Integrated deep learning-based IRACE and convolutional neural networks for chest X-ray image classification

When pre-trained models are applied directly to chest X-ray (CXR) images without appropriate adaptation, they frequently show problems like overfitting, limited generalization, or decreased SE to clinically relevant features because of the unique characteristics of medical data, such as class imbala...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 329; s. 114293
Hlavní autoři: Abdel Samee, Nagwan, Houssein, Essam H., Saber, Eman, Hu, Gang, Wang, Mingjing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 04.11.2025
Témata:
ISSN:0950-7051
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract When pre-trained models are applied directly to chest X-ray (CXR) images without appropriate adaptation, they frequently show problems like overfitting, limited generalization, or decreased SE to clinically relevant features because of the unique characteristics of medical data, such as class imbalance and domain-specific noise. Due to the discrepancy between natural image features (used during pre-training) and radiological image characteristics, studies have shown that such models may perform well on training data but poorly on unseen clinical samples. This study comprehensively evaluates the performance of the fine-tuning method using the Iterated Race for Automatic Algorithm Configuration (IRACE) technique on pre-trained models for several medical imaging CXRs. We select five well-known CNN architectures: MobileNet-v2, EfficientNet-b0, ResNet-50, DenseNet-121, and VGG-19, utilizing the IRACE technique for HPT classification of three CXR datasets. The experimental results indicate that the IRACE technique was generally effective across CXR images, producing noticeable improvements on all models. DenseNet-121 outperformed the other architectures across all metrics, achieving accuracies of 99.83 %, 99.98 %, and 99.87 % on the three CXR datasets, respectively. Additionally, we explored the model detection mechanism by interpreting the classification of radiological images using the Gradient-weighted Class Activation Mapping (Grad-CAM) with Layer-wise Relevance Propagation (LRP) approach for CXR imaging. The results obtained have provided information on how the model classifies CXR images, which can assist radiologists in identifying and evaluating visual characteristics.
AbstractList When pre-trained models are applied directly to chest X-ray (CXR) images without appropriate adaptation, they frequently show problems like overfitting, limited generalization, or decreased SE to clinically relevant features because of the unique characteristics of medical data, such as class imbalance and domain-specific noise. Due to the discrepancy between natural image features (used during pre-training) and radiological image characteristics, studies have shown that such models may perform well on training data but poorly on unseen clinical samples. This study comprehensively evaluates the performance of the fine-tuning method using the Iterated Race for Automatic Algorithm Configuration (IRACE) technique on pre-trained models for several medical imaging CXRs. We select five well-known CNN architectures: MobileNet-v2, EfficientNet-b0, ResNet-50, DenseNet-121, and VGG-19, utilizing the IRACE technique for HPT classification of three CXR datasets. The experimental results indicate that the IRACE technique was generally effective across CXR images, producing noticeable improvements on all models. DenseNet-121 outperformed the other architectures across all metrics, achieving accuracies of 99.83 %, 99.98 %, and 99.87 % on the three CXR datasets, respectively. Additionally, we explored the model detection mechanism by interpreting the classification of radiological images using the Gradient-weighted Class Activation Mapping (Grad-CAM) with Layer-wise Relevance Propagation (LRP) approach for CXR imaging. The results obtained have provided information on how the model classifies CXR images, which can assist radiologists in identifying and evaluating visual characteristics.
ArticleNumber 114293
Author Abdel Samee, Nagwan
Saber, Eman
Wang, Mingjing
Hu, Gang
Houssein, Essam H.
Author_xml – sequence: 1
  givenname: Nagwan
  orcidid: 0000-0001-5957-1383
  surname: Abdel Samee
  fullname: Abdel Samee, Nagwan
  email: nmabdelsamee@pnu.edu.sa
  organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
– sequence: 2
  givenname: Essam H.
  orcidid: 0000-0002-8127-7233
  surname: Houssein
  fullname: Houssein, Essam H.
  email: essam.halim@mu.edu.eg
  organization: Faculty of Computers and Information, Minia University, Minia, Egypt
– sequence: 3
  givenname: Eman
  surname: Saber
  fullname: Saber, Eman
  email: eng.eman_saber@s-mu.edu.eg
  organization: Faculty of Computers and Information, Minia University, Minia, Egypt
– sequence: 4
  givenname: Gang
  surname: Hu
  fullname: Hu, Gang
  email: hugang@xaut.edu.cn
  organization: Department of Applied Mathematics, Xi’an University of Technology, Xi’an, 710054, China
– sequence: 5
  givenname: Mingjing
  surname: Wang
  fullname: Wang, Mingjing
  email: wangmingjing.style@gmail.com
  organization: School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, 325000, China
BookMark eNp9kMFKAzEURbOoYFv9Axf5gRmTzEyT2QilVC0UBFFwF9KXNzXtmJRkWunfO3Vcu7rwHudyORMy8sEjIXec5Zzx2f0u3_uQzikXTFQ556WoixEZs7pimWQVvyaTlHaMMSG4GpP9yne4jaZDSy3igbZoond-m21M6m-r1_liSY23FII_hfbYueBNSz0e42903yHuE21CpPCJqaMfWTRn6r7MFim0JiXXODAX7IZcNaZNePuXU_L-uHxbPGfrl6fVYr7OQFSyyxRwrBQWSkgJdcOVFQzKRolSSaakrEX_5ahAmqKQIBj2OePNRnBb1lAXU1IOvRBDShEbfYj9nnjWnOmLJL3TgyR9kaQHST32MGDYbzs5jDqBQw9oXUTotA3u_4IfTY13HQ
Cites_doi 10.1093/gigascience/giab076
10.1109/MITP.2020.3036820
10.1016/j.bspc.2023.105546
10.3390/sym12040651
10.1016/j.dib.2020.106276
10.1023/A:1006556606079
10.18637/jss.v038.i08
10.1109/ACCESS.2020.3031384
10.1109/TKDE.2009.191
10.1109/ACCESS.2020.3041867
10.3390/electronics11172634
10.1109/ACCESS.2020.3016780
10.1186/s40537-020-00392-9
10.1145/1274000.1274102
10.1080/00051144.2023.2290737
10.1016/j.eswa.2017.09.022
10.3389/fmed.2020.608525
10.1016/j.cmpb.2019.06.023
10.1016/j.chaos.2021.110713
10.1016/j.ijsu.2020.02.034
10.3390/jpm12050680
10.1038/s41598-020-74539-2
10.1016/j.aej.2021.03.009
10.1111/exsy.13099
10.1016/j.cmpb.2020.105581
10.1002/acm2.14380
10.1016/j.eswa.2023.122129
10.1016/j.eswa.2020.114054
10.11591/eei.v12i3.4832
10.1371/journal.pone.0130140
10.1016/j.cell.2018.02.010
10.1016/j.chaos.2020.110170
10.2174/1573405616666200129095242
10.1016/j.bspc.2020.102365
10.1016/j.asoc.2020.106311
10.1109/ACCESS.2020.3010287
10.1007/978-3-662-05094-1
10.1016/j.cmpb.2020.105532
10.1007/s10044-021-00984-y
10.1007/s13721-023-00413-6
10.1016/j.compbiomed.2023.107789
10.3390/app12136448
10.1007/s10489-020-01829-7
10.1007/978-3-030-33128-3_1
10.1023/A:1026569813391
10.1287/opre.1050.0243
10.1259/bjr.20201263
10.1109/ACCESS.2022.3208882
10.1016/j.chaos.2020.109944
10.1609/aaai.v31i1.11231
10.1016/j.cmpb.2018.01.011
10.1016/j.artmed.2019.07.009
10.1016/j.patrec.2022.10.026
10.1109/TMI.2020.2993291
10.1016/j.mehy.2020.109761
10.1016/j.cell.2020.04.045
10.1049/cje.2018.08.005
10.1007/s13246-020-00865-4
10.1016/j.acra.2020.03.023
10.1016/j.compbiomed.2021.104375
10.1016/j.bbe.2021.11.004
10.1016/j.vlsi.2019.07.005
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2025.114293
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_knosys_2025_114293
S0950705125013346
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77I
77K
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
~HD
29L
9DU
AAQXK
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
M41
R2-
SBC
SET
UHS
WUQ
ID FETCH-LOGICAL-c257t-8c1e58e38277c9f18d20c4f8248708779258e1e8c7a337c20ea3361fb21d49c93
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001572483700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Thu Nov 27 00:39:36 EST 2025
Sat Nov 29 17:05:37 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Iterated race for automatic algorithm configuration (IRACE)
Pneumonia
Convolutional neural networks (CNNs)
Chest X-rays (CXR)
Deep learning (DL)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-8c1e58e38277c9f18d20c4f8248708779258e1e8c7a337c20ea3361fb21d49c93
ORCID 0000-0002-8127-7233
0000-0001-5957-1383
ParticipantIDs crossref_primary_10_1016_j_knosys_2025_114293
elsevier_sciencedirect_doi_10_1016_j_knosys_2025_114293
PublicationCentury 2000
PublicationDate 2025-11-04
PublicationDateYYYYMMDD 2025-11-04
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-04
  day: 04
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References S. Park, G. Kim, Y. Oh, J.B. Seo, S.M. Lee, J.H. Kim, S. Moon, J.-K. Lim, J.C. Ye, Vision transformer for Covid-19 CXR diagnosis using chest X-ray feature corpus, (2021). arXiv preprint
Tan, Le (bib0027) 2019
Panwar, Gupta, Siddiqui, Morales-Menendez, Singh (bib0033) 2020; 138
Ozturk, Talo, Yildirim, Baloglu, Yildirim, Acharya (bib0069) 2020; 87
Szegedy, Ioffe, Vanhoucke, Alemi (bib0088) 2017; 31
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0084) 2016
Feng, Jiang, Yang, Du, Li (bib0073) 2019; 69
Trujillo, Petrosino, Saggese (bib0128) 2018
Das, Kalam, Kumar, Sinha (bib0058) 2021; 144
Bharati, Pramanik (bib0103) 2020
P.K. Sharma, et al., COVIDXNet: a framework of deep learning classifiers to diagnose Covid-19 in X-ray images, (2020). MedRxiv
Cushnan, Bennett, Berka, Bertolli, Chopra, Dorgham, Favaro, Ganepola, Halling-Brown, Imreh (bib0035) 2021; 10
Raina, Battle, Lee, Packer, Ng (bib0079) 2007
Horry, Chakraborty, Paul, Ulhaq, Pradhan, Saha, Shukla (bib0009) 2020; 8
T. Bartz-Beielstein, M. Preuss, Experimental research in evolutionary computation, in Proceedings of the 9th annual conference companion on genetic and evolutionary computation, 2007, pp. 3001–3020.
Adenso-Diaz, Laguna (bib0018) 2006; 54
Stephen, Sain, Maduh, Jeong (bib0111) 2019; 2019
Asiri, Hussain, Al Adel, Alzaidi (bib0015) 2019; 99
Mabrouk, Redondo, Dahou, Elaziz, Kayed (bib0052) 2022; 12
Mishra, Parashar, Kukker, Rao, Srivastava, Anahita, Mishra, Kavimandan (bib0124) 2024
.
Nishio, Noguchi, Matsuo, Murakami (bib0055) 2020; 10
Rahman, Khandakar, Kadir, Islam, Islam, Mazhar, Hamid, Islam, Kashem, Mahbub (bib0041) 2020; 8
A.E. Eiben, J.E. Smith, Introduction to evolutionary computing, natural computing, (2003)
Xiong, He (bib0050) 2023; 12612
I. Redwanul, Covid pneumonia dataset, (2022) Kaggle
Chollet (bib0087) 2017
H. Tian, B. Zhang, Z. Zhang, Z. Xu, L. Jin, Y. Bian, J. Wu, Densenet model incorporating hybrid attention mechanisms and clinical features for pancreatic cystic tumor classification, 2024, p. 14380.
D. Kermany, Labeled optical coherence tomography (OCT) and chest X-ray images for classification. Mendeley data (2018)
Karar, Alsunaydi, Albusaymi, Alotaibi (bib0029) 2021; 60
Pereira, Bertolini, Teixeira, Jr, Costa (bib0065) 2020; 194
He, Zhang, Ren, Sun (bib0026) 2016
Razmjooy, Ashourian, Karimifard, Estrela, Loschi, Do, Nascimento (bib0101) 2020; 16
Dokun, John-Otumu, Eze, Ikerionwu, Etus, Nwanga, Okonkwo (bib0125) 2024; 9
Coy, Golden, Runger, Wasil (bib0019) 2001; 7
Snoek, Larochelle, Adams (bib0094) 2012
Norval, Wang, Sun (bib0046) 2021; 12
Pan, Yang (bib0077) 2009; 22
Mowery (bib0102) 2011; 37
Amara, Blake, Sinclair, Blazin, Gavrilov, Markovic, Hrnjak, Boukas, Ziakas, Cheer (bib0005) 2020
Huang, Ding, Razmjooy (bib0100) 2024; 87
Jackson (bib0092) 2011; 38
Gao, Fan, Jiang, Han (bib0081) 2008
Khan, Shah, Bhat (bib0002) 2020; 196
Ismael, Şengür (bib0053) 2021; 164
Sohrabi, Alsafi, O’neill, Khan, Kerwan, Al-Jabir, Iosifidis, Agha (bib0001) 2020; 76
Ayan, Ünver (bib0051) 2019
Zoph, Vasudevan, Shlens, Le (bib0090) 2018
Saeed, Oleiwi (bib0060) 2023
P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya, et al., CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning, (2017)
Guo, Jiang, Bi (bib0074) 2018; 27
Shamrat, Azam, Karim, Islam, Tasnim, Ghosh, Boer (bib0120) 2022; 12
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib0107) 2017
Kermany, Goldbaum, Cai, Valentim, Liang, Baxter, Mckeown, Yang, Wu, Yan (bib0110) 2018; 172
Hutter, Hoos, Leyton-Brown (bib0021) 2011
Carvalho, Spolaôr, Cherman, Monard (bib0072) 2014
Maron, Moore (bib0091) 1997; 11
S. Kumar, Covid19-pneumonia-normal chest X-ray images, (2022). Mendeley Data
Madani, Moradi, Karargyris, Syeda-Mahmood (bib0109) 2018; 10574
Hijazi, Yang, Alfred, Mahdin, Yaakob (bib0049) 2018; 10
Abbas, Abdelsamea, Gaber (bib0034) 2021; 51
Chhikara, Singh, Gupta, Bhatia (bib0012) 2020
Chmielewski, Kozera, owski (bib0048) 2020; 12334
U. Sait, G.L. KV, S.P. Prajapati, R. Bhaumik, T. Kumar, S. Shivakumar, K. Bhalla, Curated dataset for COVID-19 posterior-anterior chest radiography imagesMendeley data, (X-Rays) (2022)
Talukder, Layek, Kazi, Uddin, Aryal (bib0126) 2024; 168
Chougrad, Zouaki, Alheyane (bib0016) 2018; 157
Hariri, Avşar (bib0122) 2023; 12
Pal, Sankarasubbu (bib0008) 2021
Argyriou, Evgeniou, Pontil (bib0078) 2006; 19
Munadi, Muchtar, Maulina, Pradhan (bib0040) 2020; 8
Huang, Liu, Maaten, Weinberger (bib0025) 2017
Abbas, Abdelsamea, Gaber (bib0064) 2021; 51
Menegola, Fornaciali, Pires, Bittencourt, Avila, Valle (bib0014) 2017
Gunraj, Wang, Wong (bib0036) 2020; 7
Islam, Islam, Asraf (bib0068) 2020; 20
Hassantabar, Ahmadi, Sharifi (bib0032) 2020; 140
Wang, Nie, Wang, Xu, Huang, Xu (bib0121) 2023
Urooj, Suchitra, Krishnasamy, Sharma, Pathak (bib0038) 2022; 10
Miller, Bhattacharyya, Miller (bib0003) 2020; 32
M. Farooq, A. Hafeez, Covid-ResNet: a deep learning framework for screening of Covid19 from radiographs, (2020)
Nannen, Eiben (bib0023) 2006
Zhang, Liu, Shen, Li, Sang, Wu, Zha, Liang, Wang, Wang (bib0070) 2020; 181
Salehi, Mohammadi, Ghaffari, Sadighi, Reiazi (bib0116) 2021; 94
J. Redmon, Darknet: open source neural networks in C, (2016)
Ansótegui, Sellmann, Tierney (bib0022) 2009
Chowdhury, Rahman, Khandakar, Mazhar, Mahbub, Islam, Khan, Iqbal, Al-Emadi, Reaz (bib0067) 2020; 8
Krizhevsky, Sutskever, Hinton (bib0082) 2012; 25
Hossain, Iqbal, Islam, Akhtar, Sarker (bib0118) 2022; 30
Shimja, Kartheeban (bib0042) 2024; 65
Liang, Zheng (bib0113) 2020; 187
Asif, Wenhui, Amjad, Jin, Tao, Jinhai (bib0123) 2023; 40
X. Zhang, H. Huang, D. Zhang, S. Zhuang, S. Han, P. Lai, H. Liu, Cross- dataset generalization in deep learning, 20192024.
Wan, Zeiler, Zhang, Cun, Fergus (bib0076) 2013
D. Choi, On empirical comparisons of optimizers for deep learning, (2019)
Dash, Mohapatra (bib0119) 2022
Shorten, Khoshgoftaar, Furht (bib0007) 2021; 8
Narin, Kaya, Pamuk (bib0117) 2021; 24
F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, SqueezeNet: alexnet-level accuracy with 50
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014
fewer parameters and, 5MB model size, (2016)
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0083) 2015
Kora, Ooi, Faust, Raghavendra, Gudigar, Chan, Meenakshi, Swaraja, Plawiak, Acharya (bib0013) 2022; 42
Saeed, Oleiwi (bib0059) 2023; 12
Birattari, Stützle, Paquete, Varrentrapp (bib0017) 2002; 2
Ahmad (bib0004) 2020; 20
Singh, Pujar, Kumar, Bhagyalalitha, Akshatha, Abuhaija, Alsoud, Abualigah, Beeraka, Gandomi (bib0045) 2022; 11
Rahman, Mitra, Redwan (bib0039) 2020
Ucar, Korkmaz (bib0112) 2020; 140
Hu, Deng, Huang, Xia, Zhou (bib0030) 2020; 27
Vats, Sharma, Singh, Katti, Ariffin, Ahmad, Ahmadian, Salahshour (bib0043) 2024; 238
Lawrence, Platt (bib0080) 2004
Milani (bib0010) 2017
ś, Moura, Novo, Ortega (bib0047) 2022; 164
Zhang, Li, Nado, Martens, Sachdeva, Dahl, Shallue, Grosse (bib0105) 2019; 32
Dong, Zhao, Wu, Chang (bib0011) 2020; 93
awiak (bib0075) 2018; 92
Zhang, Zhou, Lin, Sun (bib0089) 2018
Rehman, Saba, Tariq, Ayesha (bib0006) 2021; 23
Wang, Lin, Wong (bib0054) 2020; 10
Loey, Smarandache, Khalifa (bib0066) 2020; 12
Bergstra, Bengio (bib0093) 2012; 13
Bach, Binder, Montavon, Klauschen, Müller, Samek (bib0108) 2015; 10
Monshi, Poon, Chung, Monshi (bib0056) 2021; 133
Oh, Park, Ye (bib0063) 2020; 39
Ikram, Javed, Rizwan, Abid, Crichigno, Srivastava (bib0037) 2021
Nayak, Nayak, Sinha, Arora, Pachori (bib0114) 2021; 64
Apostolopoulos, Mpesiana (bib0062) 2020; 43
nez, Dubois-Lacoste, Cáceres, Birattari, Stützle (bib0024) 2016; 3
Abraham, Mohan, John, Ramachandran (bib0044) 2023; 31
Chan, Samala, Hadjiiski, Zhou (bib0096) 2020
Hariri (10.1016/j.knosys.2025.114293_bib0122) 2023; 12
Shorten (10.1016/j.knosys.2025.114293_bib0007) 2021; 8
Zhang (10.1016/j.knosys.2025.114293_bib0089) 2018
Loey (10.1016/j.knosys.2025.114293_bib0066) 2020; 12
Horry (10.1016/j.knosys.2025.114293_bib0009) 2020; 8
Liang (10.1016/j.knosys.2025.114293_bib0113) 2020; 187
Chhikara (10.1016/j.knosys.2025.114293_bib0012) 2020
Bach (10.1016/j.knosys.2025.114293_bib0108) 2015; 10
Munadi (10.1016/j.knosys.2025.114293_bib0040) 2020; 8
10.1016/j.knosys.2025.114293_bib0099
10.1016/j.knosys.2025.114293_bib0098
awiak (10.1016/j.knosys.2025.114293_bib0075) 2018; 92
10.1016/j.knosys.2025.114293_bib0097
10.1016/j.knosys.2025.114293_bib0095
Gunraj (10.1016/j.knosys.2025.114293_bib0036) 2020; 7
Ansótegui (10.1016/j.knosys.2025.114293_bib0022) 2009
Stephen (10.1016/j.knosys.2025.114293_bib0111) 2019; 2019
Wan (10.1016/j.knosys.2025.114293_bib0076) 2013
Rahman (10.1016/j.knosys.2025.114293_bib0041) 2020; 8
Hossain (10.1016/j.knosys.2025.114293_bib0118) 2022; 30
Zhang (10.1016/j.knosys.2025.114293_bib0070) 2020; 181
Mishra (10.1016/j.knosys.2025.114293_bib0124) 2024
Karar (10.1016/j.knosys.2025.114293_bib0029) 2021; 60
Narin (10.1016/j.knosys.2025.114293_bib0117) 2021; 24
Salehi (10.1016/j.knosys.2025.114293_bib0116) 2021; 94
Argyriou (10.1016/j.knosys.2025.114293_bib0078) 2006; 19
10.1016/j.knosys.2025.114293_bib0086
10.1016/j.knosys.2025.114293_bib0085
Nannen (10.1016/j.knosys.2025.114293_bib0023) 2006
Ismael (10.1016/j.knosys.2025.114293_bib0053) 2021; 164
Ozturk (10.1016/j.knosys.2025.114293_bib0069) 2020; 87
Birattari (10.1016/j.knosys.2025.114293_bib0017) 2002; 2
10.1016/j.knosys.2025.114293_bib0127
Abbas (10.1016/j.knosys.2025.114293_bib0064) 2021; 51
Pal (10.1016/j.knosys.2025.114293_bib0008) 2021
Xiong (10.1016/j.knosys.2025.114293_bib0050) 2023; 12612
Das (10.1016/j.knosys.2025.114293_bib0058) 2021; 144
Razmjooy (10.1016/j.knosys.2025.114293_bib0101) 2020; 16
Dong (10.1016/j.knosys.2025.114293_bib0011) 2020; 93
Ahmad (10.1016/j.knosys.2025.114293_bib0004) 2020; 20
10.1016/j.knosys.2025.114293_bib0031
Lawrence (10.1016/j.knosys.2025.114293_bib0080) 2004
Szegedy (10.1016/j.knosys.2025.114293_bib0083) 2015
Dash (10.1016/j.knosys.2025.114293_bib0119) 2022
Cushnan (10.1016/j.knosys.2025.114293_bib0035) 2021; 10
Chollet (10.1016/j.knosys.2025.114293_bib0087) 2017
Abraham (10.1016/j.knosys.2025.114293_bib0044) 2023; 31
Zhang (10.1016/j.knosys.2025.114293_bib0105) 2019; 32
Miller (10.1016/j.knosys.2025.114293_bib0003) 2020; 32
Hassantabar (10.1016/j.knosys.2025.114293_bib0032) 2020; 140
Ayan (10.1016/j.knosys.2025.114293_bib0051) 2019
Bergstra (10.1016/j.knosys.2025.114293_bib0093) 2012; 13
Raina (10.1016/j.knosys.2025.114293_bib0079) 2007
10.1016/j.knosys.2025.114293_bib0020
Krizhevsky (10.1016/j.knosys.2025.114293_bib0082) 2012; 25
Selvaraju (10.1016/j.knosys.2025.114293_bib0107) 2017
Ucar (10.1016/j.knosys.2025.114293_bib0112) 2020; 140
Wang (10.1016/j.knosys.2025.114293_bib0054) 2020; 10
Madani (10.1016/j.knosys.2025.114293_bib0109) 2018; 10574
Szegedy (10.1016/j.knosys.2025.114293_bib0084) 2016
10.1016/j.knosys.2025.114293_bib0028
Dokun (10.1016/j.knosys.2025.114293_bib0125) 2024; 9
Pereira (10.1016/j.knosys.2025.114293_bib0065) 2020; 194
Carvalho (10.1016/j.knosys.2025.114293_bib0072) 2014
Singh (10.1016/j.knosys.2025.114293_bib0045) 2022; 11
Kermany (10.1016/j.knosys.2025.114293_bib0110) 2018; 172
Huang (10.1016/j.knosys.2025.114293_bib0100) 2024; 87
Nishio (10.1016/j.knosys.2025.114293_bib0055) 2020; 10
Kora (10.1016/j.knosys.2025.114293_bib0013) 2022; 42
Mabrouk (10.1016/j.knosys.2025.114293_bib0052) 2022; 12
Vats (10.1016/j.knosys.2025.114293_bib0043) 2024; 238
10.1016/j.knosys.2025.114293_bib0057
Asif (10.1016/j.knosys.2025.114293_bib0123) 2023; 40
Urooj (10.1016/j.knosys.2025.114293_bib0038) 2022; 10
Snoek (10.1016/j.knosys.2025.114293_bib0094) 2012
Adenso-Diaz (10.1016/j.knosys.2025.114293_bib0018) 2006; 54
Jackson (10.1016/j.knosys.2025.114293_bib0092) 2011; 38
Shamrat (10.1016/j.knosys.2025.114293_bib0120) 2022; 12
Gao (10.1016/j.knosys.2025.114293_bib0081) 2008
Chan (10.1016/j.knosys.2025.114293_bib0096) 2020
Rahman (10.1016/j.knosys.2025.114293_bib0039) 2020
Islam (10.1016/j.knosys.2025.114293_bib0068) 2020; 20
Khan (10.1016/j.knosys.2025.114293_bib0002) 2020; 196
ś (10.1016/j.knosys.2025.114293_bib0047) 2022; 164
Oh (10.1016/j.knosys.2025.114293_bib0063) 2020; 39
Pan (10.1016/j.knosys.2025.114293_bib0077) 2009; 22
Coy (10.1016/j.knosys.2025.114293_bib0019) 2001; 7
Wang (10.1016/j.knosys.2025.114293_bib0121) 2023
Milani (10.1016/j.knosys.2025.114293_bib0010) 2017
Menegola (10.1016/j.knosys.2025.114293_bib0014) 2017
Mowery (10.1016/j.knosys.2025.114293_bib0102) 2011; 37
Shimja (10.1016/j.knosys.2025.114293_bib0042) 2024; 65
Saeed (10.1016/j.knosys.2025.114293_bib0060) 2023
10.1016/j.knosys.2025.114293_bib0071
Abbas (10.1016/j.knosys.2025.114293_bib0034) 2021; 51
Ikram (10.1016/j.knosys.2025.114293_bib0037) 2021
Maron (10.1016/j.knosys.2025.114293_bib0091) 1997; 11
Hutter (10.1016/j.knosys.2025.114293_bib0021) 2011
Monshi (10.1016/j.knosys.2025.114293_bib0056) 2021; 133
Zoph (10.1016/j.knosys.2025.114293_bib0090) 2018
Rehman (10.1016/j.knosys.2025.114293_bib0006) 2021; 23
Chmielewski (10.1016/j.knosys.2025.114293_bib0048) 2020; 12334
Hijazi (10.1016/j.knosys.2025.114293_bib0049) 2018; 10
Norval (10.1016/j.knosys.2025.114293_bib0046) 2021; 12
Talukder (10.1016/j.knosys.2025.114293_bib0126) 2024; 168
Feng (10.1016/j.knosys.2025.114293_bib0073) 2019; 69
He (10.1016/j.knosys.2025.114293_bib0026) 2016
Apostolopoulos (10.1016/j.knosys.2025.114293_bib0062) 2020; 43
10.1016/j.knosys.2025.114293_bib0115
Guo (10.1016/j.knosys.2025.114293_bib0074) 2018; 27
Panwar (10.1016/j.knosys.2025.114293_bib0033) 2020; 138
Chowdhury (10.1016/j.knosys.2025.114293_bib0067) 2020; 8
Nayak (10.1016/j.knosys.2025.114293_bib0114) 2021; 64
Tan (10.1016/j.knosys.2025.114293_bib0027) 2019
Amara (10.1016/j.knosys.2025.114293_bib0005) 2020
10.1016/j.knosys.2025.114293_bib0061
nez (10.1016/j.knosys.2025.114293_bib0024) 2016; 3
Sohrabi (10.1016/j.knosys.2025.114293_bib0001) 2020; 76
Chougrad (10.1016/j.knosys.2025.114293_bib0016) 2018; 157
Bharati (10.1016/j.knosys.2025.114293_bib0103) 2020
Asiri (10.1016/j.knosys.2025.114293_bib0015) 2019; 99
Szegedy (10.1016/j.knosys.2025.114293_bib0088) 2017; 31
Saeed (10.1016/j.knosys.2025.114293_bib0059) 2023; 12
Huang (10.1016/j.knosys.2025.114293_bib0025) 2017
Trujillo (10.1016/j.knosys.2025.114293_bib0128) 2018
10.1016/j.knosys.2025.114293_bib0106
10.1016/j.knosys.2025.114293_bib0104
Hu (10.1016/j.knosys.2025.114293_bib0030) 2020; 27
References_xml – start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib0025
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2951
  year: 2012
  end-page: 2959
  ident: bib0094
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Advances in Neural Information Processing Systems
– volume: 93
  year: 2020
  ident: bib0011
  article-title: Inception v3 based cervical cell classification combined with artificially extracted features
  publication-title: Appl. Soft Comput.
– year: 2020
  ident: bib0005
  article-title: Covid-19 Coronavirus Pandemic
– volume: 30
  year: 2022
  ident: bib0118
  article-title: Transfer learning with fine-tuned deep CNN ResNet50 model for classifying Covid-19 from chest X-ray images
  publication-title: Inf. Med. Unlocked
– volume: 12334
  year: 2020
  ident: bib0048
  article-title: Computer Vision and Graphics: International Conference
  publication-title: ICCVG 2020
– year: 2020
  ident: bib0096
  article-title: Deep learning in medical image analysis
  publication-title: Deep Learn. Med. Image Anal.: Challenges Appl.
– volume: 32
  year: 2020
  ident: bib0003
  article-title: Data regarding country-specific variability in Covid-19 prevalence, incidence, and case fatality rate
  publication-title: Data Brief
– volume: 12
  start-page: 17
  year: 2023
  ident: bib0122
  article-title: Covid-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
  publication-title: Netw. Model. Anal. Health Inf. Bioinf.
– volume: 3
  start-page: 43
  year: 2016
  end-page: 58
  ident: bib0024
  article-title: The irace package: iterated racing for automatic algorithm configuration
  publication-title: Oper. Res. Perspect.
– reference: A.E. Eiben, J.E. Smith, Introduction to evolutionary computing, natural computing, (2003)
– volume: 164
  start-page: 60
  year: 2022
  end-page: 66
  ident: bib0047
  article-title: Unsupervised contrastive unpaired image generation approach for improving tuberculosis screening using chest X-ray images
  publication-title: Pattern Recognit. Lett.
– volume: 31
  start-page: 699
  year: 2023
  end-page: 711
  ident: bib0044
  article-title: Computer-aided detection of tuberculosis from X-ray images using CNN and patternnet classifier
  publication-title: J. Xray Sci. Technol.
– volume: 25
  year: 2012
  ident: bib0082
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 7
  start-page: 77
  year: 2001
  end-page: 97
  ident: bib0019
  article-title: Using experimental design to find effective parameter settings for heuristics
  publication-title: J. Heuristics
– start-page: 142
  year: 2009
  end-page: 157
  ident: bib0022
  article-title: A gender-based genetic algorithm for the automatic configuration of algorithms
  publication-title: International Conference on Principles and Practice of Constraint Programming
– volume: 27
  start-page: 752
  year: 2020
  ident: bib0030
  article-title: Analysis of characteristics in death patients with covid-19 pneumonia without underlying diseases
  publication-title: Acad. Radiol.
– volume: 10
  year: 2020
  ident: bib0055
  article-title: Automatic classification between Covid-19 pneumonia, non-Covid-19 pneumonia, and the healthy on chest X-ray image: combination of data augmentation methods
  publication-title: Sci. Rep.
– volume: 12
  start-page: 651
  year: 2020
  ident: bib0066
  article-title: Within the lack of chest Covid-19 X-ray dataset: a novel detection model based on GAN and deep transfer learning
  publication-title: Symmetry
– volume: 20
  year: 2020
  ident: bib0068
  article-title: A combined deep CNN-LSTM network for the detection of novel coronavirus (Covid-19) using X-ray images
  publication-title: Inf. Med. Unlocked
– year: 2018
  ident: bib0128
  article-title: Clustering in non-destructive testing images via fuzzy divergence
  publication-title: Intell. Comput.
– reference: H. Tian, B. Zhang, Z. Zhang, Z. Xu, L. Jin, Y. Bian, J. Wu, Densenet model incorporating hybrid attention mechanisms and clinical features for pancreatic cystic tumor classification, 2024, p. 14380.
– volume: 144
  year: 2021
  ident: bib0058
  article-title: TLCoV-an automated Covid-19 screening model using transfer learning from chest X-ray images
  publication-title: Chaos Solitons Fractals
– volume: 43
  start-page: 635
  year: 2020
  end-page: 640
  ident: bib0062
  article-title: Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks
  publication-title: Phys. Eng. Sci. Med.
– volume: 39
  start-page: 2688
  year: 2020
  end-page: 2700
  ident: bib0063
  article-title: Deep learning Covid-19 features on CXR using limited training data sets
  publication-title: IEEE Trans. Med. Imaging
– volume: 181
  start-page: 1423
  year: 2020
  end-page: 1433
  ident: bib0070
  article-title: Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of Covid-19 pneumonia using computed tomography
  publication-title: Cell
– volume: 37
  start-page: 320
  year: 2011
  end-page: 322
  ident: bib0102
  article-title: The paired
  publication-title: Pediatr. Nurs.
– volume: 40
  year: 2023
  ident: bib0123
  article-title: Detection of Covid-19 from chest X-ray images: boosting the performance with convolutional neural network and transfer learning
  publication-title: Expert Syst.
– volume: 87
  year: 2020
  ident: bib0069
  article-title: Automated detection of Covid-19 cases using deep neural networks with X-ray images
  publication-title: Comput. Med. Imaging Graphics
– volume: 27
  start-page: 1309
  year: 2018
  end-page: 1315
  ident: bib0074
  article-title: Detection probability for moving ground target of normal distribution using an imaging satellite
  publication-title: Chin. J. Electron.
– start-page: 1251
  year: 2017
  end-page: 1258
  ident: bib0087
  article-title: Xception: deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: I. Redwanul, Covid pneumonia dataset, (2022) Kaggle
– start-page: 6
  year: 2024
  ident: bib0124
  article-title: Imbalanced class problem analysis for lung cancer detection using convolutional neural networks
  publication-title: Data Analytics for Intelligent Systems: Techniques and solutions
– volume: 12
  start-page: 6448
  year: 2022
  ident: bib0052
  article-title: Pneumonia detection on chest X-ray images using ensemble of deep convolutional neural networks
  publication-title: Appl. Sci.
– reference: S. Kumar, Covid19-pneumonia-normal chest X-ray images, (2022). Mendeley Data
– volume: 94
  year: 2021
  ident: bib0116
  article-title: Automated detection of pneumonia cases using deep transfer learning with paediatric chest X-ray images
  publication-title: Br. J. Radiol.
– volume: 99
  year: 2019
  ident: bib0015
  article-title: Deep learning based computer-aided diagnosis systems for diabetic retinopathy: a survey
  publication-title: Artif. Intell. Med.
– volume: 11
  start-page: 193
  year: 1997
  end-page: 225
  ident: bib0091
  article-title: The racing algorithm: model selection for lazy learners
  publication-title: Artif. Intell. Rev.
– volume: 9
  start-page: 10
  year: 2024
  end-page: 25
  ident: bib0125
  article-title: Deep learning model for Covid-19 classification using fine tuned ResNet50 on chest X-ray images
  publication-title: Mach. Learn.
– volume: 8
  start-page: 149808
  year: 2020
  end-page: 149824
  ident: bib0009
  article-title: Covid-19 detection through transfer learning using multimodal imaging data
  publication-title: IEEE Access
– reference: S. Park, G. Kim, Y. Oh, J.B. Seo, S.M. Lee, J.H. Kim, S. Moon, J.-K. Lim, J.C. Ye, Vision transformer for Covid-19 CXR diagnosis using chest X-ray feature corpus, (2021). arXiv preprint
– volume: 19
  year: 2006
  ident: bib0078
  article-title: Multi-task feature learning
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 16
  start-page: 781
  year: 2020
  end-page: 793
  ident: bib0101
  article-title: & Vishnevski, computer-aided diagnosis of skin cancer: a review
  publication-title: Curr. Med. Imaging
– start-page: 65
  year: 2004
  ident: bib0080
  article-title: Learning to learn with the informative vector machine
  publication-title: Proceedings of the Twenty-First International Conference on Machine Learning
– reference: D. Kermany, Labeled optical coherence tomography (OCT) and chest X-ray images for classification. Mendeley data (2018)
– volume: 12
  year: 2021
  ident: bib0046
  article-title: Evaluation of image processing technologies for pulmonary tuberculosis detection based on deep learning convolutional neural networks
  publication-title: J. Adv. Inf. Technol.
– volume: 38
  start-page: 1
  year: 2011
  end-page: 28
  ident: bib0092
  article-title: Multi-state models for panel data: the MSM package for R
  publication-title: J. Stat. Softw.
– reference: fewer parameters and, 5MB model size, (2016)
– volume: 10
  year: 2015
  ident: bib0108
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PLoS ONE
– volume: 32
  year: 2019
  ident: bib0105
  article-title: Which algorithmic choices matter at which batch sizes? insights from a noisy quadratic model
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2017
  ident: bib0107
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– year: 2021
  ident: bib0037
  article-title: Th International Conference on Telecommunications and Signal Processing (TSP)
– reference: P.K. Sharma, et al., COVIDXNet: a framework of deep learning classifiers to diagnose Covid-19 in X-ray images, (2020). MedRxiv
– volume: 51
  start-page: 854
  year: 2021
  end-page: 864
  ident: bib0064
  article-title: Classification of Covid-19 in chest X-ray images using detrac deep convolutional neural network
  publication-title: Appl. Intell.
– volume: 51
  start-page: 854
  year: 2021
  end-page: 864
  ident: bib0034
  article-title: Classification of Covid-19 in chest X-ray images using detrac deep convolutional neural network
  publication-title: Appl. Intell.
– start-page: 1
  year: 2023
  end-page: 14
  ident: bib0121
  article-title: Pneunet: deep learning for Covid-19 pneumonia diagnosis on chest X-ray image analysis using vision transformer
  publication-title: Med. Biol. Eng. Comput.
– volume: 8
  start-page: 1
  year: 2021
  end-page: 54
  ident: bib0007
  article-title: Deep learning applications for Covid-19
  publication-title: J. Big Data
– volume: 54
  start-page: 99
  year: 2006
  end-page: 114
  ident: bib0018
  article-title: Fine-tuning of algorithms using fractional experimental designs and local search
  publication-title: Oper. Res.
– volume: 238
  year: 2024
  ident: bib0043
  article-title: Incremental learning-based cascaded model for detection and localization of tuberculosis from chest X-ray images
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2022
  end-page: 21
  ident: bib0119
  article-title: A fine-tuned deep convolutional neural network for chest radiography image classification on Covid-19 cases
  publication-title: Multimedia Tools and Applications
– volume: 87
  year: 2024
  ident: bib0100
  article-title: Oral cancer detection using convolutional neural network optimized by combined seagull optimization algorithm
  publication-title: Biomed. Signal Process. Contr.
– start-page: 155
  year: 2020
  end-page: 168
  ident: bib0012
  article-title: Deep convolutional neural network with transfer learning for detecting pneumonia on chest X-rays
  publication-title: Advances in Bioinformatics, Multimedia, and Electronics Circuits and Signals: Proceedings of GUCON 2019
– volume: 164
  year: 2021
  ident: bib0053
  article-title: Deep learning approaches for Covid-19 detection based on chest X-ray images
  publication-title: Expert Syst. Appl.
– volume: 12
  start-page: 680
  year: 2022
  ident: bib0120
  article-title: LungNet22: a fine-tuned model for multiclass classification and prediction of lung disease using X-ray images
  publication-title: J. Pers. Med.
– volume: 20
  year: 2020
  ident: bib0004
  article-title: Potential of age distribution profiles for the prediction of Covid-19 infection origin in a patient group
  publication-title: Inf. Med. Unlocked
– year: 2019
  ident: bib0051
  article-title: Diagnosis of Pneumonia from Chest x-ray Images using Deep Learning
  publication-title: 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT)
– start-page: 6105
  year: 2019
  end-page: 6114
  ident: bib0027
  article-title: EfficientNet: rethinking model scaling for convolutional neural networks
  publication-title: International Conference on Machine Learning
– volume: 194
  year: 2020
  ident: bib0065
  article-title: Covid-19 identification in chest X-ray images on flat and hierarchical classification scenarios
  publication-title: Comput. Methods Programs Biomed.
– volume: 24
  start-page: 1207
  year: 2021
  end-page: 1220
  ident: bib0117
  article-title: Automatic detection of coronavirus disease (Covid-19) using X-ray images and deep convolutional neural networks
  publication-title: Pattern Anal. Appl.
– start-page: 183
  year: 2006
  end-page: 190
  ident: bib0023
  article-title: A method for parameter calibration and relevance estimation in evolutionary algorithms
  publication-title: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation
– start-page: 620
  year: 2021
  end-page: 628
  ident: bib0008
  article-title: Pay attention to the cough: early diagnosis of Covid-19 using interpretable symptoms embeddings with cough sound signal processing
  publication-title: Proceedings of the 36th Annual ACM Symposium on Applied Computing
– start-page: 283
  year: 2008
  end-page: 291
  ident: bib0081
  article-title: Knowledge transfer via multiple model local structure mapping
  publication-title: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 196
  year: 2020
  ident: bib0002
  article-title: CoroNet: a deep neural network for detection and diagnosis of Covid-19 from chest X-ray images
  publication-title: Comput. Methods Programs Biomed.
– volume: 2019
  year: 2019
  ident: bib0111
  article-title: An efficient deep learning approach to pneumonia classification in healthcare
  publication-title: J. Healthc. Eng.
– reference: U. Sait, G.L. KV, S.P. Prajapati, R. Bhaumik, T. Kumar, S. Shivakumar, K. Bhalla, Curated dataset for COVID-19 posterior-anterior chest radiography imagesMendeley data, (X-Rays) (2022)
– volume: 65
  start-page: 192
  year: 2024
  end-page: 205
  ident: bib0042
  article-title: Empowering diagnosis: an astonishing deep transfer learning approach with fine tuning for precise lung disease classification from CXR images
  publication-title: Automatika
– volume: 138
  year: 2020
  ident: bib0033
  article-title: Application of deep learning for fast detection of Covid-19 in X-rays using nCOVnet
  publication-title: Chaos Solitons Fractals
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bib0084
  article-title: Rethinking the inception architecture for computer vision
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 157
  start-page: 19
  year: 2018
  end-page: 30
  ident: bib0016
  article-title: Deep convolutional neural networks for breast cancer screening
  publication-title: Comput. Methods Programs Biomed.
– volume: 10
  year: 2020
  ident: bib0054
  article-title: Covid-Net: a tailored deep convolutional neural network design for detection of Covid-19 cases from chest X-ray images
  publication-title: Sci. Rep.
– volume: 10
  start-page: 103632
  year: 2022
  end-page: 103643
  ident: bib0038
  article-title: Stochastic learning-based artificial neural network model for an automatic tuberculosis detection system using chest X-ray images
  publication-title: IEEE Access
– reference: J. Redmon, Darknet: open source neural networks in C, (2016)
– start-page: 297
  year: 2017
  end-page: 300
  ident: bib0014
  article-title: Knowledge transfer for melanoma screening with deep learning
  publication-title: IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
– start-page: 1058
  year: 2013
  end-page: 1066
  ident: bib0076
  article-title: Regularization of neural networks using dropconnect
  publication-title: International Conference on Machine Learning
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0026
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2014
  end-page: 12
  ident: bib0072
  article-title: A framework for multi-label exploratory data analysis: ML-EDA
  publication-title: XL Latin American Computing Conference (CLEI)
– reference: P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya, et al., CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning, (2017),
– volume: 10
  start-page: 401
  year: 2018
  end-page: 407
  ident: bib0049
  article-title: Ensemble deep learning for tuberculosis detection
  publication-title: Indonesian J. Elect. Eng. Comput. Sci.
– volume: 133
  year: 2021
  ident: bib0056
  article-title: CovidXrayNet: optimizing data augmentation and CNN hyperparameters for improved Covid-19 detection from CXR
  publication-title: Comput. Biol. Med.
– reference: F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, SqueezeNet: alexnet-level accuracy with 50
– volume: 7
  year: 2020
  ident: bib0036
  article-title: Covidnet-CT: a tailored deep convolutional neural network design for detection of Covid-19 cases from chest CT images
  publication-title: Front. Med.
– start-page: 657
  year: 2020
  end-page: 668
  ident: bib0103
  article-title: Deep learning techniques–R-CNN to mask R-CNN: a survey
  publication-title: Pattern Recognition: Proceedings of CIPR 2019
– volume: 92
  start-page: 334
  year: 2018
  end-page: 349
  ident: bib0075
  article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system
  publication-title: Expert Syst. Appl.
– start-page: 8697
  year: 2018
  end-page: 8710
  ident: bib0090
  article-title: Learning transferable architectures for scalable image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 140
  year: 2020
  ident: bib0112
  article-title: COVIDiagnosis-Net: deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (Covid-19) from X-ray images
  publication-title: Med. Hypotheses
– volume: 10
  start-page: 76
  year: 2021
  ident: bib0035
  article-title: An overview of the national Covid-19 chest imaging database: data quality and cohort analysis
  publication-title: Gigascience
– volume: 10574
  year: 2018
  ident: bib0109
  article-title: Chest X-ray generation and data augmentation for cardiovascular abnormality classification
  publication-title: Medical Imaging 2018: Image Processing
– volume: 11
  start-page: 2634
  year: 2022
  ident: bib0045
  article-title: Evolution of machine learning in tuberculosis diagnosis: a review of deep learning-based medical applications
  publication-title: Electronics
– volume: 76
  start-page: 71
  year: 2020
  end-page: 76
  ident: bib0001
  article-title: World health organization declares global emergency: a review of the 2019 novel coronavirus (Covid-19)
  publication-title: Int. J. Surg.
– volume: 8
  start-page: 217897
  year: 2020
  end-page: 217907
  ident: bib0040
  article-title: Image enhancement for tuberculosis detection using deep learning
  publication-title: IEEE Access
– volume: 12
  start-page: 1413
  year: 2023
  end-page: 1417
  ident: bib0059
  article-title: A binary classification model of Covid-19 based on convolution neural network
  publication-title: Bull. Electr. Eng. Inf.
– reference: .
– year: 2017
  ident: bib0010
  article-title: The power of inception: tackling the tiny ImageNet challenge
  publication-title: CS-231N Final Project Report
– volume: 8
  start-page: 132665
  year: 2020
  end-page: 132676
  ident: bib0067
  article-title: Can AI help in screening viral and Covid-19 pneumonia?
  publication-title: IEEE Access
– volume: 64
  year: 2021
  ident: bib0114
  article-title: Application of deep learning techniques for detection of Covid-19 cases using chest X-ray images: a comprehensive study
  publication-title: Biomed. Signal Process. Contr.
– volume: 172
  start-page: 1122
  year: 2018
  end-page: 1131
  ident: bib0110
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
– volume: 69
  start-page: 309
  year: 2019
  end-page: 320
  ident: bib0073
  article-title: Computer vision algorithms and hardware implementations: a survey
  publication-title: Integration
– volume: 31
  start-page: 4278
  year: 2017
  end-page: 4284
  ident: bib0088
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0083
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 187
  year: 2020
  ident: bib0113
  article-title: A transfer learning method with deep residual network for pediatric pneumonia diagnosis
  publication-title: Comput. Methods Programs Biomed.
– volume: 2
  start-page: 11
  year: 2002
  end-page: 18
  ident: bib0017
  article-title: A racing algorithm for configuring metaheuristics
  publication-title: GECCO
– year: 2020
  ident: bib0039
  article-title: 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT)
– volume: 60
  start-page: 4423
  year: 2021
  end-page: 4432
  ident: bib0029
  article-title: A new mobile application of agricultural pests recognition using deep learning in cloud computing system
  publication-title: Alexandria Eng. J.
– reference: M. Farooq, A. Hafeez, Covid-ResNet: a deep learning framework for screening of Covid19 from radiographs, (2020),
– start-page: 6848
  year: 2018
  end-page: 6856
  ident: bib0089
  article-title: ShuffleNet: an extremely efficient convolutional neural network for mobile devices
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: T. Bartz-Beielstein, M. Preuss, Experimental research in evolutionary computation, in Proceedings of the 9th annual conference companion on genetic and evolutionary computation, 2007, pp. 3001–3020.
– volume: 140
  year: 2020
  ident: bib0032
  article-title: Diagnosis and detection of infected tissue of Covid-19 patients based on lung X-ray image using convolutional neural network approaches
  publication-title: Chaos Solitons Fractals
– volume: 23
  start-page: 63
  year: 2021
  end-page: 68
  ident: bib0006
  article-title: Deep learning-based Covid-19 detection using CT and X-ray images: current analytics and comparisons
  publication-title: IT Prof.
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: bib0093
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 1345
  year: 2009
  end-page: 1359
  ident: bib0077
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: .
– start-page: 507
  year: 2011
  end-page: 523
  ident: bib0021
  article-title: Sequential model-based optimization for general algorithm configuration
  publication-title: Learning and Intelligent Optimization: 5th International Conference, LION 5, Rome, Italy, January 17–21, 2011
– volume: 42
  start-page: 79
  year: 2022
  end-page: 107
  ident: bib0013
  article-title: Transfer learning techniques for medical image analysis: a review
  publication-title: Biocybern. Biomed. Eng.
– volume: 168
  year: 2024
  ident: bib0126
  article-title: Empowering Covid-19 detection: optimizing performance through fine-tuned efficientnet deep learning architecture
  publication-title: Comput. Biol. Med.
– start-page: 45
  year: 2023
  end-page: 49
  ident: bib0060
  article-title: Deep learning model for binary classification of Covid-19 based on chest X-ray
  publication-title: Proceedings of the International Conference on Developments in eSystems Engineering (DeSE)
– volume: 12612
  start-page: 340
  year: 2023
  ident: bib0050
  article-title: International Conference on Artificial Intelligence and Industrial Design (AIID 2022)
  publication-title: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
– reference: D. Choi, On empirical comparisons of optimizers for deep learning, (2019)
– reference: X. Zhang, H. Huang, D. Zhang, S. Zhuang, S. Han, P. Lai, H. Liu, Cross- dataset generalization in deep learning, 20192024.
– volume: 8
  start-page: 191586
  year: 2020
  end-page: 191601
  ident: bib0041
  article-title: Reliable tuberculosis detection using chest x-ray with deep learning, segmentation and visualization
  publication-title: IEEE Access
– start-page: 759
  year: 2007
  end-page: 766
  ident: bib0079
  article-title: Self-taught learning: transfer learning from unlabeled data
  publication-title: Proceedings of the 24th International Conference on Machine Learning
– reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014,
– year: 2021
  ident: 10.1016/j.knosys.2025.114293_bib0037
– volume: 10
  start-page: 76
  issue: 11
  year: 2021
  ident: 10.1016/j.knosys.2025.114293_bib0035
  article-title: An overview of the national Covid-19 chest imaging database: data quality and cohort analysis
  publication-title: Gigascience
  doi: 10.1093/gigascience/giab076
– start-page: 283
  year: 2008
  ident: 10.1016/j.knosys.2025.114293_bib0081
  article-title: Knowledge transfer via multiple model local structure mapping
– volume: 10574
  year: 2018
  ident: 10.1016/j.knosys.2025.114293_bib0109
  article-title: Chest X-ray generation and data augmentation for cardiovascular abnormality classification
– start-page: 45
  year: 2023
  ident: 10.1016/j.knosys.2025.114293_bib0060
  article-title: Deep learning model for binary classification of Covid-19 based on chest X-ray
– start-page: 1
  year: 2015
  ident: 10.1016/j.knosys.2025.114293_bib0083
  article-title: Going deeper with convolutions
– ident: 10.1016/j.knosys.2025.114293_bib0115
– volume: 23
  start-page: 63
  issue: 3
  year: 2021
  ident: 10.1016/j.knosys.2025.114293_bib0006
  article-title: Deep learning-based Covid-19 detection using CT and X-ray images: current analytics and comparisons
  publication-title: IT Prof.
  doi: 10.1109/MITP.2020.3036820
– start-page: 1058
  year: 2013
  ident: 10.1016/j.knosys.2025.114293_bib0076
  article-title: Regularization of neural networks using dropconnect
– start-page: 6
  year: 2024
  ident: 10.1016/j.knosys.2025.114293_bib0124
  article-title: Imbalanced class problem analysis for lung cancer detection using convolutional neural networks
– volume: 87
  year: 2024
  ident: 10.1016/j.knosys.2025.114293_bib0100
  article-title: Oral cancer detection using convolutional neural network optimized by combined seagull optimization algorithm
  publication-title: Biomed. Signal Process. Contr.
  doi: 10.1016/j.bspc.2023.105546
– volume: 12
  start-page: 651
  issue: 4
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0066
  article-title: Within the lack of chest Covid-19 X-ray dataset: a novel detection model based on GAN and deep transfer learning
  publication-title: Symmetry
  doi: 10.3390/sym12040651
– volume: 20
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0068
  article-title: A combined deep CNN-LSTM network for the detection of novel coronavirus (Covid-19) using X-ray images
  publication-title: Inf. Med. Unlocked
– year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0039
– year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0005
– start-page: 1
  year: 2014
  ident: 10.1016/j.knosys.2025.114293_bib0072
  article-title: A framework for multi-label exploratory data analysis: ML-EDA
– year: 2018
  ident: 10.1016/j.knosys.2025.114293_bib0128
  article-title: Clustering in non-destructive testing images via fuzzy divergence
  publication-title: Intell. Comput.
– volume: 32
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0003
  article-title: Data regarding country-specific variability in Covid-19 prevalence, incidence, and case fatality rate
  publication-title: Data Brief
  doi: 10.1016/j.dib.2020.106276
– start-page: 6848
  year: 2018
  ident: 10.1016/j.knosys.2025.114293_bib0089
  article-title: ShuffleNet: an extremely efficient convolutional neural network for mobile devices
– volume: 11
  start-page: 193
  year: 1997
  ident: 10.1016/j.knosys.2025.114293_bib0091
  article-title: The racing algorithm: model selection for lazy learners
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1006556606079
– volume: 38
  start-page: 1
  year: 2011
  ident: 10.1016/j.knosys.2025.114293_bib0092
  article-title: Multi-state models for panel data: the MSM package for R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v038.i08
– start-page: 1
  year: 2022
  ident: 10.1016/j.knosys.2025.114293_bib0119
  article-title: A fine-tuned deep convolutional neural network for chest radiography image classification on Covid-19 cases
– volume: 8
  start-page: 191586
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0041
  article-title: Reliable tuberculosis detection using chest x-ray with deep learning, segmentation and visualization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031384
– volume: 9
  start-page: 10
  issue: 1
  year: 2024
  ident: 10.1016/j.knosys.2025.114293_bib0125
  article-title: Deep learning model for Covid-19 classification using fine tuned ResNet50 on chest X-ray images
  publication-title: Mach. Learn.
– ident: 10.1016/j.knosys.2025.114293_bib0104
– ident: 10.1016/j.knosys.2025.114293_bib0099
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  ident: 10.1016/j.knosys.2025.114293_bib0077
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 8
  start-page: 217897
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0040
  article-title: Image enhancement for tuberculosis detection using deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041867
– volume: 11
  start-page: 2634
  issue: 17
  year: 2022
  ident: 10.1016/j.knosys.2025.114293_bib0045
  article-title: Evolution of machine learning in tuberculosis diagnosis: a review of deep learning-based medical applications
  publication-title: Electronics
  doi: 10.3390/electronics11172634
– ident: 10.1016/j.knosys.2025.114293_bib0085
– volume: 8
  start-page: 149808
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0009
  article-title: Covid-19 detection through transfer learning using multimodal imaging data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016780
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.knosys.2025.114293_bib0007
  article-title: Deep learning applications for Covid-19
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00392-9
– ident: 10.1016/j.knosys.2025.114293_bib0020
  doi: 10.1145/1274000.1274102
– start-page: 507
  year: 2011
  ident: 10.1016/j.knosys.2025.114293_bib0021
  article-title: Sequential model-based optimization for general algorithm configuration
– volume: 65
  start-page: 192
  issue: 1
  year: 2024
  ident: 10.1016/j.knosys.2025.114293_bib0042
  article-title: Empowering diagnosis: an astonishing deep transfer learning approach with fine tuning for precise lung disease classification from CXR images
  publication-title: Automatika
  doi: 10.1080/00051144.2023.2290737
– volume: 92
  start-page: 334
  year: 2018
  ident: 10.1016/j.knosys.2025.114293_bib0075
  article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.022
– ident: 10.1016/j.knosys.2025.114293_bib0071
– ident: 10.1016/j.knosys.2025.114293_bib0098
– volume: 7
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0036
  article-title: Covidnet-CT: a tailored deep convolutional neural network design for detection of Covid-19 cases from chest CT images
  publication-title: Front. Med.
  doi: 10.3389/fmed.2020.608525
– volume: 19
  year: 2006
  ident: 10.1016/j.knosys.2025.114293_bib0078
  article-title: Multi-task feature learning
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 187
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0113
  article-title: A transfer learning method with deep residual network for pediatric pneumonia diagnosis
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.06.023
– volume: 144
  year: 2021
  ident: 10.1016/j.knosys.2025.114293_bib0058
  article-title: TLCoV-an automated Covid-19 screening model using transfer learning from chest X-ray images
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.110713
– volume: 76
  start-page: 71
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0001
  article-title: World health organization declares global emergency: a review of the 2019 novel coronavirus (Covid-19)
  publication-title: Int. J. Surg.
  doi: 10.1016/j.ijsu.2020.02.034
– volume: 20
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0004
  article-title: Potential of age distribution profiles for the prediction of Covid-19 infection origin in a patient group
  publication-title: Inf. Med. Unlocked
– year: 2017
  ident: 10.1016/j.knosys.2025.114293_bib0010
  article-title: The power of inception: tackling the tiny ImageNet challenge
– start-page: 770
  year: 2016
  ident: 10.1016/j.knosys.2025.114293_bib0026
  article-title: Deep residual learning for image recognition
– volume: 12
  start-page: 680
  issue: 5
  year: 2022
  ident: 10.1016/j.knosys.2025.114293_bib0120
  article-title: LungNet22: a fine-tuned model for multiclass classification and prediction of lung disease using X-ray images
  publication-title: J. Pers. Med.
  doi: 10.3390/jpm12050680
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0055
  article-title: Automatic classification between Covid-19 pneumonia, non-Covid-19 pneumonia, and the healthy on chest X-ray image: combination of data augmentation methods
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74539-2
– start-page: 759
  year: 2007
  ident: 10.1016/j.knosys.2025.114293_bib0079
  article-title: Self-taught learning: transfer learning from unlabeled data
– ident: 10.1016/j.knosys.2025.114293_bib0028
– volume: 25
  year: 2012
  ident: 10.1016/j.knosys.2025.114293_bib0082
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 60
  start-page: 4423
  issue: 5
  year: 2021
  ident: 10.1016/j.knosys.2025.114293_bib0029
  article-title: A new mobile application of agricultural pests recognition using deep learning in cloud computing system
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2021.03.009
– volume: 40
  issue: 1
  year: 2023
  ident: 10.1016/j.knosys.2025.114293_bib0123
  article-title: Detection of Covid-19 from chest X-ray images: boosting the performance with convolutional neural network and transfer learning
  publication-title: Expert Syst.
  doi: 10.1111/exsy.13099
– volume: 196
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0002
  article-title: CoroNet: a deep neural network for detection and diagnosis of Covid-19 from chest X-ray images
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105581
– volume: 12
  issue: 3
  year: 2021
  ident: 10.1016/j.knosys.2025.114293_bib0046
  article-title: Evaluation of image processing technologies for pulmonary tuberculosis detection based on deep learning convolutional neural networks
  publication-title: J. Adv. Inf. Technol.
– ident: 10.1016/j.knosys.2025.114293_bib0127
  doi: 10.1002/acm2.14380
– volume: 238
  year: 2024
  ident: 10.1016/j.knosys.2025.114293_bib0043
  article-title: Incremental learning-based cascaded model for detection and localization of tuberculosis from chest X-ray images
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122129
– start-page: 2818
  year: 2016
  ident: 10.1016/j.knosys.2025.114293_bib0084
  article-title: Rethinking the inception architecture for computer vision
– start-page: 2951
  year: 2012
  ident: 10.1016/j.knosys.2025.114293_bib0094
  article-title: Practical Bayesian optimization of machine learning algorithms
– volume: 164
  year: 2021
  ident: 10.1016/j.knosys.2025.114293_bib0053
  article-title: Deep learning approaches for Covid-19 detection based on chest X-ray images
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114054
– volume: 12
  start-page: 1413
  issue: 3
  year: 2023
  ident: 10.1016/j.knosys.2025.114293_bib0059
  article-title: A binary classification model of Covid-19 based on convolution neural network
  publication-title: Bull. Electr. Eng. Inf.
  doi: 10.11591/eei.v12i3.4832
– volume: 10
  issue: 7
  year: 2015
  ident: 10.1016/j.knosys.2025.114293_bib0108
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0130140
– volume: 172
  start-page: 1122
  issue: 5
  year: 2018
  ident: 10.1016/j.knosys.2025.114293_bib0110
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– volume: 140
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0032
  article-title: Diagnosis and detection of infected tissue of Covid-19 patients based on lung X-ray image using convolutional neural network approaches
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110170
– volume: 16
  start-page: 781
  issue: 7
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0101
  article-title: & Vishnevski, computer-aided diagnosis of skin cancer: a review
  publication-title: Curr. Med. Imaging
  doi: 10.2174/1573405616666200129095242
– volume: 64
  year: 2021
  ident: 10.1016/j.knosys.2025.114293_bib0114
  article-title: Application of deep learning techniques for detection of Covid-19 cases using chest X-ray images: a comprehensive study
  publication-title: Biomed. Signal Process. Contr.
  doi: 10.1016/j.bspc.2020.102365
– volume: 93
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0011
  article-title: Inception v3 based cervical cell classification combined with artificially extracted features
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106311
– ident: 10.1016/j.knosys.2025.114293_bib0031
– start-page: 142
  year: 2009
  ident: 10.1016/j.knosys.2025.114293_bib0022
  article-title: A gender-based genetic algorithm for the automatic configuration of algorithms
– volume: 8
  start-page: 132665
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0067
  article-title: Can AI help in screening viral and Covid-19 pneumonia?
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010287
– ident: 10.1016/j.knosys.2025.114293_bib0095
  doi: 10.1007/978-3-662-05094-1
– start-page: 620
  year: 2021
  ident: 10.1016/j.knosys.2025.114293_bib0008
  article-title: Pay attention to the cough: early diagnosis of Covid-19 using interpretable symptoms embeddings with cough sound signal processing
– volume: 194
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0065
  article-title: Covid-19 identification in chest X-ray images on flat and hierarchical classification scenarios
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105532
– volume: 24
  start-page: 1207
  year: 2021
  ident: 10.1016/j.knosys.2025.114293_bib0117
  article-title: Automatic detection of coronavirus disease (Covid-19) using X-ray images and deep convolutional neural networks
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-021-00984-y
– volume: 12
  start-page: 17
  issue: 1
  year: 2023
  ident: 10.1016/j.knosys.2025.114293_bib0122
  article-title: Covid-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
  publication-title: Netw. Model. Anal. Health Inf. Bioinf.
  doi: 10.1007/s13721-023-00413-6
– start-page: 183
  year: 2006
  ident: 10.1016/j.knosys.2025.114293_bib0023
  article-title: A method for parameter calibration and relevance estimation in evolutionary algorithms
– start-page: 65
  year: 2004
  ident: 10.1016/j.knosys.2025.114293_bib0080
  article-title: Learning to learn with the informative vector machine
– volume: 37
  start-page: 320
  issue: 6
  year: 2011
  ident: 10.1016/j.knosys.2025.114293_bib0102
  article-title: The paired t-test
  publication-title: Pediatr. Nurs.
– volume: 10
  start-page: 401
  issue: 1
  year: 2018
  ident: 10.1016/j.knosys.2025.114293_bib0049
  article-title: Ensemble deep learning for tuberculosis detection
  publication-title: Indonesian J. Elect. Eng. Comput. Sci.
– ident: 10.1016/j.knosys.2025.114293_bib0057
– volume: 168
  year: 2024
  ident: 10.1016/j.knosys.2025.114293_bib0126
  article-title: Empowering Covid-19 detection: optimizing performance through fine-tuned efficientnet deep learning architecture
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.107789
– volume: 12
  start-page: 6448
  issue: 13
  year: 2022
  ident: 10.1016/j.knosys.2025.114293_bib0052
  article-title: Pneumonia detection on chest X-ray images using ensemble of deep convolutional neural networks
  publication-title: Appl. Sci.
  doi: 10.3390/app12136448
– ident: 10.1016/j.knosys.2025.114293_bib0086
– volume: 51
  start-page: 854
  year: 2021
  ident: 10.1016/j.knosys.2025.114293_bib0034
  article-title: Classification of Covid-19 in chest X-ray images using detrac deep convolutional neural network
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01829-7
– volume: 13
  start-page: 281
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2025.114293_bib0093
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0096
  article-title: Deep learning in medical image analysis
  publication-title: Deep Learn. Med. Image Anal.: Challenges Appl.
  doi: 10.1007/978-3-030-33128-3_1
– volume: 3
  start-page: 43
  year: 2016
  ident: 10.1016/j.knosys.2025.114293_bib0024
  article-title: The irace package: iterated racing for automatic algorithm configuration
  publication-title: Oper. Res. Perspect.
– volume: 7
  start-page: 77
  year: 2001
  ident: 10.1016/j.knosys.2025.114293_bib0019
  article-title: Using experimental design to find effective parameter settings for heuristics
  publication-title: J. Heuristics
  doi: 10.1023/A:1026569813391
– volume: 54
  start-page: 99
  issue: 1
  year: 2006
  ident: 10.1016/j.knosys.2025.114293_bib0018
  article-title: Fine-tuning of algorithms using fractional experimental designs and local search
  publication-title: Oper. Res.
  doi: 10.1287/opre.1050.0243
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0054
  article-title: Covid-Net: a tailored deep convolutional neural network design for detection of Covid-19 cases from chest X-ray images
  publication-title: Sci. Rep.
– volume: 94
  issue: 1121
  year: 2021
  ident: 10.1016/j.knosys.2025.114293_bib0116
  article-title: Automated detection of pneumonia cases using deep transfer learning with paediatric chest X-ray images
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20201263
– start-page: 4700
  year: 2017
  ident: 10.1016/j.knosys.2025.114293_bib0025
  article-title: Densely connected convolutional networks
– volume: 10
  start-page: 103632
  year: 2022
  ident: 10.1016/j.knosys.2025.114293_bib0038
  article-title: Stochastic learning-based artificial neural network model for an automatic tuberculosis detection system using chest X-ray images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3208882
– volume: 138
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0033
  article-title: Application of deep learning for fast detection of Covid-19 in X-rays using nCOVnet
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109944
– volume: 87
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0069
  article-title: Automated detection of Covid-19 cases using deep neural networks with X-ray images
  publication-title: Comput. Med. Imaging Graphics
– volume: 31
  start-page: 4278
  year: 2017
  ident: 10.1016/j.knosys.2025.114293_bib0088
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v31i1.11231
– start-page: 6105
  year: 2019
  ident: 10.1016/j.knosys.2025.114293_bib0027
  article-title: EfficientNet: rethinking model scaling for convolutional neural networks
– volume: 157
  start-page: 19
  year: 2018
  ident: 10.1016/j.knosys.2025.114293_bib0016
  article-title: Deep convolutional neural networks for breast cancer screening
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.01.011
– volume: 32
  year: 2019
  ident: 10.1016/j.knosys.2025.114293_bib0105
  article-title: Which algorithmic choices matter at which batch sizes? insights from a noisy quadratic model
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 657
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0103
  article-title: Deep learning techniques–R-CNN to mask R-CNN: a survey
– volume: 51
  start-page: 854
  issue: 2
  year: 2021
  ident: 10.1016/j.knosys.2025.114293_bib0064
  article-title: Classification of Covid-19 in chest X-ray images using detrac deep convolutional neural network
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01829-7
– volume: 31
  start-page: 699
  issue: 4
  year: 2023
  ident: 10.1016/j.knosys.2025.114293_bib0044
  article-title: Computer-aided detection of tuberculosis from X-ray images using CNN and patternnet classifier
  publication-title: J. Xray Sci. Technol.
– ident: 10.1016/j.knosys.2025.114293_bib0061
– volume: 12612
  start-page: 340
  year: 2023
  ident: 10.1016/j.knosys.2025.114293_bib0050
  article-title: International Conference on Artificial Intelligence and Industrial Design (AIID 2022)
– volume: 99
  year: 2019
  ident: 10.1016/j.knosys.2025.114293_bib0015
  article-title: Deep learning based computer-aided diagnosis systems for diabetic retinopathy: a survey
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.07.009
– start-page: 155
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0012
  article-title: Deep convolutional neural network with transfer learning for detecting pneumonia on chest X-rays
– volume: 164
  start-page: 60
  year: 2022
  ident: 10.1016/j.knosys.2025.114293_bib0047
  article-title: Unsupervised contrastive unpaired image generation approach for improving tuberculosis screening using chest X-ray images
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2022.10.026
– volume: 39
  start-page: 2688
  issue: 8
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0063
  article-title: Deep learning Covid-19 features on CXR using limited training data sets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2993291
– volume: 12334
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0048
  article-title: Computer Vision and Graphics: International Conference
– year: 2019
  ident: 10.1016/j.knosys.2025.114293_bib0051
  article-title: Diagnosis of Pneumonia from Chest x-ray Images using Deep Learning
– start-page: 1251
  year: 2017
  ident: 10.1016/j.knosys.2025.114293_bib0087
  article-title: Xception: deep learning with depthwise separable convolutions
– ident: 10.1016/j.knosys.2025.114293_bib0097
– ident: 10.1016/j.knosys.2025.114293_bib0106
– volume: 140
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0112
  article-title: COVIDiagnosis-Net: deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (Covid-19) from X-ray images
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2020.109761
– volume: 181
  start-page: 1423
  issue: 6
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0070
  article-title: Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of Covid-19 pneumonia using computed tomography
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.045
– volume: 27
  start-page: 1309
  issue: 6
  year: 2018
  ident: 10.1016/j.knosys.2025.114293_bib0074
  article-title: Detection probability for moving ground target of normal distribution using an imaging satellite
  publication-title: Chin. J. Electron.
  doi: 10.1049/cje.2018.08.005
– year: 2017
  ident: 10.1016/j.knosys.2025.114293_bib0107
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
– start-page: 297
  year: 2017
  ident: 10.1016/j.knosys.2025.114293_bib0014
  article-title: Knowledge transfer for melanoma screening with deep learning
– volume: 2
  start-page: 11
  year: 2002
  ident: 10.1016/j.knosys.2025.114293_bib0017
  article-title: A racing algorithm for configuring metaheuristics
– volume: 43
  start-page: 635
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0062
  article-title: Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00865-4
– volume: 2019
  issue: 1
  year: 2019
  ident: 10.1016/j.knosys.2025.114293_bib0111
  article-title: An efficient deep learning approach to pneumonia classification in healthcare
  publication-title: J. Healthc. Eng.
– volume: 30
  year: 2022
  ident: 10.1016/j.knosys.2025.114293_bib0118
  article-title: Transfer learning with fine-tuned deep CNN ResNet50 model for classifying Covid-19 from chest X-ray images
  publication-title: Inf. Med. Unlocked
– volume: 27
  start-page: 752
  issue: 5
  year: 2020
  ident: 10.1016/j.knosys.2025.114293_bib0030
  article-title: Analysis of characteristics in death patients with covid-19 pneumonia without underlying diseases
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2020.03.023
– start-page: 8697
  year: 2018
  ident: 10.1016/j.knosys.2025.114293_bib0090
  article-title: Learning transferable architectures for scalable image recognition
– volume: 133
  year: 2021
  ident: 10.1016/j.knosys.2025.114293_bib0056
  article-title: CovidXrayNet: optimizing data augmentation and CNN hyperparameters for improved Covid-19 detection from CXR
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104375
– volume: 42
  start-page: 79
  issue: 1
  year: 2022
  ident: 10.1016/j.knosys.2025.114293_bib0013
  article-title: Transfer learning techniques for medical image analysis: a review
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2021.11.004
– volume: 69
  start-page: 309
  year: 2019
  ident: 10.1016/j.knosys.2025.114293_bib0073
  article-title: Computer vision algorithms and hardware implementations: a survey
  publication-title: Integration
  doi: 10.1016/j.vlsi.2019.07.005
– start-page: 1
  year: 2023
  ident: 10.1016/j.knosys.2025.114293_bib0121
  article-title: Pneunet: deep learning for Covid-19 pneumonia diagnosis on chest X-ray image analysis using vision transformer
  publication-title: Med. Biol. Eng. Comput.
SSID ssj0002218
Score 2.4379327
Snippet When pre-trained models are applied directly to chest X-ray (CXR) images without appropriate adaptation, they frequently show problems like overfitting,...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 114293
SubjectTerms Chest X-rays (CXR)
Convolutional neural networks (CNNs)
COVID-19
Deep learning (DL)
Iterated race for automatic algorithm configuration (IRACE)
Pneumonia
Title Integrated deep learning-based IRACE and convolutional neural networks for chest X-ray image classification
URI https://dx.doi.org/10.1016/j.knosys.2025.114293
Volume 329
WOSCitedRecordID wos001572483700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002218
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgcuvBHLSz5wi1zFTtLYx2pV1AKqELug3qLUdlb7aFo1bVn-PeNX01KEAIlLEiXyIzOfxuPxPBB6K7iqtIo5kT2qSEpTTaacVyQTTIM-ECthT0y_fszHYz6ZiE-dziLEwmxu8rrmt7di8V9ZDe-A2SZ09i_Yve0UXsAzMB2uwHa4_hHjRyEBhIqU1otQF-KCmAVLRaPP_dOBj2arN34mwCeT2NLerFu4zdIQ2WJa0YQsy-_R5cx490ijbBvvopahXrP9EIxzfpxmJxW6PV5S-iY6K2fO8WdcXnxrcTmcr5vGV90cNE05i4bdremnnPqQnNlOg7W155d-2fVWC5bZ8L3WankYTuNtkjHJY5-B1ovnxFlEDkS9szpcda_rOfxR1wxiEh8zV3DxpyTaZ6Zr0zNofLArT3t30DHLMwFy8Lg_Gkzeb1dvxqxNeDuVEG5pfQIPx_q1OrOjopw_RPf93gL3HSYeoY6uH6MHoW4H9mL8CbpuIYINRPA-RLCFCAaI4D2IYAcRHCCCASLYQgRbiGALEbwPkafoy7vB-emQ-KIbRIL0XhEuqc64TjjLcykqyhWLZVpxBjtbkzxSMPhKNZd5mSS5ZLGGe49WU0ZVKqRInqGjel7r5wirqQbpH1faRF8rSctSpZSCaDAlBmiSnSASaFcsXG6VIjgdXhWO1oWhdeFofYLyQODC64dO7ysAE79t-eKfW75E91r4vkJHq-Vav0Z35WZ12SzfePD8APU6jqY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+deep+learning-based+IRACE+and+convolutional+neural+networks+for+chest+X-ray+image+classification&rft.jtitle=Knowledge-based+systems&rft.au=Abdel+Samee%2C+Nagwan&rft.au=Houssein%2C+Essam+H.&rft.au=Saber%2C+Eman&rft.au=Hu%2C+Gang&rft.date=2025-11-04&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.volume=329&rft_id=info:doi/10.1016%2Fj.knosys.2025.114293&rft.externalDocID=S0950705125013346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon