WARP-LCA: Efficient convolutional sparse coding with Locally Competitive Algorithm

The locally competitive algorithm (LCA) can solve sparse coding problems across a wide range of use cases. Recently, convolution-based LCA approaches have been shown to be highly effective for enhancing robustness for image recognition tasks in vision pipelines. To additionally maximize representati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 640; s. 130291
Hlavní autoři: Kasenbacher, Geoffrey, Ehret, Felix, Ecke, Gerrit, Otte, Sebastian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2025
Témata:
ISSN:0925-2312
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The locally competitive algorithm (LCA) can solve sparse coding problems across a wide range of use cases. Recently, convolution-based LCA approaches have been shown to be highly effective for enhancing robustness for image recognition tasks in vision pipelines. To additionally maximize representational sparsity, LCA with hard-thresholding can be applied. While this combination often yields very good solutions satisfying an ℓ0 sparsity criterion, it comes with significant drawbacks for practical application: (i) LCA is very inefficient, typically requiring hundreds of optimization cycles for convergence; (ii) the use of a hard-thresholding results in a non-convex loss function, which might lead to suboptimal minima. To address these issues, we propose the Locally Competitive Algorithm with State Warm-up via Predictive Priming (WARP-LCA), which leverages a predictor network to provide a suitable initial guess of the LCA state based on the current input. Our approach significantly improves both convergence speed and the quality of solutions, while maintaining and even enhancing the overall strengths of LCA. We demonstrate that WARP-LCA converges faster by orders of magnitude and reaches better minima compared to conventional LCA. Moreover, the learned representations are more sparse and exhibit superior properties in terms of reconstruction and denoising quality as well as robustness when applied in deep recognition pipelines. Furthermore, we apply WARP-LCA to image denoising tasks, showcasing its robustness and practical effectiveness. Our findings confirm that the naive use of LCA with hard-thresholding results in suboptimal minima, whereas initializing LCA with a predictive guess results in much better outcomes. [Display omitted] •WARP-LCA accelerates convergence and achieves superior sparsity compared to LCA.•Achieves higher PSNR and SSIM with fewer iterations than traditional LCA.•Improves denoising in classification pipelines under varying noise levels.•Enables generalizable and efficient sparse coding with predictive initialization.
AbstractList The locally competitive algorithm (LCA) can solve sparse coding problems across a wide range of use cases. Recently, convolution-based LCA approaches have been shown to be highly effective for enhancing robustness for image recognition tasks in vision pipelines. To additionally maximize representational sparsity, LCA with hard-thresholding can be applied. While this combination often yields very good solutions satisfying an ℓ0 sparsity criterion, it comes with significant drawbacks for practical application: (i) LCA is very inefficient, typically requiring hundreds of optimization cycles for convergence; (ii) the use of a hard-thresholding results in a non-convex loss function, which might lead to suboptimal minima. To address these issues, we propose the Locally Competitive Algorithm with State Warm-up via Predictive Priming (WARP-LCA), which leverages a predictor network to provide a suitable initial guess of the LCA state based on the current input. Our approach significantly improves both convergence speed and the quality of solutions, while maintaining and even enhancing the overall strengths of LCA. We demonstrate that WARP-LCA converges faster by orders of magnitude and reaches better minima compared to conventional LCA. Moreover, the learned representations are more sparse and exhibit superior properties in terms of reconstruction and denoising quality as well as robustness when applied in deep recognition pipelines. Furthermore, we apply WARP-LCA to image denoising tasks, showcasing its robustness and practical effectiveness. Our findings confirm that the naive use of LCA with hard-thresholding results in suboptimal minima, whereas initializing LCA with a predictive guess results in much better outcomes. [Display omitted] •WARP-LCA accelerates convergence and achieves superior sparsity compared to LCA.•Achieves higher PSNR and SSIM with fewer iterations than traditional LCA.•Improves denoising in classification pipelines under varying noise levels.•Enables generalizable and efficient sparse coding with predictive initialization.
ArticleNumber 130291
Author Ecke, Gerrit
Otte, Sebastian
Kasenbacher, Geoffrey
Ehret, Felix
Author_xml – sequence: 1
  givenname: Geoffrey
  surname: Kasenbacher
  fullname: Kasenbacher, Geoffrey
  email: geoffrey.kasenbacher@mercedes-benz.com
  organization: Mercedes-Benz AG, Leibnizstraße 2, Böblingen, Germany
– sequence: 2
  givenname: Felix
  surname: Ehret
  fullname: Ehret, Felix
  organization: Mercedes-Benz AG, Leibnizstraße 2, Böblingen, Germany
– sequence: 3
  givenname: Gerrit
  surname: Ecke
  fullname: Ecke, Gerrit
  organization: Mercedes-Benz AG, Leibnizstraße 2, Böblingen, Germany
– sequence: 4
  givenname: Sebastian
  surname: Otte
  fullname: Otte, Sebastian
  organization: Institut für Robotik und Kognitive Systeme, Universität zu Lübeck, Ratzeburger Allee 160, Lübeck, Germany
BookMark eNp9kMtqwzAURLVIoUnaP-hCP2D3Soof6qJgTPoAQ0to6VLIkpwq2FaQHJf8fR3cdVcX5jLDzFmhRe96g9AdgZgASe8PcW9OynUxBZrEhAHlZIGWwGkSUUboNVqFcAAgGaF8iXZfxe49qsriAW-bxipr-gEr14-uPQ3W9bLF4Sh9MJOobb_HP3b4xpVTsm3PuHTd0Qx2sKPBRbt3fnp2N-iqkW0wt393jT6fth_lS1S9Pb-WRRUpmmRDlKuszlVNEsibtOYsAdpQYBvOIYVaQ0qUlJBrprRMFcsl5RQkMU1qFMt0zdZoM-cq70LwphFHbzvpz4KAuLAQBzGzEBcWYmYx2R5nm5m6jdZ4ES6rldHWGzUI7ez_Ab81fW4J
Cites_doi 10.1145/3589737.3605973
10.1162/neco.2008.03-07-486
10.1080/net.12.3.241.253
10.1109/TMI.2021.3054167
10.1038/381607a0
10.1109/TSP.2020.2976585
10.1109/TNNLS.2012.2197412
10.1371/journal.pcbi.1008629
10.1145/3546790.3546811
10.1371/journal.pcbi.1006766
10.1109/TSP.2015.2420535
10.1111/j.2517-6161.1996.tb02080.x
10.1109/MSP.2020.3016905
10.1016/j.neunet.2020.12.016
10.1109/CVPR.2018.00196
10.1007/s10915-023-02250-1
10.1145/1553374.1553463
10.1162/neco.1994.6.4.559
10.1016/j.engappai.2018.09.014
10.1137/151003714
10.1371/journal.pcbi.1006908
10.1016/S0893-6080(00)00026-5
10.1109/ICCV.2017.627
10.1016/j.artmed.2017.05.006
10.1109/CVPR.2017.243
10.1109/JPROC.2021.3067593
10.1109/ACCESS.2015.2430359
10.1137/080716542
10.1109/TIP.2020.3044472
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.neucom.2025.130291
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_neucom_2025_130291
S0925231225009634
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
WUQ
XPP
~HD
ID FETCH-LOGICAL-c257t-8c7b8cb1508f6b93502f203499060bd061caa08d3cda6c38a2920a1ef6ec37db3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001487662200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:51:23 EST 2025
Sat Jun 21 16:53:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Computer vision
Convolutional sparse coding
Locally competitive algorithms
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-8c7b8cb1508f6b93502f203499060bd061caa08d3cda6c38a2920a1ef6ec37db3
OpenAccessLink https://dx.doi.org/10.1016/j.neucom.2025.130291
ParticipantIDs crossref_primary_10_1016_j_neucom_2025_130291
elsevier_sciencedirect_doi_10_1016_j_neucom_2025_130291
PublicationCentury 2000
PublicationDate 2025-08-01
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Barlow (b3) 2001; 12
Beck, Teboulle (b25) 2009; 2
Dibbo, Breuer, Moore, Teti (b60) 2025
Boutin, Franciosini, Chavane, Ruffier, Perrinet (b59) 2021; 17
Diamond, Sitzmann, Heide, Wetzstein (b45) 2017
J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learning for sparse coding, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 689–696.
Xu, Chang, Xu, Zhang (b56) 2012; 23
Soubies, Blanc-Féraud, Aubert (b58) 2015; 8
K. Gregor, Y. LeCun, Learning fast approximations of sparse coding, in: Proceedings of the 27th International Conference on Machine Learning, ICML- 10, 2010, pp. 399–406.
Dibbo, Moore, Kenyon, Teti (b16) 2023
Davies, Wild, Orchard, Sandamirskaya, Guerra, Joshi, Plank, Risbud (b20) 2021; 109
Barlow (b9) 1987
Krizhevsky, Hinton (b47) 2009
Nickson (b51) 2019
Lundquist, Mitchell, Kenyon (b12) 2017
Hyvärinen, Oja (b37) 2000; 13
Olshausen, Field (b4) 1996; 381
Zhang, Liu, Liu, Wen, Zhu (b28) 2020; 30
He, Wen, Jin, Li (b43) 2020; 68
Rigamonti, Brown, Lepetit (b10) 2011
Lundquist, Paiton, Schultz, Kenyon (b11) 2016
Lee, Ekanadham, Ng (b6) 2007; 20
Monga, Li, Eldar (b44) 2021; 38
Dibbo, Moore, Kenyon, Teti (b62) 2024
Lee, Battle, Raina, Ng (b5) 2006
Lecouat, Ponce, Mairal (b17) 2020
Coates, Lee, Ng (b48) 2011
Beyeler, Rounds, Carlson, Dutt, Krichmar (b7) 2019; 15
Lang, Giese, Ilg, Otte (b46) 2023
Field (b2) 1994; 6
Li, Osher (b23) 2009; 50
Nguyen, Soussen, Idier, Djermoune (b33) 2019
Takaghaj, Sampson (b61) 2024
Vonesch, Unser (b26) 2007; 55
Zhang, Xu, Yang, Li, Zhang (b31) 2015; 3
Parkhi, Vedaldi, Zisserman, Jawahar (b50) 2012
Rozell, Johnson, Baraniuk, Olshausen (b35) 2007; Vol. 4
Zhang, Shen, Wei, Li, Sangaiah (b13) 2017; 83
Xin, Wang, Gao, Wipf, Wang (b41) 2016
Teti, Kenyon, Migliori, Moore (b18) 2022
G. Parpart, S. Risbud, G. Kenyon, Y. Watkins, Implementing and Benchmarking the Locally Competitive Algorithm on the Loihi 2 Neuromorphic Processor, in: Proceedings of the 2023 International Conference on Neuromorphic Systems, 2023, pp. 1–6.
Sambharya, Hall, Amos, Stellato (b38) 2023
Zhang, Hu, Hong, Zhang (b15) 2019; 15
Klaučo, Kalúz, Kvasnica (b39) 2019; 77
Rozell, Johnson, Baraniuk, Olshausen (b19) 2008; 20
Paiton (b32) 2019
J. Rick Chang, C.-L. Li, B. Poczos, B. Vijaya Kumar, A.C. Sankaranarayanan, One network to solve them all–solving linear inverse problems using deep projection models, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5888–5897.
Sjölund, Bånkestad (b40) 2022
Liang, Wang, Yu (b57) 2023; 96
Barlow (b1) 1961; 1
Ecke, Papp, Mallot (b8) 2021; 135
Li, Karpathy, Johnson (b49) 2017
Xiang, Dong, Yang (b29) 2021; 40
J. Zhang, B. Ghanem, ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1828–1837.
Xie, Girshick, Dollár, Tu, He (b54) 2017
Balavoine, Rozell, Romberg (b34) 2015; 63
K. Henke, M. Teti, G. Kenyon, B. Migliori, G. Kunde, Apples-to-spikes: The first detailed comparison of LASSO solutions generated by a spiking neuromorphic processor, in: Proceedings of the International Conference on Neuromorphic Systems 2022, 2022, pp. 1–8.
Calatroni, Perrinet, Prandi (b55) 2023; 19
Kim, Hannan, Kenyon (b14) 2018
Zagoruyko, Komodakis (b53) 2016
G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
Tibshirani (b36) 1996; 58
Sjölund (10.1016/j.neucom.2025.130291_b40) 2022
Zhang (10.1016/j.neucom.2025.130291_b31) 2015; 3
Xie (10.1016/j.neucom.2025.130291_b54) 2017
10.1016/j.neucom.2025.130291_b27
Davies (10.1016/j.neucom.2025.130291_b20) 2021; 109
Lecouat (10.1016/j.neucom.2025.130291_b17) 2020
10.1016/j.neucom.2025.130291_b21
10.1016/j.neucom.2025.130291_b22
Calatroni (10.1016/j.neucom.2025.130291_b55) 2023; 19
10.1016/j.neucom.2025.130291_b24
He (10.1016/j.neucom.2025.130291_b43) 2020; 68
Beyeler (10.1016/j.neucom.2025.130291_b7) 2019; 15
10.1016/j.neucom.2025.130291_b30
Dibbo (10.1016/j.neucom.2025.130291_b60) 2025
Ecke (10.1016/j.neucom.2025.130291_b8) 2021; 135
Beck (10.1016/j.neucom.2025.130291_b25) 2009; 2
Balavoine (10.1016/j.neucom.2025.130291_b34) 2015; 63
Monga (10.1016/j.neucom.2025.130291_b44) 2021; 38
Kim (10.1016/j.neucom.2025.130291_b14) 2018
Nickson (10.1016/j.neucom.2025.130291_b51) 2019
Barlow (10.1016/j.neucom.2025.130291_b1) 1961; 1
Xiang (10.1016/j.neucom.2025.130291_b29) 2021; 40
Soubies (10.1016/j.neucom.2025.130291_b58) 2015; 8
Field (10.1016/j.neucom.2025.130291_b2) 1994; 6
Krizhevsky (10.1016/j.neucom.2025.130291_b47) 2009
Parkhi (10.1016/j.neucom.2025.130291_b50) 2012
Zhang (10.1016/j.neucom.2025.130291_b28) 2020; 30
Dibbo (10.1016/j.neucom.2025.130291_b16) 2023
10.1016/j.neucom.2025.130291_b42
Barlow (10.1016/j.neucom.2025.130291_b3) 2001; 12
Paiton (10.1016/j.neucom.2025.130291_b32) 2019
Zagoruyko (10.1016/j.neucom.2025.130291_b53) 2016
Zhang (10.1016/j.neucom.2025.130291_b13) 2017; 83
Zhang (10.1016/j.neucom.2025.130291_b15) 2019; 15
Lundquist (10.1016/j.neucom.2025.130291_b11) 2016
Vonesch (10.1016/j.neucom.2025.130291_b26) 2007; 55
Sambharya (10.1016/j.neucom.2025.130291_b38) 2023
Xu (10.1016/j.neucom.2025.130291_b56) 2012; 23
Olshausen (10.1016/j.neucom.2025.130291_b4) 1996; 381
Rozell (10.1016/j.neucom.2025.130291_b35) 2007; Vol. 4
Tibshirani (10.1016/j.neucom.2025.130291_b36) 1996; 58
Klaučo (10.1016/j.neucom.2025.130291_b39) 2019; 77
Lang (10.1016/j.neucom.2025.130291_b46) 2023
Diamond (10.1016/j.neucom.2025.130291_b45) 2017
Coates (10.1016/j.neucom.2025.130291_b48) 2011
10.1016/j.neucom.2025.130291_b52
Lee (10.1016/j.neucom.2025.130291_b6) 2007; 20
Nguyen (10.1016/j.neucom.2025.130291_b33) 2019
Xin (10.1016/j.neucom.2025.130291_b41) 2016
Rigamonti (10.1016/j.neucom.2025.130291_b10) 2011
Liang (10.1016/j.neucom.2025.130291_b57) 2023; 96
Li (10.1016/j.neucom.2025.130291_b49) 2017
Boutin (10.1016/j.neucom.2025.130291_b59) 2021; 17
Li (10.1016/j.neucom.2025.130291_b23) 2009; 50
Takaghaj (10.1016/j.neucom.2025.130291_b61) 2024
Lee (10.1016/j.neucom.2025.130291_b5) 2006
Rozell (10.1016/j.neucom.2025.130291_b19) 2008; 20
Lundquist (10.1016/j.neucom.2025.130291_b12) 2017
Dibbo (10.1016/j.neucom.2025.130291_b62) 2024
Hyvärinen (10.1016/j.neucom.2025.130291_b37) 2000; 13
Barlow (10.1016/j.neucom.2025.130291_b9) 1987
Teti (10.1016/j.neucom.2025.130291_b18) 2022
References_xml – start-page: 215
  year: 2011
  end-page: 223
  ident: b48
  article-title: An analysis of single-layer networks in unsupervised feature learning
  publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
– year: 2022
  ident: b40
  article-title: Graph-based neural acceleration for nonnegative matrix factorization
– volume: 20
  start-page: 2526
  year: 2008
  end-page: 2563
  ident: b19
  article-title: Sparse coding via thresholding and local competition in neural circuits
  publication-title: Neural Comput.
– start-page: 238
  year: 2020
  end-page: 254
  ident: b17
  article-title: Fully trainable and interpretable non-local sparse models for image restoration
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16
– volume: 77
  start-page: 1
  year: 2019
  end-page: 8
  ident: b39
  article-title: Machine learning-based warm starting of active set methods in embedded model predictive control
  publication-title: Eng. Appl. Artif. Intell.
– volume: 8
  start-page: 1607
  year: 2015
  end-page: 1639
  ident: b58
  article-title: A continuous exact
  publication-title: SIAM J. Imaging Sci.
– volume: 38
  start-page: 18
  year: 2021
  end-page: 44
  ident: b44
  article-title: Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing
  publication-title: IEEE Signal Process. Mag.
– volume: 63
  start-page: 3165
  year: 2015
  end-page: 3176
  ident: b34
  article-title: Discrete and continuous-time soft-thresholding for dynamic signal recovery
  publication-title: IEEE Trans. Signal Process.
– start-page: 395
  year: 1987
  end-page: 406
  ident: b9
  article-title: Cerebral cortex as model builder
  publication-title: Matters of Intelligence: Conceptual Structures in Cognitive Neuroscience
– volume: 109
  start-page: 911
  year: 2021
  end-page: 934
  ident: b20
  article-title: Advancing neuromorphic computing with loihi: A survey of results and outlook
  publication-title: Proc. IEEE
– start-page: 4340
  year: 2016
  end-page: 4348
  ident: b41
  article-title: Maximal sparsity with deep networks?
  publication-title: Advances in Neural Information Processing Systems
– year: 2017
  ident: b12
  article-title: Sparse coding on stereo video for object detection
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  ident: b37
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
– volume: 15
  year: 2019
  ident: b15
  article-title: A hierarchical sparse coding model predicts acoustic feature encoding in both auditory midbrain and cortex
  publication-title: PLoS Comput. Biol.
– start-page: 1
  year: 2019
  end-page: 4
  ident: b33
  article-title: NP-hardness of
  publication-title: 2019 13th International Conference on Sampling Theory and Applications
– start-page: 117
  year: 2025
  end-page: 136
  ident: b60
  article-title: Improving robustness to model inversion attacks via sparse coding architectures
  publication-title: European Conference on Computer Vision
– year: 2017
  ident: b49
  article-title: Tiny ImageNet visual recognition challenge
– year: 2018
  ident: b14
  article-title: Deep sparse coding for invariant multimodal halle berry neurons
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 68
  start-page: 1702
  year: 2020
  end-page: 1715
  ident: b43
  article-title: Model-driven deep learning for MIMO detection
  publication-title: IEEE Trans. Signal Process.
– volume: 19
  year: 2023
  ident: b55
  article-title: Beyond l1 sparse coding in V1
  publication-title: PLoS Comput. Biol.
– year: 2023
  ident: b16
  article-title: LCANets++: Robust audio classification using multi-layer neural networks with lateral competition
– volume: 6
  start-page: 559
  year: 1994
  end-page: 601
  ident: b2
  article-title: What is the goal of sensory coding?
  publication-title: Neural Comput.
– start-page: 1492
  year: 2017
  end-page: 1500
  ident: b54
  article-title: Aggregated residual transformations for deep neural networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b36
  article-title: Regression Shrinkage and Selection Via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– year: 2017
  ident: b45
  article-title: Unrolled optimization with deep priors
– volume: 15
  year: 2019
  ident: b7
  article-title: Neural correlates of sparse coding and dimensionality reduction
  publication-title: PLoS Comput. Biol.
– year: 2019
  ident: b51
  article-title: Breathtaking kalalau valley scenic view
– volume: 12
  start-page: 241
  year: 2001
  end-page: 253
  ident: b3
  article-title: Redundancy reduction revisited
  publication-title: Netw., Comput. Neural Syst.
– volume: 17
  year: 2021
  ident: b59
  article-title: Sparse deep predictive coding captures contour integration capabilities of the early visual system
  publication-title: PLoS Comput. Biol.
– reference: G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
– year: 2023
  ident: b38
  article-title: Learning to warm-start fixed-point optimization algorithms
– start-page: 21232
  year: 2022
  end-page: 21252
  ident: b18
  article-title: LCANets: Lateral competition improves robustness against corruption and attack
  publication-title: International Conference on Machine Learning
– reference: K. Henke, M. Teti, G. Kenyon, B. Migliori, G. Kunde, Apples-to-spikes: The first detailed comparison of LASSO solutions generated by a spiking neuromorphic processor, in: Proceedings of the International Conference on Neuromorphic Systems 2022, 2022, pp. 1–8.
– volume: 30
  start-page: 1487
  year: 2020
  end-page: 1500
  ident: b28
  article-title: AMP-Net: Denoising-based deep unfolding for compressive image sensing
  publication-title: IEEE Trans. Image Process.
– volume: 381
  start-page: 607
  year: 1996
  end-page: 609
  ident: b4
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
– year: 2016
  ident: b53
  article-title: Wide residual networks
– year: 2019
  ident: b32
  article-title: Analysis and applications of the Locally Competitive Algorithm
– reference: J. Rick Chang, C.-L. Li, B. Poczos, B. Vijaya Kumar, A.C. Sankaranarayanan, One network to solve them all–solving linear inverse problems using deep projection models, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5888–5897.
– volume: 96
  start-page: 61
  year: 2023
  ident: b57
  article-title: A reduced half thresholding algorithm
  publication-title: J. Sci. Comput.
– start-page: 129
  year: 2024
  end-page: 133
  ident: b62
  article-title: LCANets++: Robust audio classification using multi-layer neural networks with lateral competition
  publication-title: 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops
– year: 2011
  ident: b10
  article-title: Are sparse representations really relevant for image classification?
  publication-title: CVPR 2011
– volume: 23
  start-page: 1013
  year: 2012
  end-page: 1027
  ident: b56
  article-title: L
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 135
  start-page: 158
  year: 2021
  end-page: 176
  ident: b8
  article-title: Exploitation of image statistics with sparse coding in the case of stereo vision
  publication-title: Neural Netw.
– start-page: 180
  year: 2023
  end-page: 193
  ident: b46
  article-title: Generating sparse counterfactual explanations for multivariate time series
  publication-title: International Conference on Artificial Neural Networks
– reference: J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learning for sparse coding, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 689–696.
– start-page: 3498
  year: 2012
  end-page: 3505
  ident: b50
  article-title: Cats and dogs
  publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 3
  start-page: 490
  year: 2015
  end-page: 530
  ident: b31
  article-title: A survey of sparse representation: algorithms and applications
  publication-title: IEEE Access
– volume: 50
  start-page: 65
  year: 2009
  end-page: 79
  ident: b23
  article-title: Compressed sensing and matrix completion with uniform uncertainty principle
  publication-title: SIAM Rev.
– year: 2016
  ident: b11
  article-title: Sparse encoding of binocular images for depth inference
  publication-title: 2016 IEEE Southwest Symposium on Image Analysis and Interpretation
– start-page: 801
  year: 2006
  end-page: 808
  ident: b5
  article-title: Efficient sparse coding algorithms
  publication-title: Advances in Neural Information Processing Systems
– reference: K. Gregor, Y. LeCun, Learning fast approximations of sparse coding, in: Proceedings of the 27th International Conference on Machine Learning, ICML- 10, 2010, pp. 399–406.
– year: 2009
  ident: b47
  article-title: Learning multiple layers of features from tiny images
– reference: J. Zhang, B. Ghanem, ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1828–1837.
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: b25
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
– volume: Vol. 4
  start-page: IV
  year: 2007
  end-page: 169
  ident: b35
  article-title: Locally competitive algorithms for sparse approximation
  publication-title: 2007 IEEE International Conference on Image Processing
– volume: 55
  start-page: 482
  year: 2007
  end-page: 492
  ident: b26
  article-title: A generalized forward-backward splitting algorithm for sparse signal recovery
  publication-title: IEEE Trans. Signal Process.
– reference: G. Parpart, S. Risbud, G. Kenyon, Y. Watkins, Implementing and Benchmarking the Locally Competitive Algorithm on the Loihi 2 Neuromorphic Processor, in: Proceedings of the 2023 International Conference on Neuromorphic Systems, 2023, pp. 1–6.
– volume: 40
  start-page: 1329
  year: 2021
  end-page: 1339
  ident: b29
  article-title: FISTA-net: Learning a fast iterative shrinkage thresholding network for inverse problems in imaging
  publication-title: IEEE Trans. Med. Imaging
– year: 2024
  ident: b61
  article-title: Exemplar LCA-decoder: A scalable framework for on-chip learning
– volume: 1
  start-page: 217
  year: 1961
  end-page: 233
  ident: b1
  article-title: Possible principles underlying the transformation of sensory messages
  publication-title: Sens. Commun.
– volume: 20
  year: 2007
  ident: b6
  article-title: Sparse deep belief net model for visual area V2
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 83
  start-page: 44
  year: 2017
  end-page: 51
  ident: b13
  article-title: Medical image classification based on multi-scale non-negative sparse coding
  publication-title: Artif. Intell. Med.
– ident: 10.1016/j.neucom.2025.130291_b22
  doi: 10.1145/3589737.3605973
– year: 2017
  ident: 10.1016/j.neucom.2025.130291_b49
– start-page: 801
  year: 2006
  ident: 10.1016/j.neucom.2025.130291_b5
  article-title: Efficient sparse coding algorithms
– start-page: 395
  year: 1987
  ident: 10.1016/j.neucom.2025.130291_b9
  article-title: Cerebral cortex as model builder
– year: 2023
  ident: 10.1016/j.neucom.2025.130291_b16
– volume: 20
  start-page: 2526
  issue: 10
  year: 2008
  ident: 10.1016/j.neucom.2025.130291_b19
  article-title: Sparse coding via thresholding and local competition in neural circuits
  publication-title: Neural Comput.
  doi: 10.1162/neco.2008.03-07-486
– volume: 12
  start-page: 241
  issue: 3
  year: 2001
  ident: 10.1016/j.neucom.2025.130291_b3
  article-title: Redundancy reduction revisited
  publication-title: Netw., Comput. Neural Syst.
  doi: 10.1080/net.12.3.241.253
– year: 2022
  ident: 10.1016/j.neucom.2025.130291_b40
– year: 2009
  ident: 10.1016/j.neucom.2025.130291_b47
– start-page: 3498
  year: 2012
  ident: 10.1016/j.neucom.2025.130291_b50
  article-title: Cats and dogs
– volume: 40
  start-page: 1329
  issue: 5
  year: 2021
  ident: 10.1016/j.neucom.2025.130291_b29
  article-title: FISTA-net: Learning a fast iterative shrinkage thresholding network for inverse problems in imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3054167
– year: 2016
  ident: 10.1016/j.neucom.2025.130291_b53
– start-page: 129
  year: 2024
  ident: 10.1016/j.neucom.2025.130291_b62
  article-title: LCANets++: Robust audio classification using multi-layer neural networks with lateral competition
– volume: 381
  start-page: 607
  issue: 6583
  year: 1996
  ident: 10.1016/j.neucom.2025.130291_b4
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– volume: 19
  issue: 9
  year: 2023
  ident: 10.1016/j.neucom.2025.130291_b55
  article-title: Beyond l1 sparse coding in V1
  publication-title: PLoS Comput. Biol.
– volume: 68
  start-page: 1702
  year: 2020
  ident: 10.1016/j.neucom.2025.130291_b43
  article-title: Model-driven deep learning for MIMO detection
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2976585
– volume: 50
  start-page: 65
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2025.130291_b23
  article-title: Compressed sensing and matrix completion with uniform uncertainty principle
  publication-title: SIAM Rev.
– start-page: 215
  year: 2011
  ident: 10.1016/j.neucom.2025.130291_b48
  article-title: An analysis of single-layer networks in unsupervised feature learning
– year: 2011
  ident: 10.1016/j.neucom.2025.130291_b10
  article-title: Are sparse representations really relevant for image classification?
– year: 2017
  ident: 10.1016/j.neucom.2025.130291_b12
– ident: 10.1016/j.neucom.2025.130291_b27
– volume: 20
  year: 2007
  ident: 10.1016/j.neucom.2025.130291_b6
  article-title: Sparse deep belief net model for visual area V2
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 23
  start-page: 1013
  issue: 7
  year: 2012
  ident: 10.1016/j.neucom.2025.130291_b56
  article-title: L{1/2} regularization: A thresholding representation theory and a fast solver
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2197412
– volume: 17
  issue: 1
  year: 2021
  ident: 10.1016/j.neucom.2025.130291_b59
  article-title: Sparse deep predictive coding captures contour integration capabilities of the early visual system
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008629
– volume: 55
  start-page: 482
  issue: 21
  year: 2007
  ident: 10.1016/j.neucom.2025.130291_b26
  article-title: A generalized forward-backward splitting algorithm for sparse signal recovery
  publication-title: IEEE Trans. Signal Process.
– ident: 10.1016/j.neucom.2025.130291_b21
  doi: 10.1145/3546790.3546811
– year: 2018
  ident: 10.1016/j.neucom.2025.130291_b14
  article-title: Deep sparse coding for invariant multimodal halle berry neurons
– year: 2017
  ident: 10.1016/j.neucom.2025.130291_b45
– volume: 15
  issue: 2
  year: 2019
  ident: 10.1016/j.neucom.2025.130291_b15
  article-title: A hierarchical sparse coding model predicts acoustic feature encoding in both auditory midbrain and cortex
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006766
– year: 2019
  ident: 10.1016/j.neucom.2025.130291_b51
– volume: Vol. 4
  start-page: IV
  year: 2007
  ident: 10.1016/j.neucom.2025.130291_b35
  article-title: Locally competitive algorithms for sparse approximation
– start-page: 180
  year: 2023
  ident: 10.1016/j.neucom.2025.130291_b46
  article-title: Generating sparse counterfactual explanations for multivariate time series
– volume: 63
  start-page: 3165
  issue: 12
  year: 2015
  ident: 10.1016/j.neucom.2025.130291_b34
  article-title: Discrete and continuous-time soft-thresholding for dynamic signal recovery
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2420535
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.neucom.2025.130291_b36
  article-title: Regression Shrinkage and Selection Via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– start-page: 1492
  year: 2017
  ident: 10.1016/j.neucom.2025.130291_b54
  article-title: Aggregated residual transformations for deep neural networks
– volume: 38
  start-page: 18
  issue: 2
  year: 2021
  ident: 10.1016/j.neucom.2025.130291_b44
  article-title: Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2020.3016905
– year: 2023
  ident: 10.1016/j.neucom.2025.130291_b38
– volume: 135
  start-page: 158
  year: 2021
  ident: 10.1016/j.neucom.2025.130291_b8
  article-title: Exploitation of image statistics with sparse coding in the case of stereo vision
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.12.016
– ident: 10.1016/j.neucom.2025.130291_b30
  doi: 10.1109/CVPR.2018.00196
– start-page: 4340
  year: 2016
  ident: 10.1016/j.neucom.2025.130291_b41
  article-title: Maximal sparsity with deep networks?
– volume: 96
  start-page: 61
  issue: 2
  year: 2023
  ident: 10.1016/j.neucom.2025.130291_b57
  article-title: A reduced half thresholding algorithm
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-023-02250-1
– ident: 10.1016/j.neucom.2025.130291_b24
  doi: 10.1145/1553374.1553463
– volume: 6
  start-page: 559
  issue: 4
  year: 1994
  ident: 10.1016/j.neucom.2025.130291_b2
  article-title: What is the goal of sensory coding?
  publication-title: Neural Comput.
  doi: 10.1162/neco.1994.6.4.559
– volume: 77
  start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2025.130291_b39
  article-title: Machine learning-based warm starting of active set methods in embedded model predictive control
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.09.014
– year: 2024
  ident: 10.1016/j.neucom.2025.130291_b61
– start-page: 21232
  year: 2022
  ident: 10.1016/j.neucom.2025.130291_b18
  article-title: LCANets: Lateral competition improves robustness against corruption and attack
– volume: 8
  start-page: 1607
  issue: 3
  year: 2015
  ident: 10.1016/j.neucom.2025.130291_b58
  article-title: A continuous exact ∖ell_0 penalty (CEL0) for least squares regularized problem
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/151003714
– volume: 15
  issue: 6
  year: 2019
  ident: 10.1016/j.neucom.2025.130291_b7
  article-title: Neural correlates of sparse coding and dimensionality reduction
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006908
– volume: 13
  start-page: 411
  issue: 4–5
  year: 2000
  ident: 10.1016/j.neucom.2025.130291_b37
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– ident: 10.1016/j.neucom.2025.130291_b42
  doi: 10.1109/ICCV.2017.627
– volume: 83
  start-page: 44
  year: 2017
  ident: 10.1016/j.neucom.2025.130291_b13
  article-title: Medical image classification based on multi-scale non-negative sparse coding
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2017.05.006
– ident: 10.1016/j.neucom.2025.130291_b52
  doi: 10.1109/CVPR.2017.243
– year: 2019
  ident: 10.1016/j.neucom.2025.130291_b32
– volume: 109
  start-page: 911
  issue: 5
  year: 2021
  ident: 10.1016/j.neucom.2025.130291_b20
  article-title: Advancing neuromorphic computing with loihi: A survey of results and outlook
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3067593
– volume: 3
  start-page: 490
  year: 2015
  ident: 10.1016/j.neucom.2025.130291_b31
  article-title: A survey of sparse representation: algorithms and applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2430359
– start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2025.130291_b33
  article-title: NP-hardness of ℓ0 minimization problems: revision and extension to the non-negative setting
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2025.130291_b25
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– start-page: 238
  year: 2020
  ident: 10.1016/j.neucom.2025.130291_b17
  article-title: Fully trainable and interpretable non-local sparse models for image restoration
– start-page: 117
  year: 2025
  ident: 10.1016/j.neucom.2025.130291_b60
  article-title: Improving robustness to model inversion attacks via sparse coding architectures
– year: 2016
  ident: 10.1016/j.neucom.2025.130291_b11
  article-title: Sparse encoding of binocular images for depth inference
– volume: 30
  start-page: 1487
  year: 2020
  ident: 10.1016/j.neucom.2025.130291_b28
  article-title: AMP-Net: Denoising-based deep unfolding for compressive image sensing
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3044472
– volume: 1
  start-page: 217
  issue: 01
  year: 1961
  ident: 10.1016/j.neucom.2025.130291_b1
  article-title: Possible principles underlying the transformation of sensory messages
  publication-title: Sens. Commun.
SSID ssj0017129
Score 2.4484563
Snippet The locally competitive algorithm (LCA) can solve sparse coding problems across a wide range of use cases. Recently, convolution-based LCA approaches have been...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 130291
SubjectTerms Computer vision
Convolutional sparse coding
Locally competitive algorithms
Title WARP-LCA: Efficient convolutional sparse coding with Locally Competitive Algorithm
URI https://dx.doi.org/10.1016/j.neucom.2025.130291
Volume 640
WOSCitedRecordID wos001487662200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg44EXvhGDgfzAa1A-XMfZWzR1G6iapm2IvkX2xUWburTqsql_Pne2k3YUIUDiJYrcxK7ufjqfL7-7Y-yjFqIG3AYiwO0uEjoRkbZGRELGwsiiToV1XUvG-cmJmkyK00Abu3HtBPKmUatVsfivqsYxVDalzv6FuvtJcQDvUel4RbXj9Y8U_608O43GBy5wPnIFIuhzP7HLw7KUIbLA8yzx1Os-FjumTW3mDQRlnhGjqJx9ny_xx-tNF9aV8wDXDCKEGcprqrZQE7TW1G3cHRujO0gc2bnLGOsdeISQM_-Hdna56kfBU4WOqFzkmo_T-hZ-5xa33LaDc4hUpMOeJxfCZ1spND4OiQ-ik3nPJEtfwmnLvPtIw9Wnxt4S14cWoXbWqW_49VPh7HOammZGLw8Papl4yHbSfFioAdspP48mX_qvTXmS-pqM4a90KZaOB7i91q9dmA235OIZexLOE7z0OHjOHtjmBXva9ergwXS_ZGcdLPZ5Dwp-DxTcg4J7UHACBQ-g4Bug4D0oXrGvh6OLg-Mo9NOIAA1zGynIjQJDHQCm0hTZME6nKdUnKmIZmxo9O9A6VnUGtZaQKU2dzHRip9JCltcme80GzbyxbxjPYpsoKWwCAoRFN3GoDch0CirWACrbZVEnomrhy6ZUHZ_wqvIirUiklRfpLss7OVbB9fMuXYWq_-2bb__5zXfs8Rqle2zQLm_te_YI7trLm-WHgJEffs2AQA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WARP-LCA%3A+Efficient+convolutional+sparse+coding+with+Locally+Competitive+Algorithm&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Kasenbacher%2C+Geoffrey&rft.au=Ehret%2C+Felix&rft.au=Ecke%2C+Gerrit&rft.au=Otte%2C+Sebastian&rft.date=2025-08-01&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.volume=640&rft_id=info:doi/10.1016%2Fj.neucom.2025.130291&rft.externalDocID=S0925231225009634
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon