An $hp$ Finite Element Method to Solve a Fluid-Solid Vibration Problem

This paper deals with a two-dimensional fluid-solid vibration problem arising from nuclear engineering: the vibration of elastically mounted tubes immersed in a cavity filled with fluid. A convenient variational formulation of this problem, valid for compressible and incompressible fluids, is introd...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on scientific computing Ročník 34; číslo 5; s. A2533 - A2557
Hlavní autoři: Padra, Claudio, Rodríguez, Rodolfo, Scheble, Mario
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2012
Témata:
ISSN:1064-8275, 1095-7197
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper deals with a two-dimensional fluid-solid vibration problem arising from nuclear engineering: the vibration of elastically mounted tubes immersed in a cavity filled with fluid. A convenient variational formulation of this problem, valid for compressible and incompressible fluids, is introduced. An $hp$ finite element method is used for its discretization, which leads to a well posed matrix eigenvalue problem. Optimal order a priori error estimates are proved for eigenfunctions and eigenvalues. Then, local a posteriori error indicators are defined and its efficiency and reliability are studied. An adaptive scheme driven by these indicators is proposed and numerically tested. [PUBLICATION ABSTRACT]
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1064-8275
1095-7197
DOI:10.1137/120868396