocON1yevCCrXOSlHJHV_W-H0-_dH0s4Mx2jWPwpsZrSpfw9fNbfvZWBB3K6Tl6HowPd95C_ISvQviWvBoSSG2T5J_h0CD6N4FMEn94DnwbwaQSfXjVUUQ8-jeBTBz4dgk89-O_I2ZfD04OvLGhrMIOL9JypWmpdFA2kdZEZq0CuhTRljSdMhT6yEkJrozIAfHFrpWtZFFpAJqGZpE2Z6cl7MmqvWtgkVNWaA3CV5WqSYc-Si1KmAhKY8NQkcouwaMPq2lOoVDG38LzyNq-szStv8y0ioqGr4AZ6967CufHPnh-e3fMjedlP409kNL9ZwDZZM7_ms9ubnTCJfgMQo4hW
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelica-based+multiphysics+modeling+and+multi-timescale+dynamic+analysis+of+a+100-kW+alkaline+water+electrolysis+system&rft.jtitle=Renewable+energy&rft.au=Yin%2C+Ruilin&rft.au=Chen%2C+Bin&rft.au=Sun%2C+Li&rft.date=2025-11-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.volume=253&rft_id=info:doi/10.1016%2Fj.renene.2025.123620&rft.externalDocID=S0960148125012820
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon