An Improved Archimedes Optimization-aided Multi-scale Deep Learning Segmentation with dilated ensemble CNN classification for detecting lung cancer using CT images

Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic imp...

Full description

Saved in:
Bibliographic Details
Published in:Network (Bristol) Vol. 36; no. 4; pp. 1543 - 1581
Main Authors: Chowdary, Shalini, Purushotaman, Shyamala Bharathi
Format: Journal Article
Language:English
Published: England 02.10.2025
Subjects:
ISSN:0954-898X, 1361-6536, 1361-6536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment.
AbstractList Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment.
Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment.Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT) scan based on some deep learning algorithms does not provide accurate results. A novel adaptive deep learning is developed with heuristic improvement. The proposed framework constitutes three sections as (a) Image acquisition, (b) Segmentation of Lung nodule, and (c) Classifying lung cancer. The raw CT images are congregated through standard data sources. It is then followed by nodule segmentation process, which is conducted by Adaptive Multi-Scale Dilated Trans-Unet3+. For increasing the segmentation accuracy, the parameters in this model is optimized by proposing Modified Transfer Operator-based Archimedes Optimization (MTO-AO). At the end, the segmented images are subjected to classification procedure, namely, Advanced Dilated Ensemble Convolutional Neural Networks (ADECNN), in which it is constructed with Inception, ResNet and MobileNet, where the hyper parameters is tuned by MTO-AO. From the three networks, the final result is estimated by high ranking-based classification. Hence, the performance is investigated using multiple measures and compared among different approaches. Thus, the findings of model demonstrate to prove the system's efficiency of detecting cancer and help the patient to get the appropriate treatment.
Author Chowdary, Shalini
Purushotaman, Shyamala Bharathi
Author_xml – sequence: 1
  givenname: Shalini
  surname: Chowdary
  fullname: Chowdary, Shalini
– sequence: 2
  givenname: Shyamala Bharathi
  surname: Purushotaman
  fullname: Purushotaman, Shyamala Bharathi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38975771$$D View this record in MEDLINE/PubMed
BookMark eNo9kctO6zAQhi0EgnJ5BJCXZ5Nix03sLKuew0UqsAAkdpFjj4tR4hTbOQhehxfFoQWNNCPNfDMa_f8h2nW9A4ROKZlSIsg5qYqZqMTTNCf5bJozzmjOd9CEspJmZcHKXTQZmWyEDtBhCC-EEJ5zto8OmKh4wTmdoM-5w9fd2vf_QeO5V8-2Aw0B362j7eyHjLZ3mbQ6TW-GNtosKNkC_guwxkuQ3lm3wvew6sDFbxi_2fiMtW1lTDvgAnRNWljc3mLVyhCssWoDmt5jDRFUHG-0Q0pKOgUeD2HsLB6w7eQKwjHaM7INcLKtR-jx4t_D4ipb3l1eL-bLTOUFj5loBCkppzNBjRBl1WhuctIoVnIiqFSqKURFtOEVYSZXyuiKzpqGy0ILYqhkR-jP5m6S43WAEOvOBgVtKx30Q6gZ4WUKymhCz7bo0CTB6rVPr_r3-kfYBBQbQPk-BA_mF6GkHg2sfwysRwPrrYHsC3w1kDY
Cites_doi 10.1109/ACCESS.2019.2905574
10.1186/s13634-021-00740-8
10.1016/j.compbiomed.2021.104961
10.1007/s11042-019-08394-3
10.1109/TCBB.2020.3027744
10.1007/s11277-022-09676-0
10.1016/j.acra.2021.12.001
10.1016/j.eswa.2021.114685
10.1016/j.bbe.2019.11.004
10.1109/ECACE.2019.8679439
10.1109/TITB.2007.899504
10.1016/j.lungcan.2021.01.027
10.1016/j.acra.2020.06.010
10.1016/j.csbj.2021.02.016
10.1016/j.heliyon.2023.e21520
10.1016/j.jii.2022.100386
10.1016/j.compbiomed.2024.108136
10.1109/ACCESS.2020.2992645
10.1109/JCSSE.2019.8864155
10.1016/j.cmpb.2022.107108
10.1016/j.engappai.2019.103249
10.3390/diagnostics13040738
10.1109/TMI.2019.2947595
10.1109/JBHI.2017.2725903
10.1007/s11704-020-9050-z
10.1109/TMI.2018.2876510
10.1109/ACCESS.2020.3044941
10.1109/JBHI.2020.3039741
10.1109/JBHI.2021.3053023
10.1016/j.asoc.2012.11.026
10.1016/j.procs.2021.01.025
10.1109/ACCESS.2022.3208134
10.1016/j.measurement.2019.05.027
10.1007/s10489-020-01893-z
10.1007/s11042-021-11066-w
10.1016/j.procs.2022.12.049
10.1109/TMI.2020.3026261
10.1007/s00521-020-04842-6
10.1038/s41598-021-04667-w
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1080/0954898X.2024.2373127
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1361-6536
EndPage 1581
ExternalDocumentID 38975771
10_1080_0954898X_2024_2373127
Genre Journal Article
GroupedDBID ---
-~X
.4S
.DC
00X
03L
0R~
123
29N
36B
4.4
AAGDL
AALUX
AAMIU
AAPUL
AAQRR
AAYXX
ABBKH
ABEIZ
ABIVO
ABJNI
ABLIJ
ABLKL
ABUPF
ABWVI
ABXYU
ACENM
ACGEJ
ACGFS
ACIEZ
ADCVX
ADRBQ
ADXPE
AECIN
AEOZL
AFKVX
AFRVT
AGDLA
AGFJD
AGRBW
AGYJP
AIJEM
AIRBT
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALYBC
AMDAE
BABNJ
BLEHA
BOHLJ
CCCUG
CITATION
CS3
DKSSO
EBS
EMB
F5P
H13
HZ~
KRBQP
KWAYT
KYCEM
M4Z
O9-
P2P
RNANH
RO9
RVRKI
TASJS
TBQAZ
TDBHL
TERGH
TFDNU
TFL
TFW
TUROJ
TUS
UEQFS
V1S
~1N
5VS
5ZH
5ZI
AAGCF
AAJKZ
AALIY
AAORF
AAPXX
ABWCV
ABZEW
ACKZS
ACOPL
ACYZI
ADFOM
ADFZZ
AEFHF
AEIIZ
AETNG
AFLEI
AJVHN
AQTUD
ARCSS
AWYRJ
BRMBE
CAG
CGR
COF
CUY
CVF
CYYVM
CZDIS
DRXRE
DWTOO
EBD
ECM
EDO
EIF
EJD
EMOBN
I-F
IHE
IOP
IZVLO
JENTW
KOT
LAP
M44
M45
NPM
NUSFT
QQXMO
RIV
RKQ
ROL
SV3
XPP
ZMT
7X8
ID FETCH-LOGICAL-c257t-8b806171481f8869bd7f20bc367081accb5890df7903f2ccfd914bb7a5d80f1a3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001264732900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0954-898X
1361-6536
IngestDate Fri Sep 05 14:35:44 EDT 2025
Mon Nov 03 01:58:10 EST 2025
Sat Nov 29 06:56:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords advanced dilated ensemble convolutional neural networks
Detecting lung cancer
modified transfer operator-based Archimedes optimization
CT scan images
adaptive multi-scale dilated trans-Unet3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-8b806171481f8869bd7f20bc367081accb5890df7903f2ccfd914bb7a5d80f1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38975771
PQID 3076767131
PQPubID 23479
PageCount 39
ParticipantIDs proquest_miscellaneous_3076767131
pubmed_primary_38975771
crossref_primary_10_1080_0954898X_2024_2373127
PublicationCentury 2000
PublicationDate 2025-10-02
PublicationDateYYYYMMDD 2025-10-02
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Network (Bristol)
PublicationTitleAlternate Network
PublicationYear 2025
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_42_1
e_1_3_2_20_1
e_1_3_2_41_1
Bui N (e_1_3_2_6_1) 2024
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_43_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
e_1_3_2_40_1
Al-Tarawneh MS. (e_1_3_2_2_1) 2012; 11
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_15_1
e_1_3_2_36_1
Nasser IM (e_1_3_2_29_1) 2019; 3
References_xml – ident: e_1_3_2_22_1
  doi: 10.1109/ACCESS.2019.2905574
– ident: e_1_3_2_7_1
  doi: 10.1186/s13634-021-00740-8
– ident: e_1_3_2_14_1
  doi: 10.1016/j.compbiomed.2021.104961
– ident: e_1_3_2_3_1
  doi: 10.1007/s11042-019-08394-3
– ident: e_1_3_2_8_1
  doi: 10.1109/TCBB.2020.3027744
– ident: e_1_3_2_41_1
  doi: 10.1007/s11277-022-09676-0
– ident: e_1_3_2_32_1
  doi: 10.1016/j.acra.2021.12.001
– ident: e_1_3_2_5_1
  doi: 10.1016/j.eswa.2021.114685
– ident: e_1_3_2_40_1
  doi: 10.1016/j.bbe.2019.11.004
– ident: e_1_3_2_31_1
  doi: 10.1109/ECACE.2019.8679439
– ident: e_1_3_2_11_1
  doi: 10.1109/TITB.2007.899504
– ident: e_1_3_2_19_1
  doi: 10.1016/j.lungcan.2021.01.027
– ident: e_1_3_2_16_1
  doi: 10.1016/j.acra.2020.06.010
– ident: e_1_3_2_21_1
  doi: 10.1016/j.csbj.2021.02.016
– ident: e_1_3_2_13_1
  doi: 10.1016/j.heliyon.2023.e21520
– ident: e_1_3_2_15_1
  doi: 10.1016/j.jii.2022.100386
– ident: e_1_3_2_39_1
  doi: 10.1016/j.compbiomed.2024.108136
– ident: e_1_3_2_43_1
  doi: 10.1109/ACCESS.2020.2992645
– ident: e_1_3_2_34_1
  doi: 10.1109/JCSSE.2019.8864155
– ident: e_1_3_2_10_1
  doi: 10.1016/j.cmpb.2022.107108
– ident: e_1_3_2_18_1
  doi: 10.1016/j.engappai.2019.103249
– ident: e_1_3_2_12_1
  doi: 10.3390/diagnostics13040738
– ident: e_1_3_2_30_1
  doi: 10.1109/TMI.2019.2947595
– ident: e_1_3_2_20_1
  doi: 10.1109/JBHI.2017.2725903
– ident: e_1_3_2_38_1
  doi: 10.1007/s11704-020-9050-z
– ident: e_1_3_2_42_1
  doi: 10.1109/TMI.2018.2876510
– year: 2024
  ident: e_1_3_2_6_1
  article-title: SAM3D: Segment anything model in volumetric medical images
  publication-title: arxiv
– ident: e_1_3_2_9_1
  doi: 10.1109/ACCESS.2020.3044941
– ident: e_1_3_2_23_1
  doi: 10.1109/JBHI.2020.3039741
– ident: e_1_3_2_25_1
  doi: 10.1109/JBHI.2021.3053023
– ident: e_1_3_2_33_1
  doi: 10.1016/j.asoc.2012.11.026
– ident: e_1_3_2_35_1
  doi: 10.1016/j.procs.2021.01.025
– ident: e_1_3_2_27_1
  doi: 10.1109/ACCESS.2022.3208134
– ident: e_1_3_2_36_1
  doi: 10.1016/j.measurement.2019.05.027
– ident: e_1_3_2_17_1
  doi: 10.1007/s10489-020-01893-z
– ident: e_1_3_2_26_1
  doi: 10.1007/s11042-021-11066-w
– ident: e_1_3_2_4_1
  doi: 10.1016/j.procs.2022.12.049
– ident: e_1_3_2_24_1
  doi: 10.1109/TMI.2020.3026261
– ident: e_1_3_2_28_1
  doi: 10.1007/s00521-020-04842-6
– volume: 11
  start-page: 147
  issue: 21
  year: 2012
  ident: e_1_3_2_2_1
  article-title: Lung cancer detection using image processing techniques
  publication-title: Leonardo Electron J Practices And Technol
– ident: e_1_3_2_37_1
  doi: 10.1038/s41598-021-04667-w
– volume: 3
  start-page: 17
  issue: 3
  year: 2019
  ident: e_1_3_2_29_1
  article-title: Lung cancer detection using artificial neural network
  publication-title: Int J Eng And Inf Syst (IJEAIS)
SSID ssj0007273
Score 2.4191399
Snippet Early detection of lung cancer is necessary to prevent deaths caused by lung cancer. But, the identification of cancer in lungs using Computed Tomography (CT)...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage 1543
SubjectTerms Algorithms
Deep Learning
Early Detection of Cancer - methods
Humans
Image Processing, Computer-Assisted - methods
Lung Neoplasms - diagnostic imaging
Neural Networks, Computer
Tomography, X-Ray Computed - methods
Title An Improved Archimedes Optimization-aided Multi-scale Deep Learning Segmentation with dilated ensemble CNN classification for detecting lung cancer using CT images
URI https://www.ncbi.nlm.nih.gov/pubmed/38975771
https://www.proquest.com/docview/3076767131
Volume 36
WOSCitedRecordID wos001264732900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1361-6536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007273
  issn: 0954-898X
  databaseCode: TFW
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lBaFy4FEKhEe1SNwsR7E3zq6PbUTFhYBEELlZ-7CbSIkTxXEfvweJ38mM1-u40Epw4GKtbWl9-D7PzM7OfEvIe3C5oR7i1n88yPyBGca-UCrwFVPM6JCrSKrqsAk-HovpNP7S6fx0vTAXC57n4uoqXv9XqOEZgI2ts_8AdzMpPIAxgA5XgB2ufwU8pvmqTAGEkpWuLPi7tPA-g21Y1k2XPupCGq9qvvULQAmLh9K1E1s9Bwtyvqybkmybt2fmC4nBKax60yV2W43GY09j6I21RruKRZPirgTOsSixnRdJtfFKW14w8eZLsF9FOyIe2zp0jHRPK52DRSs5MZqtLo20O_1fZxK7OBtbXm7KYrbaSpfCnV3DcCG9U5Sg3s7m7XxGWOmg9q1BTq0NZsPAH0ZWF8UZ6fpu3s5AVBYXQkB2qyuoaydR0C4W0x58atALGWeB1SJoMWG9rKgAoRuPuD0Q5jcNbvdqj9wLYYCWdHL2vfH4GAO67jDUbb_tmwfkgZvlZgh0x7qmim8mT8ijemFCTyyhnpJOmh-Sx-7QD1r7gEPysKVgCXefGtnf4hn5cZJTxz264x79k3u0xT2K3KOOe7TNPYrcozX3qOMeBe7Rm9yjwD3acI8i96jlHq24R0cTarl3RL6dfZiMPvr1KSC-BneyBdMhMMyGZXuQCTGMleFZ2FcalQdFILVWkYj7JuNxn2Wh1pmJg4FSXEZG9LNAsudkP1_l6UtCeSgzZuKB0DKChUgWgykyWoQKRZJYqLqk54BJ1lbsJQmchm4NaoKgJjWoXfLOwZeAWca9Npmnq7JIwHWiFGLAgi55YXFtpnQ8eHXnm9fkYPdrvCH7202ZviX39cV2XmyOyR6fiuOKgr8AWWi1tw
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Archimedes+Optimization-aided+Multi-scale+Deep+Learning+Segmentation+with+dilated+ensemble+CNN+classification+for+detecting+lung+cancer+using+CT+images&rft.jtitle=Network+%28Bristol%29&rft.au=Chowdary%2C+Shalini&rft.au=Purushotaman%2C+Shyamala+Bharathi&rft.date=2025-10-02&rft.eissn=1361-6536&rft.volume=36&rft.issue=4&rft.spage=1543&rft_id=info:doi/10.1080%2F0954898X.2024.2373127&rft_id=info%3Apmid%2F38975771&rft.externalDocID=38975771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-898X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-898X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-898X&client=summon