Fusing deep and hand-crafted features by deep canonically correlated contractive autoencoder for offline signature verification

Handwritten signatures are currently the most widely used and recognized form of identity authorization, which is a significant way for individuals to express their identity to information. Since the forgers learn information about the genuine signatures from the target signer in advance, there are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition Jg. 168; S. 111834
Hauptverfasser: Zhao, Xingbiao, Zheng, Lidong, Yuan, Panli, Zheng, Yuchen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2025
Schlagworte:
ISSN:0031-3203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Handwritten signatures are currently the most widely used and recognized form of identity authorization, which is a significant way for individuals to express their identity to information. Since the forgers learn information about the genuine signatures from the target signer in advance, there are usually only minor discrepancies between skilled forged and genuine signatures. Therefore, building an automatic handwritten signature verification system to recognize skilled forgeries is a worthy challenging task. In this paper, to learn a good representation for distinguishing skilled forged and genuine signatures, we propose an offline handwritten signature verification system that fuses deep learning-based and hand-crafted features, which combines the merits of different views of features. Specifically, a novel multi-view representation learning method is proposed, named Deep Canonically Correlated Contractive Autoencoder (DCCCAE) for learning combined representations between deep and hand-crafted features. After the feature learning process, we train Support Vector Machines (SVMs) as writer-dependent classifiers for each signer to build the completed verification system. Extensive experiments and analyses on four different language datasets, such as English (CEDAR), Persian (UTSig), Bengali and Hindi (BHSig), and Chinese (SigComp2011) demonstrate that the proposed system improves the learning ability compared with the single view features and achieve the competitive performance compared with the state-of-the-art verification systems. •A multi-view representation learning method called DCCCAE to fuse deep learning-based and hand-crafted feature.•A novel method to protect user information and privacy for offline signature verification tasks.•Extensive experiments on four public language datasets demonstrate the proposed method achieves state-of-the-art results.
AbstractList Handwritten signatures are currently the most widely used and recognized form of identity authorization, which is a significant way for individuals to express their identity to information. Since the forgers learn information about the genuine signatures from the target signer in advance, there are usually only minor discrepancies between skilled forged and genuine signatures. Therefore, building an automatic handwritten signature verification system to recognize skilled forgeries is a worthy challenging task. In this paper, to learn a good representation for distinguishing skilled forged and genuine signatures, we propose an offline handwritten signature verification system that fuses deep learning-based and hand-crafted features, which combines the merits of different views of features. Specifically, a novel multi-view representation learning method is proposed, named Deep Canonically Correlated Contractive Autoencoder (DCCCAE) for learning combined representations between deep and hand-crafted features. After the feature learning process, we train Support Vector Machines (SVMs) as writer-dependent classifiers for each signer to build the completed verification system. Extensive experiments and analyses on four different language datasets, such as English (CEDAR), Persian (UTSig), Bengali and Hindi (BHSig), and Chinese (SigComp2011) demonstrate that the proposed system improves the learning ability compared with the single view features and achieve the competitive performance compared with the state-of-the-art verification systems. •A multi-view representation learning method called DCCCAE to fuse deep learning-based and hand-crafted feature.•A novel method to protect user information and privacy for offline signature verification tasks.•Extensive experiments on four public language datasets demonstrate the proposed method achieves state-of-the-art results.
ArticleNumber 111834
Author Zhao, Xingbiao
Yuan, Panli
Zheng, Yuchen
Zheng, Lidong
Author_xml – sequence: 1
  givenname: Xingbiao
  orcidid: 0000-0002-3973-2087
  surname: Zhao
  fullname: Zhao, Xingbiao
  email: zxb@stu.shzu.edu.cn
