An Improved Archimedes Optimization-aided Multi-scale Deep Learning Segmentation with dilated ensemble CNN classification for detecting lung cancer using CT images
Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic imp...
Saved in:
| Published in: | Network (Bristol) Vol. 36; no. 4; pp. 1543 - 1581 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
02.10.2025
|
| Subjects: | |
| ISSN: | 0954-898X, 1361-6536, 1361-6536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment. |
|---|---|
| AbstractList | Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment. Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment.Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment. |
| Author | Chowdary, Shalini Purushotaman, Shyamala Bharathi |
| Author_xml | – sequence: 1 givenname: Shalini surname: Chowdary fullname: Chowdary, Shalini – sequence: 2 givenname: Shyamala Bharathi surname: Purushotaman fullname: Purushotaman, Shyamala Bharathi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38975771$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kctO6zAQhi0EgnJ5BJCXZ5Nix03sLKuew0UqsAAkdpFjj4tR4hTbOQhehxfFoQWNNCPNfDMa_f8h2nW9A4ROKZlSIsg5qYqZqMTTNCf5bJozzmjOd9CEspJmZcHKXTQZmWyEDtBhCC-EEJ5zto8OmKh4wTmdoM-5w9fd2vf_QeO5V8-2Aw0B362j7eyHjLZ3mbQ6TW-GNtosKNkC_guwxkuQ3lm3wvew6sDFbxi_2fiMtW1lTDvgAnRNWljc3mLVyhCssWoDmt5jDRFUHG-0Q0pKOgUeD2HsLB6w7eQKwjHaM7INcLKtR-jx4t_D4ipb3l1eL-bLTOUFj5loBCkppzNBjRBl1WhuctIoVnIiqFSqKURFtOEVYSZXyuiKzpqGy0ILYqhkR-jP5m6S43WAEOvOBgVtKx30Q6gZ4WUKymhCz7bo0CTB6rVPr_r3-kfYBBQbQPk-BA_mF6GkHg2sfwysRwPrrYHsC3w1kDY |
| Cites_doi | 10.1109/ACCESS.2019.2905574 10.1186/s13634-021-00740-8 10.1016/j.compbiomed.2021.104961 10.1007/s11042-019-08394-3 10.1109/TCBB.2020.3027744 10.1007/s11277-022-09676-0 10.1016/j.acra.2021.12.001 10.1016/j.eswa.2021.114685 10.1016/j.bbe.2019.11.004 10.1109/ECACE.2019.8679439 10.1109/TITB.2007.899504 10.1016/j.lungcan.2021.01.027 10.1016/j.acra.2020.06.010 10.1016/j.csbj.2021.02.016 10.1016/j.heliyon.2023.e21520 10.1016/j.jii.2022.100386 10.1016/j.compbiomed.2024.108136 10.1109/ACCESS.2020.2992645 10.1109/JCSSE.2019.8864155 10.1016/j.cmpb.2022.107108 10.1016/j.engappai.2019.103249 10.3390/diagnostics13040738 10.1109/TMI.2019.2947595 10.1109/JBHI.2017.2725903 10.1007/s11704-020-9050-z 10.1109/TMI.2018.2876510 10.1109/ACCESS.2020.3044941 10.1109/JBHI.2020.3039741 10.1109/JBHI.2021.3053023 10.1016/j.asoc.2012.11.026 10.1016/j.procs.2021.01.025 10.1109/ACCESS.2022.3208134 10.1016/j.measurement.2019.05.027 10.1007/s10489-020-01893-z 10.1007/s11042-021-11066-w 10.1016/j.procs.2022.12.049 10.1109/TMI.2020.3026261 10.1007/s00521-020-04842-6 10.1038/s41598-021-04667-w |
| ContentType | Journal Article |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1080/0954898X.2024.2373127 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EISSN | 1361-6536 |
| EndPage | 1581 |
| ExternalDocumentID | 38975771 10_1080_0954898X_2024_2373127 |
| Genre | Journal Article |
| GroupedDBID | --- -~X .4S .DC 00X 03L 0R~ 123 29N 36B 4.4 AAGDL AALUX AAMIU AAPUL AAQRR AAYXX ABBKH ABEIZ ABIVO ABJNI ABLIJ ABLKL ABUPF ABWVI ABXYU ACENM ACGEJ ACGFS ACIEZ ADCVX ADRBQ ADXPE AECIN AEOZL AFKVX AFRVT AGDLA AGFJD AGRBW AGYJP AIJEM AIRBT AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU ALYBC AMDAE BABNJ BLEHA BOHLJ CCCUG CITATION CS3 DKSSO EBS EMB F5P H13 HZ~ KRBQP KWAYT KYCEM M4Z O9- P2P RNANH RO9 RVRKI TASJS TBQAZ TDBHL TERGH TFDNU TFL TFW TUROJ TUS UEQFS V1S ~1N 5VS 5ZH 5ZI AAGCF AAJKZ AALIY AAORF AAPXX ABWCV ABZEW ACKZS ACOPL ACYZI ADFOM ADFZZ AEFHF AEIIZ AETNG AFLEI AJVHN AQTUD ARCSS AWYRJ BRMBE CAG CGR COF CUY CVF CYYVM CZDIS DRXRE DWTOO EBD ECM EDO EIF EJD EMOBN I-F IHE IOP IZVLO JENTW KOT LAP M44 M45 NPM NUSFT QQXMO RIV RKQ ROL SV3 XPP ZMT 7X8 |
| ID | FETCH-LOGICAL-c257t-8b806171481f8869bd7f20bc367081accb5890df7903f2ccfd914bb7a5d80f1a3 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001264732900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0954-898X 1361-6536 |
| IngestDate | Fri Sep 05 14:35:44 EDT 2025 Mon Nov 03 01:58:10 EST 2025 Sat Nov 29 06:56:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | advanced dilated ensemble convolutional neural networks Detecting lung cancer modified transfer operator-based Archimedes optimization CT scan images adaptive multi-scale dilated trans-Unet3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c257t-8b806171481f8869bd7f20bc367081accb5890df7903f2ccfd914bb7a5d80f1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 38975771 |
| PQID | 3076767131 |
| PQPubID | 23479 |
| PageCount | 39 |
| ParticipantIDs | proquest_miscellaneous_3076767131 pubmed_primary_38975771 crossref_primary_10_1080_0954898X_2024_2373127 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-02 |
| PublicationDateYYYYMMDD | 2025-10-02 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Network (Bristol) |
| PublicationTitleAlternate | Network |
| PublicationYear | 2025 |
| References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_42_1 e_1_3_2_20_1 e_1_3_2_41_1 Bui N (e_1_3_2_6_1) 2024 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_43_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 e_1_3_2_40_1 Al-Tarawneh MS. (e_1_3_2_2_1) 2012; 11 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 e_1_3_2_15_1 e_1_3_2_36_1 Nasser IM (e_1_3_2_29_1) 2019; 3 |
| References_xml | – ident: e_1_3_2_22_1 doi: 10.1109/ACCESS.2019.2905574 – ident: e_1_3_2_7_1 doi: 10.1186/s13634-021-00740-8 – ident: e_1_3_2_14_1 doi: 10.1016/j.compbiomed.2021.104961 – ident: e_1_3_2_3_1 doi: 10.1007/s11042-019-08394-3 – ident: e_1_3_2_8_1 doi: 10.1109/TCBB.2020.3027744 – ident: e_1_3_2_41_1 doi: 10.1007/s11277-022-09676-0 – ident: e_1_3_2_32_1 doi: 10.1016/j.acra.2021.12.001 – ident: e_1_3_2_5_1 doi: 10.1016/j.eswa.2021.114685 – ident: e_1_3_2_40_1 doi: 10.1016/j.bbe.2019.11.004 – ident: e_1_3_2_31_1 doi: 10.1109/ECACE.2019.8679439 – ident: e_1_3_2_11_1 doi: 10.1109/TITB.2007.899504 – ident: e_1_3_2_19_1 doi: 10.1016/j.lungcan.2021.01.027 – ident: e_1_3_2_16_1 doi: 10.1016/j.acra.2020.06.010 – ident: e_1_3_2_21_1 doi: 10.1016/j.csbj.2021.02.016 – ident: e_1_3_2_13_1 doi: 10.1016/j.heliyon.2023.e21520 – ident: e_1_3_2_15_1 doi: 10.1016/j.jii.2022.100386 – ident: e_1_3_2_39_1 doi: 10.1016/j.compbiomed.2024.108136 – ident: e_1_3_2_43_1 doi: 10.1109/ACCESS.2020.2992645 – ident: e_1_3_2_34_1 doi: 10.1109/JCSSE.2019.8864155 – ident: e_1_3_2_10_1 doi: 10.1016/j.cmpb.2022.107108 – ident: e_1_3_2_18_1 doi: 10.1016/j.engappai.2019.103249 – ident: e_1_3_2_12_1 doi: 10.3390/diagnostics13040738 – ident: e_1_3_2_30_1 doi: 10.1109/TMI.2019.2947595 – ident: e_1_3_2_20_1 doi: 10.1109/JBHI.2017.2725903 – ident: e_1_3_2_38_1 doi: 10.1007/s11704-020-9050-z – ident: e_1_3_2_42_1 doi: 10.1109/TMI.2018.2876510 – year: 2024 ident: e_1_3_2_6_1 article-title: SAM3D: Segment anything model in volumetric medical images publication-title: arxiv – ident: e_1_3_2_9_1 doi: 10.1109/ACCESS.2020.3044941 – ident: e_1_3_2_23_1 doi: 10.1109/JBHI.2020.3039741 – ident: e_1_3_2_25_1 doi: 10.1109/JBHI.2021.3053023 – ident: e_1_3_2_33_1 doi: 10.1016/j.asoc.2012.11.026 – ident: e_1_3_2_35_1 doi: 10.1016/j.procs.2021.01.025 – ident: e_1_3_2_27_1 doi: 10.1109/ACCESS.2022.3208134 – ident: e_1_3_2_36_1 doi: 10.1016/j.measurement.2019.05.027 – ident: e_1_3_2_17_1 doi: 10.1007/s10489-020-01893-z – ident: e_1_3_2_26_1 doi: 10.1007/s11042-021-11066-w – ident: e_1_3_2_4_1 doi: 10.1016/j.procs.2022.12.049 – ident: e_1_3_2_24_1 doi: 10.1109/TMI.2020.3026261 – ident: e_1_3_2_28_1 doi: 10.1007/s00521-020-04842-6 – volume: 11 start-page: 147 issue: 21 year: 2012 ident: e_1_3_2_2_1 article-title: Lung cancer detection using image processing techniques publication-title: Leonardo Electron J Practices And Technol – ident: e_1_3_2_37_1 doi: 10.1038/s41598-021-04667-w – volume: 3 start-page: 17 issue: 3 year: 2019 ident: e_1_3_2_29_1 article-title: Lung cancer detection using artificial neural network publication-title: Int J Eng And Inf Syst (IJEAIS) |
| SSID | ssj0007273 |
| Score | 2.4191399 |
| Snippet | Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT)... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1543 |
| SubjectTerms | Algorithms Deep Learning Early Detection of Cancer - methods Humans Image Processing, Computer-Assisted - methods Lung Neoplasms - diagnostic imaging Neural Networks, Computer Tomography, X-Ray Computed - methods |
| Title | An Improved Archimedes Optimization-aided Multi-scale Deep Learning Segmentation with dilated ensemble CNN classification for detecting lung cancer using CT images |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38975771 https://www.proquest.com/docview/3076767131 |
| Volume | 36 |
| WOSCitedRecordID | wos001264732900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1361-6536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007273 issn: 0954-898X databaseCode: TFW dateStart: 19900101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lBaFy4FEKhEe1SNwsR7E3zq6PbUTFhYBEELlZ-7CbSIkTxXEfvweJ38mM1-u40Epw4GKtbWl9-D7PzM7OfEvIe3C5oR7i1n88yPyBGca-UCrwFVPM6JCrSKrqsAk-HovpNP7S6fx0vTAXC57n4uoqXv9XqOEZgI2ts_8AdzMpPIAxgA5XgB2ufwU8pvmqTAGEkpWuLPi7tPA-g21Y1k2XPupCGq9qvvULQAmLh9K1E1s9Bwtyvqybkmybt2fmC4nBKax60yV2W43GY09j6I21RruKRZPirgTOsSixnRdJtfFKW14w8eZLsF9FOyIe2zp0jHRPK52DRSs5MZqtLo20O_1fZxK7OBtbXm7KYrbaSpfCnV3DcCG9U5Sg3s7m7XxGWOmg9q1BTq0NZsPAH0ZWF8UZ6fpu3s5AVBYXQkB2qyuoaydR0C4W0x58atALGWeB1SJoMWG9rKgAoRuPuD0Q5jcNbvdqj9wLYYCWdHL2vfH4GAO67jDUbb_tmwfkgZvlZgh0x7qmim8mT8ijemFCTyyhnpJOmh-Sx-7QD1r7gEPysKVgCXefGtnf4hn5cZJTxz264x79k3u0xT2K3KOOe7TNPYrcozX3qOMeBe7Rm9yjwD3acI8i96jlHq24R0cTarl3RL6dfZiMPvr1KSC-BneyBdMhMMyGZXuQCTGMleFZ2FcalQdFILVWkYj7JuNxn2Wh1pmJg4FSXEZG9LNAsudkP1_l6UtCeSgzZuKB0DKChUgWgykyWoQKRZJYqLqk54BJ1lbsJQmchm4NaoKgJjWoXfLOwZeAWca9Npmnq7JIwHWiFGLAgi55YXFtpnQ8eHXnm9fkYPdrvCH7202ZviX39cV2XmyOyR6fiuOKgr8AWWi1tw |
| linkProvider | Taylor & Francis |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Archimedes+Optimization-aided+Multi-scale+Deep+Learning+Segmentation+with+dilated+ensemble+CNN+classification+for+detecting+lung+cancer+using+CT+images&rft.jtitle=Network+%28Bristol%29&rft.au=Chowdary%2C+Shalini&rft.au=Purushotaman%2C+Shyamala+Bharathi&rft.date=2025-10-02&rft.eissn=1361-6536&rft.volume=36&rft.issue=4&rft.spage=1543&rft_id=info:doi/10.1080%2F0954898X.2024.2373127&rft_id=info%3Apmid%2F38975771&rft.externalDocID=38975771 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-898X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-898X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-898X&client=summon |