An $hp$ Finite Element Method to Solve a Fluid-Solid Vibration Problem
This paper deals with a two-dimensional fluid-solid vibration problem arising from nuclear engineering: the vibration of elastically mounted tubes immersed in a cavity filled with fluid. A convenient variational formulation of this problem, valid for compressible and incompressible fluids, is introd...
Uloženo v:
| Vydáno v: | SIAM journal on scientific computing Ročník 34; číslo 5; s. A2533 - A2557 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2012
|
| Témata: | |
| ISSN: | 1064-8275, 1095-7197 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper deals with a two-dimensional fluid-solid vibration problem arising from nuclear engineering: the vibration of elastically mounted tubes immersed in a cavity filled with fluid. A convenient variational formulation of this problem, valid for compressible and incompressible fluids, is introduced. An $hp$ finite element method is used for its discretization, which leads to a well posed matrix eigenvalue problem. Optimal order a priori error estimates are proved for eigenfunctions and eigenvalues. Then, local a posteriori error indicators are defined and its efficiency and reliability are studied. An adaptive scheme driven by these indicators is proposed and numerically tested. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1064-8275 1095-7197 |
| DOI: | 10.1137/120868396 |