  organization: College of Information Science and Technology, Shihezi University, Shihezi, 832061, China
– sequence: 2
  givenname: Lidong
  orcidid: 0009-0003-3150-2986
  surname: Zheng
  fullname: Zheng, Lidong
  email: zld0608@outlook.com
  organization: College of Information Science and Technology, Shihezi University, Shihezi, 832061, China
– sequence: 3
  givenname: Panli
  surname: Yuan
  fullname: Yuan, Panli
  email: ypl_inf@outlook.com
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 4
  givenname: Yuchen
  orcidid: 0000-0003-3093-6929
  surname: Zheng
  fullname: Zheng, Yuchen
  email: ouczyc@outlook.com
  organization: College of Information Science and Technology, Shihezi University, Shihezi, 832061, China
BookMark eNp9kL9OAzEMhzMUibbwBgx5gTuS3N8sSKiigFSJBebITZyS6kiqJK3UiVfnyjGz2It_n-1vQWY-eCTkjrOSM97e78sDZB12pWCiKTnnfVXPyJyxiheVYNU1WaS0Z4x3vBZz8r0-Jud31CAeKHhDP8dS6Ag2o6EWIR8jJro9TxMaxnVOwzCcqQ4x4gCXOR18jqCzOyGFYw7odTAYqQ2RBmsH55Emt_O_NHrC6OwIyS74G3JlYUh4-9eX5GP99L56KTZvz6-rx02hRdPlorNNC4zVdc1lD1aCkdAJwaSVveWm7U3dN9hUAuqul7Jqt9sGpLCSWQMcWLUk9cTVMaQU0apDdF8Qz4ozdRGn9moSpy7i1CRujD1MMRxvOzmMKmk3fofGRdRZmeD-B_wAZVF_mg
Cites_doi 10.1109/TMM.2021.3056217
10.1109/TIFS.2019.2949425
10.1016/j.eswa.2021.116136
10.1109/ICFHR.2014.109
10.1016/j.patcog.2016.01.009
10.1109/TPAMI.2005.125
10.1023/B:VISI.0000029664.99615.94
10.1109/PRIA.2019.8785979
10.1109/TGRS.2020.3046757
10.1007/s11042-020-08728-6
10.1109/ICDAR.2011.294
10.1109/WACV48630.2021.00360
10.1007/s10032-019-00331-2
10.1142/S0218001404003630
10.1109/TIFS.2019.2924195
10.1016/j.neucom.2019.09.041
10.1016/j.neucom.2022.01.005
10.1109/TPAMI.2009.77
10.1109/CVPRW.2018.00084
10.1016/j.patcog.2013.06.026
10.1007/s10032-018-0301-6
10.1109/TSMC.1979.4310076
10.1007/s11042-019-08022-0
10.1016/j.eswa.2020.114417
10.1016/j.knosys.2021.107531
10.1016/j.patcog.2017.05.012
10.1007/s00521-023-09192-7
10.1016/j.patcog.2021.108008
10.1109/ICCV48922.2021.01156
10.1007/s00521-019-04220-x
10.1109/DAS.2016.48
10.1016/j.patrec.2018.01.021
10.1109/TGRS.2019.2952758
10.1061/(ASCE)CP.1943-5487.0000945
10.1016/j.eswa.2021.115649
10.1049/iet-bmt.2015.0058
10.1145/358790.358797
10.1016/j.eswa.2021.114602
10.1016/j.patrec.2019.06.024
10.1007/978-3-540-85920-8_3
10.1016/j.neucom.2022.08.017
10.1016/j.patcog.2018.02.027
10.1109/SAI.2014.6918213
10.1049/bme2.12007
10.1016/j.patcog.2017.05.025
10.1016/j.patcog.2021.108009
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2025.111834
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_patcog_2025_111834
S0031320325004947
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABWVN
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADMXK
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c257t-7f56a00444198af9ad9a72209f98f1d68d485e532a4789936bb5a92f90fda1a03
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001504579400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 07:33:14 EST 2025
Sat Oct 11 16:51:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-view
Hand-crafted feature
Handwritten signature verification
Deep feature
Identity authorization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-7f56a00444198af9ad9a72209f98f1d68d485e532a4789936bb5a92f90fda1a03
ORCID 0000-0002-3973-2087
0000-0003-3093-6929
0009-0003-3150-2986
ParticipantIDs crossref_primary_10_1016_j_patcog_2025_111834
elsevier_sciencedirect_doi_10_1016_j_patcog_2025_111834
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jain, Singh, Pratap Singh (b50) 2021; 10
M. Liwicki, M.I. Malik, C.E. Van Den Heuvel, X. Chen, C. Berger, R. Stoel, M. Blumenstein, B. Found, Signature verification competition for online and offline skilled forgeries (sigcomp2011), in: 2011 International Conference on Document Analysis and Recognition, 2011, pp. 1480–1484.
Mo, Wu, Yang, Liu, Liao (b14) 2022; 493
Dalal, Triggs (b29) 2005; vol. 1
Batool, Attique, Sharif, Javed, Nazir, Abbasi, Iqbal, Riaz (b34) 2024
Okawa (b19) 2018; 79
Kalera, Srihari, Xu (b25) 2004; 18
Nanni, Ghidoni, Brahnam (b18) 2017; 71
S. Khalid, T. Khalil, S. Nasreen, A survey of feature selection and feature extraction techniques in machine learning, in: 2014 Science and Information Conference, 2014, pp. 372–378.
Pi, Yang, Wei, Zhao, Cai, Yi (b37) 2022; 236
Soleimani, Fouladi, Araabi (b26) 2017; 6
Hafemann, Sabourin, Oliveira (b9) 2017; 70
Hotelling (b23) 1992
Parcham, Ilbeygi, Amini (b17) 2021; 185
Jain, Singh, Singh (b3) 2020; 79
Diaz, Ferrer, Ramalingam, Guest (b52) 2019; 15
Maergner, Pondenkandath, Alberti, Liwicki, Riesen, Ingold, Fischer (b41) 2019; 125
Lamport (b1) 1981; 24
Y. Dai, F. Gieseke, S. Oehmcke, Y. Wu, K. Barnard, Attentional feature fusion, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 3560–3569.
Tola, Lepetit, Fua (b33) 2009; 32
Ferrer, Alonso, Travieso (b4) 2005; 27
Bhunia, Alaei, Roy (b20) 2019; 31
Hafemann, Sabourin, Oliveira (b40) 2019; 15
Hafemann, Oliveira, Sabourin (b15) 2018; 21
O. Mersa, F. Etaati, S. Masoudnia, B.N. Araabi, Learning representations from persian handwriting for offline signature verification, a deep transfer learning approach, in: 2019 4th International Conference on Pattern Recognition and Image Analysis, 2019, pp. 268–273.
Albregtsen (b32) 2008; 5
Liu, Huang, Yin, Chen (b16) 2021; 118
Tsourounis, Theodorakopoulos, Zois, Economou (b46) 2022; 189
Parodi, Gómez (b51) 2014; 47
Shariatmadari, Emadi, Akbari (b44) 2019; 22
Yang, Wu, Du, Zhang (b36) 2021; 59
W. Wang, R. Arora, K. Livescu, J. Bilmes, On deep multi-view representation learning, in: International Conference on Machine Learning, 2015, pp. 1083–1092.
M. Yang, D. He, M. Fan, B. Shi, X. Xue, F. Li, E. Ding, J. Huang, Dolg: Single-stage image retrieval with deep orthogonal fusion of local and global features, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 11772–11781.
Bibi, Naz, Rehman (b2) 2020; 79
Diaz, Ferrer, Vessio (b45) 2024; 36
Jiang, Lai, Jin, Zhu, Zhang, Chen (b47) 2022; 507
Sharif, Khan, Faisal, Yasmin, Fernandes (b21) 2020; 139
Ojala, Pietikainen, Harwood (b30) 1994; vol. 1
J. Ruiz-del Solar, C. Devia, P. Loncomilla, F. Concha, Offline signature verification using local interest points and descriptors, in: Iberoamerican Congress on Pattern Recognition, 2008, pp. 22–29.
Lowe (b31) 2004; 60
S. Pal, A. Alaei, U. Pal, M. Blumenstein, Performance of an off-line signature verification method based on texture features on a large indic-script signature dataset, in: 2016 12th IAPR Workshop on Document Analysis Systems, 2016, pp. 72–77.
Li, Wei, Hu (b49) 2021; 24
Zois, Alewijnse, Economou (b6) 2016; 54
Liu, Sun, Wergeles, Shang (b11) 2021; 172
Zheng, Iwana, Malik, Ahmed, Ohyama, Uchida (b43) 2021; 118
Otsu (b22) 1979; 9
Yuan, Shi, Gu (b13) 2021; 169
E.N. Zois, M. Papagiannopoulou, D. Tsourounis, G. Economou, Hierarchical dictionary learning and sparse coding for static signature verification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 432–442.
M.I. Malik, M. Liwicki, A. Dengel, S. Uchida, V. Frinken, Automatic signature stability analysis and verification using local features, in: 2014 14th International Conference on Frontiers in Handwriting Recognition, 2014, pp. 621–626.
Li, Ding, Pižurica (b35) 2019; 58
Xiao, Kang (b12) 2021; 35
Ruiz, Linares, Sanchez, Velez (b5) 2020; 374
Ferrer (10.1016/j.patcog.2025.111834_b4) 2005; 27
Dalal (10.1016/j.patcog.2025.111834_b29) 2005; vol. 1
10.1016/j.patcog.2025.111834_b42
Li (10.1016/j.patcog.2025.111834_b49) 2021; 24
Shariatmadari (10.1016/j.patcog.2025.111834_b44) 2019; 22
10.1016/j.patcog.2025.111834_b48
Bibi (10.1016/j.patcog.2025.111834_b2) 2020; 79
Hotelling (10.1016/j.patcog.2025.111834_b23) 1992
Li (10.1016/j.patcog.2025.111834_b35) 2019; 58
Lamport (10.1016/j.patcog.2025.111834_b1) 1981; 24
Hafemann (10.1016/j.patcog.2025.111834_b40) 2019; 15
Liu (10.1016/j.patcog.2025.111834_b11) 2021; 172
Tsourounis (10.1016/j.patcog.2025.111834_b46) 2022; 189
Albregtsen (10.1016/j.patcog.2025.111834_b32) 2008; 5
Zheng (10.1016/j.patcog.2025.111834_b43) 2021; 118
Xiao (10.1016/j.patcog.2025.111834_b12) 2021; 35
10.1016/j.patcog.2025.111834_b10
Maergner (10.1016/j.patcog.2025.111834_b41) 2019; 125
Ojala (10.1016/j.patcog.2025.111834_b30) 1994; vol. 1
10.1016/j.patcog.2025.111834_b8
10.1016/j.patcog.2025.111834_b7
Bhunia (10.1016/j.patcog.2025.111834_b20) 2019; 31
Diaz (10.1016/j.patcog.2025.111834_b45) 2024; 36
Jain (10.1016/j.patcog.2025.111834_b50) 2021; 10
Pi (10.1016/j.patcog.2025.111834_b37) 2022; 236
Soleimani (10.1016/j.patcog.2025.111834_b26) 2017; 6
Zois (10.1016/j.patcog.2025.111834_b6) 2016; 54
Hafemann (10.1016/j.patcog.2025.111834_b15) 2018; 21
Ruiz (10.1016/j.patcog.2025.111834_b5) 2020; 374
Nanni (10.1016/j.patcog.2025.111834_b18) 2017; 71
Kalera (10.1016/j.patcog.2025.111834_b25) 2004; 18
Mo (10.1016/j.patcog.2025.111834_b14) 2022; 493
Yuan (10.1016/j.patcog.2025.111834_b13) 2021; 169
Sharif (10.1016/j.patcog.2025.111834_b21) 2020; 139
10.1016/j.patcog.2025.111834_b27
10.1016/j.patcog.2025.111834_b24
Batool (10.1016/j.patcog.2025.111834_b34) 2024
10.1016/j.patcog.2025.111834_b28
Hafemann (10.1016/j.patcog.2025.111834_b9) 2017; 70
Okawa (10.1016/j.patcog.2025.111834_b19) 2018; 79
Jain (10.1016/j.patcog.2025.111834_b3) 2020; 79
Tola (10.1016/j.patcog.2025.111834_b33) 2009; 32
10.1016/j.patcog.2025.111834_b38
Parcham (10.1016/j.patcog.2025.111834_b17) 2021; 185
10.1016/j.patcog.2025.111834_b39
Lowe (10.1016/j.patcog.2025.111834_b31) 2004; 60
Parodi (10.1016/j.patcog.2025.111834_b51) 2014; 47
Diaz (10.1016/j.patcog.2025.111834_b52) 2019; 15
Yang (10.1016/j.patcog.2025.111834_b36) 2021; 59
Otsu (10.1016/j.patcog.2025.111834_b22) 1979; 9
Liu (10.1016/j.patcog.2025.111834_b16) 2021; 118
Jiang (10.1016/j.patcog.2025.111834_b47) 2022; 507
References_xml – volume: 5
  year: 2008
  ident: b32
  article-title: Statistical texture measures computed from gray level coocurrence matrices
  publication-title: Image Process. Lab. Dep. Inform. Univ. Oslo.
– volume: 70
  start-page: 163
  year: 2017
  end-page: 176
  ident: b9
  article-title: Learning features for offline handwritten signature verification using deep convolutional neural networks
  publication-title: Pattern Recognit.
– volume: 35
  year: 2021
  ident: b12
  article-title: Development of an image data set of construction machines for deep learning object detection
  publication-title: J. Comput. Civ. Eng.
– volume: 79
  start-page: 289
  year: 2020
  end-page: 340
  ident: b2
  article-title: Biometric signature authentication using machine learning techniques: Current trends, challenges and opportunities
  publication-title: Multimedia Tools Appl.
– start-page: 1
  year: 2024
  end-page: 20
  ident: b34
  article-title: Offline signature verification system: a novel technique of fusion of GLCM and geometric features using SVM
  publication-title: Multimedia Tools Appl.
– reference: M. Yang, D. He, M. Fan, B. Shi, X. Xue, F. Li, E. Ding, J. Huang, Dolg: Single-stage image retrieval with deep orthogonal fusion of local and global features, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 11772–11781.
– start-page: 162
  year: 1992
  end-page: 190
  ident: b23
  article-title: Relations between two sets of variates
  publication-title: Breakthroughs in Statistics: Methodology and Distribution
– volume: 125
  start-page: 527
  year: 2019
  end-page: 533
  ident: b41
  article-title: Combining graph edit distance and triplet networks for offline signature verification
  publication-title: Pattern Recognit. Lett.
– reference: Y. Dai, F. Gieseke, S. Oehmcke, Y. Wu, K. Barnard, Attentional feature fusion, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 3560–3569.
– volume: 47
  start-page: 128
  year: 2014
  end-page: 140
  ident: b51
  article-title: Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations
  publication-title: Pattern Recognit.
– volume: 493
  start-page: 626
  year: 2022
  end-page: 646
  ident: b14
  article-title: Review the state-of-the-art technologies of semantic segmentation based on deep learning
  publication-title: Neurocomputing
– volume: vol. 1
  start-page: 886
  year: 2005
  end-page: 893
  ident: b29
  article-title: Histograms of oriented gradients for human detection
  publication-title: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– reference: J. Ruiz-del Solar, C. Devia, P. Loncomilla, F. Concha, Offline signature verification using local interest points and descriptors, in: Iberoamerican Congress on Pattern Recognition, 2008, pp. 22–29.
– reference: M.I. Malik, M. Liwicki, A. Dengel, S. Uchida, V. Frinken, Automatic signature stability analysis and verification using local features, in: 2014 14th International Conference on Frontiers in Handwriting Recognition, 2014, pp. 621–626.
– volume: 24
  start-page: 770
  year: 1981
  end-page: 772
  ident: b1
  article-title: Password authentication with insecure communication
  publication-title: Commun. ACM
– volume: 58
  start-page: 2615
  year: 2019
  end-page: 2629
  ident: b35
  article-title: Deep feature fusion via two-stream convolutional neural network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 118
  year: 2021
  ident: b16
  article-title: Offline signature verification using a region based deep metric learning network
  publication-title: Pattern Recognit.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b22
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 79
  start-page: 480
  year: 2018
  end-page: 489
  ident: b19
  article-title: Synergy of foreground–background images for feature extraction: Offline signature verification using Fisher vector with fused KAZE features
  publication-title: Pattern Recognit.
– volume: 32
  start-page: 815
  year: 2009
  end-page: 830
  ident: b33
  article-title: Daisy: An efficient dense descriptor applied to wide-baseline stereo
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  ident: b31
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
– volume: 236
  year: 2022
  ident: b37
  article-title: Fusing deep and handcrafted features for intelligent recognition of uptake patterns on thyroid scintigraphy
  publication-title: Knowl.-Based Syst.
– volume: 185
  year: 2021
  ident: b17
  article-title: CBCapsNet: A novel writer-independent offline signature verification model using a CNN-based architecture and capsule neural networks
  publication-title: Expert Syst. Appl.
– reference: O. Mersa, F. Etaati, S. Masoudnia, B.N. Araabi, Learning representations from persian handwriting for offline signature verification, a deep transfer learning approach, in: 2019 4th International Conference on Pattern Recognition and Image Analysis, 2019, pp. 268–273.
– volume: 71
  start-page: 158
  year: 2017
  end-page: 172
  ident: b18
  article-title: Handcrafted vs. non-handcrafted features for computer vision classification
  publication-title: Pattern Recognit.
– volume: 189
  year: 2022
  ident: b46
  article-title: From text to signatures: Knowledge transfer for efficient deep feature learning in offline signature verification
  publication-title: Expert Syst. Appl.
– reference: W. Wang, R. Arora, K. Livescu, J. Bilmes, On deep multi-view representation learning, in: International Conference on Machine Learning, 2015, pp. 1083–1092.
– volume: 59
  start-page: 10328
  year: 2021
  end-page: 10347
  ident: b36
  article-title: Enhanced multiscale feature fusion network for HSI classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 54
  start-page: 162
  year: 2016
  end-page: 177
  ident: b6
  article-title: Offline signature verification and quality characterization using poset-oriented grid features
  publication-title: Pattern Recognit.
– volume: 27
  start-page: 993
  year: 2005
  end-page: 997
  ident: b4
  article-title: Offline geometric parameters for automatic signature verification using fixed-point arithmetic
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 169
  year: 2021
  ident: b13
  article-title: A review of deep learning methods for semantic segmentation of remote sensing imagery
  publication-title: Expert Syst. Appl.
– volume: vol. 1
  start-page: 582
  year: 1994
  end-page: 585
  ident: b30
  article-title: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions
  publication-title: Proceedings of 12th International Conference on Pattern Recognition
– volume: 10
  start-page: 117
  year: 2021
  end-page: 126
  ident: b50
  article-title: Multi-task learning using GNet features and SVM classifier for signature identification
  publication-title: IET Biom.
– volume: 6
  start-page: 1
  year: 2017
  end-page: 8
  ident: b26
  article-title: UTSig: A Persian offline signature dataset
  publication-title: IET Biom.
– volume: 139
  start-page: 50
  year: 2020
  end-page: 59
  ident: b21
  article-title: A framework for offline signature verification system: Best features selection approach
  publication-title: Pattern Recognit. Lett.
– volume: 18
  start-page: 1339
  year: 2004
  end-page: 1360
  ident: b25
  article-title: Offline signature verification and identification using distance statistics
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– reference: E.N. Zois, M. Papagiannopoulou, D. Tsourounis, G. Economou, Hierarchical dictionary learning and sparse coding for static signature verification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 432–442.
– volume: 31
  start-page: 8737
  year: 2019
  end-page: 8748
  ident: b20
  article-title: Signature verification approach using fusion of hybrid texture features
  publication-title: Neural Comput. Appl.
– volume: 374
  start-page: 30
  year: 2020
  end-page: 41
  ident: b5
  article-title: Off-line handwritten signature verification using compositional synthetic generation of signatures and Siamese neural networks
  publication-title: Neurocomputing
– volume: 15
  start-page: 1735
  year: 2019
  end-page: 1745
  ident: b40
  article-title: Meta-learning for fast classifier adaptation to new users of signature verification systems
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 507
  start-page: 345
  year: 2022
  end-page: 357
  ident: b47
  article-title: Forgery-free signature verification with stroke-aware cycle-consistent generative adversarial network
  publication-title: Neurocomputing
– volume: 24
  start-page: 594
  year: 2021
  end-page: 608
  ident: b49
  article-title: AVN: An adversarial variation network model for handwritten signature verification
  publication-title: IEEE Trans. Multimed.
– volume: 21
  start-page: 219
  year: 2018
  end-page: 232
  ident: b15
  article-title: Fixed-sized representation learning from offline handwritten signatures of different sizes
  publication-title: Int. J. Doc. Anal. Recognit.
– volume: 79
  start-page: 19993
  year: 2020
  end-page: 20018
  ident: b3
  article-title: Handwritten signature verification using shallow convolutional neural network
  publication-title: Multimedia Tools Appl.
– reference: S. Khalid, T. Khalil, S. Nasreen, A survey of feature selection and feature extraction techniques in machine learning, in: 2014 Science and Information Conference, 2014, pp. 372–378.
– volume: 118
  year: 2021
  ident: b43
  article-title: Learning the micro deformations by max-pooling for offline signature verification
  publication-title: Pattern Recognit.
– volume: 15
  start-page: 487
  year: 2019
  end-page: 499
  ident: b52
  article-title: Investigating the common authorship of signatures by off-line automatic signature verification without the use of reference signatures
  publication-title: IEEE Trans. Inf. Forensics Secur.
– reference: S. Pal, A. Alaei, U. Pal, M. Blumenstein, Performance of an off-line signature verification method based on texture features on a large indic-script signature dataset, in: 2016 12th IAPR Workshop on Document Analysis Systems, 2016, pp. 72–77.
– volume: 36
  start-page: 2411
  year: 2024
  end-page: 2427
  ident: b45
  article-title: Explainable offline automatic signature verifier to support forensic handwriting examiners
  publication-title: Neural Comput. Appl.
– volume: 22
  start-page: 375
  year: 2019
  end-page: 385
  ident: b44
  article-title: Patch-based offline signature verification using one-class hierarchical deep learning
  publication-title: Int. J. Doc. Anal. Recognit. ( IJDAR)
– reference: M. Liwicki, M.I. Malik, C.E. Van Den Heuvel, X. Chen, C. Berger, R. Stoel, M. Blumenstein, B. Found, Signature verification competition for online and offline skilled forgeries (sigcomp2011), in: 2011 International Conference on Document Analysis and Recognition, 2011, pp. 1480–1484.
– volume: 172
  year: 2021
  ident: b11
  article-title: A survey and performance evaluation of deep learning methods for small object detection
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 594
  year: 2021
  ident: 10.1016/j.patcog.2025.111834_b49
  article-title: AVN: An adversarial variation network model for handwritten signature verification
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2021.3056217
– volume: 15
  start-page: 1735
  year: 2019
  ident: 10.1016/j.patcog.2025.111834_b40
  article-title: Meta-learning for fast classifier adaptation to new users of signature verification systems
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2019.2949425
– volume: 189
  year: 2022
  ident: 10.1016/j.patcog.2025.111834_b46
  article-title: From text to signatures: Knowledge transfer for efficient deep feature learning in offline signature verification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116136
– volume: 5
  issue: 5
  year: 2008
  ident: 10.1016/j.patcog.2025.111834_b32
  article-title: Statistical texture measures computed from gray level coocurrence matrices
  publication-title: Image Process. Lab. Dep. Inform. Univ. Oslo.
– ident: 10.1016/j.patcog.2025.111834_b8
  doi: 10.1109/ICFHR.2014.109
– volume: 54
  start-page: 162
  year: 2016
  ident: 10.1016/j.patcog.2025.111834_b6
  article-title: Offline signature verification and quality characterization using poset-oriented grid features
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.01.009
– volume: 27
  start-page: 993
  issue: 6
  year: 2005
  ident: 10.1016/j.patcog.2025.111834_b4
  article-title: Offline geometric parameters for automatic signature verification using fixed-point arithmetic
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.125
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 10.1016/j.patcog.2025.111834_b31
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: 10.1016/j.patcog.2025.111834_b48
  doi: 10.1109/PRIA.2019.8785979
– volume: 59
  start-page: 10328
  issue: 12
  year: 2021
  ident: 10.1016/j.patcog.2025.111834_b36
  article-title: Enhanced multiscale feature fusion network for HSI classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3046757
– volume: 79
  start-page: 19993
  issue: 27
  year: 2020
  ident: 10.1016/j.patcog.2025.111834_b3
  article-title: Handwritten signature verification using shallow convolutional neural network
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-08728-6
– ident: 10.1016/j.patcog.2025.111834_b28
  doi: 10.1109/ICDAR.2011.294
– ident: 10.1016/j.patcog.2025.111834_b38
  doi: 10.1109/WACV48630.2021.00360
– volume: 22
  start-page: 375
  issue: 4
  year: 2019
  ident: 10.1016/j.patcog.2025.111834_b44
  article-title: Patch-based offline signature verification using one-class hierarchical deep learning
  publication-title: Int. J. Doc. Anal. Recognit. ( IJDAR)
  doi: 10.1007/s10032-019-00331-2
– volume: 18
  start-page: 1339
  issue: 07
  year: 2004
  ident: 10.1016/j.patcog.2025.111834_b25
  article-title: Offline signature verification and identification using distance statistics
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001404003630
– volume: 15
  start-page: 487
  year: 2019
  ident: 10.1016/j.patcog.2025.111834_b52
  article-title: Investigating the common authorship of signatures by off-line automatic signature verification without the use of reference signatures
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2019.2924195
– volume: 374
  start-page: 30
  year: 2020
  ident: 10.1016/j.patcog.2025.111834_b5
  article-title: Off-line handwritten signature verification using compositional synthetic generation of signatures and Siamese neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.041
– volume: 493
  start-page: 626
  year: 2022
  ident: 10.1016/j.patcog.2025.111834_b14
  article-title: Review the state-of-the-art technologies of semantic segmentation based on deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.005
– volume: 32
  start-page: 815
  issue: 5
  year: 2009
  ident: 10.1016/j.patcog.2025.111834_b33
  article-title: Daisy: An efficient dense descriptor applied to wide-baseline stereo
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.77
– ident: 10.1016/j.patcog.2025.111834_b42
  doi: 10.1109/CVPRW.2018.00084
– volume: 47
  start-page: 128
  issue: 1
  year: 2014
  ident: 10.1016/j.patcog.2025.111834_b51
  article-title: Legendre polynomials based feature extraction for online signature verification. Consistency analysis of feature combinations
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.06.026
– volume: 21
  start-page: 219
  issue: 3
  year: 2018
  ident: 10.1016/j.patcog.2025.111834_b15
  article-title: Fixed-sized representation learning from offline handwritten signatures of different sizes
  publication-title: Int. J. Doc. Anal. Recognit.
  doi: 10.1007/s10032-018-0301-6
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.patcog.2025.111834_b22
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 79
  start-page: 289
  issue: 1
  year: 2020
  ident: 10.1016/j.patcog.2025.111834_b2
  article-title: Biometric signature authentication using machine learning techniques: Current trends, challenges and opportunities
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-019-08022-0
– volume: 169
  year: 2021
  ident: 10.1016/j.patcog.2025.111834_b13
  article-title: A review of deep learning methods for semantic segmentation of remote sensing imagery
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114417
– volume: 236
  year: 2022
  ident: 10.1016/j.patcog.2025.111834_b37
  article-title: Fusing deep and handcrafted features for intelligent recognition of uptake patterns on thyroid scintigraphy
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107531
– volume: 70
  start-page: 163
  year: 2017
  ident: 10.1016/j.patcog.2025.111834_b9
  article-title: Learning features for offline handwritten signature verification using deep convolutional neural networks
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.05.012
– volume: 36
  start-page: 2411
  issue: 5
  year: 2024
  ident: 10.1016/j.patcog.2025.111834_b45
  article-title: Explainable offline automatic signature verifier to support forensic handwriting examiners
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-09192-7
– volume: 118
  year: 2021
  ident: 10.1016/j.patcog.2025.111834_b43
  article-title: Learning the micro deformations by max-pooling for offline signature verification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108008
– ident: 10.1016/j.patcog.2025.111834_b39
  doi: 10.1109/ICCV48922.2021.01156
– ident: 10.1016/j.patcog.2025.111834_b24
– volume: 31
  start-page: 8737
  issue: 12
  year: 2019
  ident: 10.1016/j.patcog.2025.111834_b20
  article-title: Signature verification approach using fusion of hybrid texture features
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04220-x
– ident: 10.1016/j.patcog.2025.111834_b27
  doi: 10.1109/DAS.2016.48
– volume: 139
  start-page: 50
  year: 2020
  ident: 10.1016/j.patcog.2025.111834_b21
  article-title: A framework for offline signature verification system: Best features selection approach
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.01.021
– volume: 58
  start-page: 2615
  issue: 4
  year: 2019
  ident: 10.1016/j.patcog.2025.111834_b35
  article-title: Deep feature fusion via two-stream convolutional neural network for hyperspectral image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2952758
– volume: vol. 1
  start-page: 886
  year: 2005
  ident: 10.1016/j.patcog.2025.111834_b29
  article-title: Histograms of oriented gradients for human detection
– volume: 35
  issue: 2
  year: 2021
  ident: 10.1016/j.patcog.2025.111834_b12
  article-title: Development of an image data set of construction machines for deep learning object detection
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000945
– volume: 185
  year: 2021
  ident: 10.1016/j.patcog.2025.111834_b17
  article-title: CBCapsNet: A novel writer-independent offline signature verification model using a CNN-based architecture and capsule neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115649
– volume: 6
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.patcog.2025.111834_b26
  article-title: UTSig: A Persian offline signature dataset
  publication-title: IET Biom.
  doi: 10.1049/iet-bmt.2015.0058
– volume: 24
  start-page: 770
  issue: 11
  year: 1981
  ident: 10.1016/j.patcog.2025.111834_b1
  article-title: Password authentication with insecure communication
  publication-title: Commun. ACM
  doi: 10.1145/358790.358797
– volume: 172
  year: 2021
  ident: 10.1016/j.patcog.2025.111834_b11
  article-title: A survey and performance evaluation of deep learning methods for small object detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114602
– volume: vol. 1
  start-page: 582
  year: 1994
  ident: 10.1016/j.patcog.2025.111834_b30
  article-title: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions
– start-page: 162
  year: 1992
  ident: 10.1016/j.patcog.2025.111834_b23
  article-title: Relations between two sets of variates
– volume: 125
  start-page: 527
  year: 2019
  ident: 10.1016/j.patcog.2025.111834_b41
  article-title: Combining graph edit distance and triplet networks for offline signature verification
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.06.024
– ident: 10.1016/j.patcog.2025.111834_b7
  doi: 10.1007/978-3-540-85920-8_3
– start-page: 1
  year: 2024
  ident: 10.1016/j.patcog.2025.111834_b34
  article-title: Offline signature verification system: a novel technique of fusion of GLCM and geometric features using SVM
  publication-title: Multimedia Tools Appl.
– volume: 507
  start-page: 345
  year: 2022
  ident: 10.1016/j.patcog.2025.111834_b47
  article-title: Forgery-free signature verification with stroke-aware cycle-consistent generative adversarial network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.08.017
– volume: 79
  start-page: 480
  year: 2018
  ident: 10.1016/j.patcog.2025.111834_b19
  article-title: Synergy of foreground–background images for feature extraction: Offline signature verification using Fisher vector with fused KAZE features
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.02.027
– ident: 10.1016/j.patcog.2025.111834_b10
  doi: 10.1109/SAI.2014.6918213
– volume: 10
  start-page: 117
  issue: 2
  year: 2021
  ident: 10.1016/j.patcog.2025.111834_b50
  article-title: Multi-task learning using GNet features and SVM classifier for signature identification
  publication-title: IET Biom.
  doi: 10.1049/bme2.12007
– volume: 71
  start-page: 158
  year: 2017
  ident: 10.1016/j.patcog.2025.111834_b18
  article-title: Handcrafted vs. non-handcrafted features for computer vision classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.05.025
– volume: 118
  year: 2021
  ident: 10.1016/j.patcog.2025.111834_b16
  article-title: Offline signature verification using a region based deep metric learning network
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108009
SSID ssj0017142
Score 2.486618
Snippet Handwritten signatures are currently the most widely used and recognized form of identity authorization, which is a significant way for individuals to express...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111834
SubjectTerms Deep feature
Hand-crafted feature
Handwritten signature verification
Identity authorization
Multi-view
Title Fusing deep and hand-crafted features by deep canonically correlated contractive autoencoder for offline signature verification
URI https://dx.doi.org/10.1016/j.patcog.2025.111834
Volume 168
WOSCitedRecordID wos001504579400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017142
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdZusMuW_dFuy902C2oWJYdScdSWrYySmAdZLsYyZK3lGCHNCktO-xf79OHY3cZYxvsYGOEbIn3fn56enofCL0VelwaShnRmZYkszIjwiaawMUolYbCP-WLTfCzMzGdyslg8L2Nhbma87oW19dy8V9ZDW3AbBc6-xfs3nwUGuAZmA53YDvc_4jxJ2u__TfWLvzJgDONk3LpioGbUWV9Is9Lp3X6HkDZxodGzm9GpavUMVeun_dgV14WjtR61bh0ly7rhHNKbKrK66bO9cN_bQQ0ch5HHZOjtjvxyTtdwEz0UurO_L98U95IO4W56plqunYbpM-HmWniqurrhgVD7UTV89lW389rgF7dN2Ck-U_OIJvIms6NyUtqRglLE3ZHUocKPFtSPxggLg4WsHo1Xw_cIG4paM2kd_NpfwzpKhMGyp9LjsPvoZ2U51IM0c7h--Pp6eYQitMsJJuPU2kjL7174PZYv9ZsetrK-S56GLcZ-DDA4zEa2PoJetSW8MBRoj9FPwJasMMCBqDgPlpwixasb0KPHlpwhxbcQwvuoQUDWnBEC96gBffR8gx9Ojk-P3pHYk0OUoJwXxFe5WPlkwxSKVQllZGKp2kiKykqasbCZCK3OUtVxmErz8Za50qmlUwqo6hK2HM0hJnaPYRzJZLUJKw0rMx0KjVslhPOWc6NzZRR-4i09CwWIfVK0fokXhSB_oWjfxHov494S_Qiqo9BLSwAJ79988U_v_kSPegg_QoNV8u1fY3ul1er2eXyTQTULbjVndA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+deep+and+hand-crafted+features+by+deep+canonically+correlated+contractive+autoencoder+for+offline+signature+verification&rft.jtitle=Pattern+recognition&rft.au=Zhao%2C+Xingbiao&rft.au=Zheng%2C+Lidong&rft.au=Yuan%2C+Panli&rft.au=Zheng%2C+Yuchen&rft.date=2025-12-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.volume=168&rft_id=info:doi/10.1016%2Fj.patcog.2025.111834&rft.externalDocID=S0031320325004947
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon