DBTSP-net: A temporal-spatial parallel network with optuna optimization for subject-specific motor imagery EEG decoding and visualization
The accuracy and stability of decoding EEG-based motor imagery (MI-EEG) is critical for achieving effective human-machine interaction and promoting motor function recovery in patients with severe motor dysfunction. In this paper, we propose a novel dual-branch temporal–spatial parallel hybrid classi...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 660; s. 131858 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
07.01.2026
|
| Témata: | |
| ISSN: | 0925-2312 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The accuracy and stability of decoding EEG-based motor imagery (MI-EEG) is critical for achieving effective human-machine interaction and promoting motor function recovery in patients with severe motor dysfunction. In this paper, we propose a novel dual-branch temporal–spatial parallel hybrid classification network named DBTSP-Net. In addition, we introduce an adaptive weighted feature fusion method to decode MI-EEG signals on the basis of the Optuna optimization algorithm. Nine subjects were recruited to participate in the MI-EEG decoding experiment. We evaluated the classification performance of both conventional and state-of-the-art MI-EEG models using the public BCI Competition IV 2a and 2b datasets. The experimental results demonstrated that the classification performance of DBTSP-Net surpassed that of the other baseline methods, attaining average classification accuracies of 79.61 % ± 14.43 and 86.21 % ± 12.17, respectively, with corresponding kappa values of 0.7856 and 0.7189, respectively. We further conducted ablation experiments to verify the rationality of the design of each module. Additionally, EEG topological maps and t-distributed stochastic neighbor embedding (t-SNE) were utilized for feature visualization. The decoding accuracy of MI-EEG signals was increased, and a solid theoretical foundation for the future practical application of MI-BCI systems in motion control and neural rehabilitation training was obtained. The code has been released at https://github.com/xinchenPhD/DBTSPNet. |
|---|---|
| AbstractList | The accuracy and stability of decoding EEG-based motor imagery (MI-EEG) is critical for achieving effective human-machine interaction and promoting motor function recovery in patients with severe motor dysfunction. In this paper, we propose a novel dual-branch temporal–spatial parallel hybrid classification network named DBTSP-Net. In addition, we introduce an adaptive weighted feature fusion method to decode MI-EEG signals on the basis of the Optuna optimization algorithm. Nine subjects were recruited to participate in the MI-EEG decoding experiment. We evaluated the classification performance of both conventional and state-of-the-art MI-EEG models using the public BCI Competition IV 2a and 2b datasets. The experimental results demonstrated that the classification performance of DBTSP-Net surpassed that of the other baseline methods, attaining average classification accuracies of 79.61 % ± 14.43 and 86.21 % ± 12.17, respectively, with corresponding kappa values of 0.7856 and 0.7189, respectively. We further conducted ablation experiments to verify the rationality of the design of each module. Additionally, EEG topological maps and t-distributed stochastic neighbor embedding (t-SNE) were utilized for feature visualization. The decoding accuracy of MI-EEG signals was increased, and a solid theoretical foundation for the future practical application of MI-BCI systems in motion control and neural rehabilitation training was obtained. The code has been released at https://github.com/xinchenPhD/DBTSPNet. |
| ArticleNumber | 131858 |
| Author | Chen, Xin Du, Mingyu Lin, Hongze Cai, Shibo Bao, Guanjun Wu, Xinyu Yu, Longjie Wei, Wei |
| Author_xml | – sequence: 1 givenname: Xin orcidid: 0009-0004-8879-4219 surname: Chen fullname: Chen, Xin organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China – sequence: 2 givenname: Longjie orcidid: 0009-0003-6772-0109 surname: Yu fullname: Yu, Longjie organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China – sequence: 3 givenname: Hongze orcidid: 0009-0002-9555-4948 surname: Lin fullname: Lin, Hongze organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China – sequence: 4 givenname: Mingyu surname: Du fullname: Du, Mingyu organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China – sequence: 5 givenname: Wei orcidid: 0000-0001-8408-3381 surname: Wei fullname: Wei, Wei organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China – sequence: 6 givenname: Xinyu surname: Wu fullname: Wu, Xinyu organization: Key Laboratory of Human-Machine-Intelligence Synergic Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China – sequence: 7 givenname: Guanjun surname: Bao fullname: Bao, Guanjun organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China – sequence: 8 givenname: Shibo surname: Cai fullname: Cai, Shibo email: ccc@zjut.edu.cn organization: College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China |
| BookMark | eNp9kEFOwzAQRb0oEm3hBix8gRTbSUjCAqmUUpAqgURZW449KS6JHdlJq3IDbo2rdM1qNKP_v_68CRoZawChG0pmlNC7293MQC9tM2OEpTMa0zzNR2hMCpZGLKbsEk283xFCM8qKMfp9etx8vEcGuns8xx00rXWijnwrOi1q3Iqw1VDjIDhY940PuvvCtu16I05DN_onKK3BlXXY9-UOZBfcIHWlJW5sF866EVtwR7xcrrACaZU2WyyMwnvte1GfE67QRSVqD9fnOUWfz8vN4iVav61eF_N1JFmadVGWZKpICLBMUVomFARUKmYZqSjJZZYSxgpBkzIXCRSxKiXNCqkqySApocxlPEXJkCud9d5BxVsXGrojp4SfEPIdHxDyE0I-IAy2h8EGodteg-NeajASlHbhZ66s_j_gD_F0g7k |
| Cites_doi | 10.1016/j.artmed.2023.102738 10.1016/j.neucom.2024.128577 10.1002/hbm.23730 10.1145/3671151.3671152 10.1016/j.neunet.2023.06.005 10.1109/TNSRE.2024.3366907 10.1109/TAI.2024.3394792 10.1007/978-3-030-43981-1_9 10.1109/TNSRE.2024.3454088 10.1088/1741-2552/aace8c 10.1016/j.neucom.2025.130206 10.1186/s40537-023-00842-0 10.1016/j.dsp.2025.105266 10.1109/TII.2024.3431640 10.1016/j.renene.2023.119700 10.1109/TNSRE.2023.3242280 10.1007/s00521-021-06352-5 10.1109/TMM.2023.3238548 10.1109/CoDIT58514.2023.10284340 10.1038/s41598-024-71118-7 10.1016/j.neucom.2024.129255 10.1109/TIM.2021.3051996 10.1109/JBHI.2024.3472097 10.1109/TNSRE.2022.3230250 10.1109/RBME.2024.3449790 10.1109/TMM.2022.3197364 10.1109/TII.2023.3266366 10.1016/j.bspc.2021.103342 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2025.131858 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_neucom_2025_131858 S0925231225025305 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYFN AAYWO ABBOA ABCQJ ABFNM ABJNI ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSN SSV SSZ T5K ZMT ~G- ~HD 29N 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC WUQ XPP |
| ID | FETCH-LOGICAL-c257t-747d940e27d11b41eaefd3270f108c750229a14b8a4e93dbc179cdfc2e4beb8c3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001606606100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Thu Nov 27 00:18:58 EST 2025 Wed Dec 10 14:26:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Motor imagery (MI) Brain-computer interface (BCI) Temporal–Spatial parallel network Transformer Electroencephalogram (EEG) Adaptive weighted feature fusion |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c257t-747d940e27d11b41eaefd3270f108c750229a14b8a4e93dbc179cdfc2e4beb8c3 |
| ORCID | 0000-0001-8408-3381 0009-0002-9555-4948 0009-0004-8879-4219 0009-0003-6772-0109 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2025_131858 elsevier_sciencedirect_doi_10_1016_j_neucom_2025_131858 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-01-07 |
| PublicationDateYYYYMMDD | 2026-01-07 |
| PublicationDate_xml | – month: 01 year: 2026 text: 2026-01-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2026 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Li, Ding, Zhang (bib23) Feb. 2022; 72 H. Liu, Y. Song, T. Liu, et al., "UGENet: Learning Discriminative Embeddings for Unconstrained Gaze Estimation Network via Self-Attention Mechanism in Human-Computer Interaction," presented at the Proceedings of the 5th International Conference on Computer Information and Big Data Applications, Wuhan, China, 2024 Y. Song, X. Jia, L. Yang, et al., "Transformer-based spatial-temporal feature learning for EEG decoding," Edelman, Zhang, Schalk (bib1) Aug. 2025; 18 Liu, Liu, Yang (bib8) Jun. 2024; 20 A. Gu and T. Dao, "Mamba: Linear-time sequence modeling with selective state spaces Liu, Zhang, Deng (bib20) 2025; 27 Venkatachalam, Devipriya, Maniraj (bib12) Jan. 2020; 103 Gaur, Gupta, Chowdhury (bib11) Jan. 2021; 70 Altaheri, Muhammad, Alsulaiman (bib13) Jul. 2023; 35 Hanifi, Cammarono, Zare-Behtash (bib33) Nov. 2024; 221 arXiv:2103.14438, Mar. 2021, doi:10.48550/arXiv.2103.14438. Tang, Yang, Sun (bib19) Feb. 2023; 31 Bhonsle, Sheikh, Kshatri (bib5) Oct. 2025 Zhang, Wang, Zhou (bib35) Sep. 2025 Saibene, Ghaemi, Dagdevir (bib6) Sep. 2024; 610 Chen, Cai, Yu (bib30) Feb. 2024; 32 Zhao, Jiang, Zhang (bib25) Aug 2024; 14 arXiv:2402.04059, Feb. 2024 Song, Zheng, Liu (bib27) Dec. 2022; 31 M. Liu, S. Ren, S. Ma, et al., "Gated transformer networks for multivariate time series classification," Rong, Yang, Guan (bib28) Sep. 2024; 32 Wang, Cao, Liu (bib10) Dec. 2020; 32 Yang, Zhang, Zhang (bib32) Mar. 2025; 620 Liu, Liu, Chen (bib9) 2024; 26 arXiv:2312.00752, May. 2023. Liu, Zhou, Zhang (bib7) Dec. 2024; 20 . Schirrmeister, Springenberg, Fiederer (bib17) Nov. 2017; 38 Deng, Ma, Wu (bib22) Sep. 2025; 164 arXiv:2106.11170, Jun. 2021 J. Wang, W. Du, W. Cao et al., Deep learning for multivariate time series imputation: A survey Li, Gu (bib14) Jul. 2025; 639 Zhang, Wang (bib3) Mar. 2021; 1 Soni, Prabakar, Upadhyay (bib36) Jul 2020 Zhang, Li, Xie (bib40) Jun. 2023; 165 Wang, Liesaputra, Liu (bib4) Dec. 2024; 147 Jin, Chen, Xu (bib29) Oct. 2024; 29 Joy, Selvan (bib34) 2022 Cruz, Jamal, Sethuraman (bib2) 2024 Lawhern, Solon, Waytowich (bib18) Jun. 2018; 15 H. Liu, C. Dong, P. Ma et al., "A CNN and GRU Based Composite Classification Method for Motor Imagery EEG Signals," in 2023 9th International Conference on Control, Decision and Information Technologies (CoDIT), Oct. 2023, pp. 2287-2292 Anik, Kamal, Kabir (bib38) Apr. 2024; 5 Zhang, Shafiq (bib16) Feb. 2024; 11 Sowjanya, Divya, GD (bib37) Sep. 2024 Anik (10.1016/j.neucom.2025.131858_bib38) 2024; 5 Cruz (10.1016/j.neucom.2025.131858_bib2) 2024 Zhang (10.1016/j.neucom.2025.131858_bib16) 2024; 11 Tang (10.1016/j.neucom.2025.131858_bib19) 2023; 31 Schirrmeister (10.1016/j.neucom.2025.131858_bib17) 2017; 38 Edelman (10.1016/j.neucom.2025.131858_bib1) 2025; 18 Li (10.1016/j.neucom.2025.131858_bib23) 2022; 72 10.1016/j.neucom.2025.131858_bib24 Liu (10.1016/j.neucom.2025.131858_bib20) 2025; 27 Wang (10.1016/j.neucom.2025.131858_bib4) 2024; 147 10.1016/j.neucom.2025.131858_bib26 Bhonsle (10.1016/j.neucom.2025.131858_bib5) 2025 Venkatachalam (10.1016/j.neucom.2025.131858_bib12) 2020; 103 10.1016/j.neucom.2025.131858_bib21 Chen (10.1016/j.neucom.2025.131858_bib30) 2024; 32 Rong (10.1016/j.neucom.2025.131858_bib28) 2024; 32 Saibene (10.1016/j.neucom.2025.131858_bib6) 2024; 610 Deng (10.1016/j.neucom.2025.131858_bib22) 2025; 164 Hanifi (10.1016/j.neucom.2025.131858_bib33) 2024; 221 Liu (10.1016/j.neucom.2025.131858_bib8) 2024; 20 Gaur (10.1016/j.neucom.2025.131858_bib11) 2021; 70 Jin (10.1016/j.neucom.2025.131858_bib29) 2024; 29 Soni (10.1016/j.neucom.2025.131858_bib36) 2020 Zhang (10.1016/j.neucom.2025.131858_bib3) 2021; 1 Song (10.1016/j.neucom.2025.131858_bib27) 2022; 31 Altaheri (10.1016/j.neucom.2025.131858_bib13) 2023; 35 Lawhern (10.1016/j.neucom.2025.131858_bib18) 2018; 15 Joy (10.1016/j.neucom.2025.131858_bib34) 2022 Li (10.1016/j.neucom.2025.131858_bib14) 2025; 639 Sowjanya (10.1016/j.neucom.2025.131858_bib37) 2024 10.1016/j.neucom.2025.131858_bib39 Zhao (10.1016/j.neucom.2025.131858_bib25) 2024; 14 Zhang (10.1016/j.neucom.2025.131858_bib35) 2025 Wang (10.1016/j.neucom.2025.131858_bib10) 2020; 32 10.1016/j.neucom.2025.131858_bib15 Liu (10.1016/j.neucom.2025.131858_bib9) 2024; 26 10.1016/j.neucom.2025.131858_bib31 Liu (10.1016/j.neucom.2025.131858_bib7) 2024; 20 Zhang (10.1016/j.neucom.2025.131858_bib40) 2023; 165 Yang (10.1016/j.neucom.2025.131858_bib32) 2025; 620 |
| References_xml | – reference: J. Wang, W. Du, W. Cao et al., Deep learning for multivariate time series imputation: A survey," – reference: arXiv:2402.04059, Feb. 2024, – volume: 1 start-page: 12 year: Mar. 2021 end-page: 24 ident: bib3 article-title: A survey on robots controlled by motor imagery brain-computer interfaces publication-title: Cogn. Rob. – reference: A. Gu and T. Dao, "Mamba: Linear-time sequence modeling with selective state spaces, – volume: 20 start-page: 13753 year: Dec. 2024 end-page: 13764 ident: bib7 article-title: MMATrans: muscle movement aware representation learning for facial expression recognition via transformers publication-title: IEEE Trans. Ind. Inf. – reference: arXiv:2106.11170, Jun. 2021, – start-page: 1 year: 2022 end-page: 5 ident: bib34 article-title: A comprehensive study on the performance of different Multi-class classification algorithms and hyperparameter tuning techniques using optuna publication-title: In: 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS) – volume: 70 start-page: 1 year: Jan. 2021 end-page: 9 ident: bib11 article-title: A sliding window common spatial pattern for enhancing motor imagery classification in EEG-BCI publication-title: IEEE Trans. Instrum. Meas. – volume: 14 start-page: 20237 year: Aug 2024 ident: bib25 article-title: CTNet: a convolutional transformer network for EEG-based motor imagery classification publication-title: Sci. Rep. – volume: 15 year: Jun. 2018 ident: bib18 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J. Neural Eng. – volume: 29 start-page: 198 year: Oct. 2024 end-page: 209 ident: bib29 article-title: Multiscale spatial-temporal feature fusion neural network for motor imagery brain-computer interfaces publication-title: IEEE J. Biomed. Health Inf. – volume: 221 year: Nov. 2024 ident: bib33 article-title: Advanced hyperparameter optimization of deep learning models for wind power prediction publication-title: Renew. Energy – volume: 32 year: Dec. 2020 ident: bib10 article-title: A motor-imagery channel-selection method based on SVM-CCA-CS publication-title: Meas. Sci. Technol. – volume: 103 year: Jan. 2020 ident: bib12 article-title: A novel method of motor imagery classification using eeg signal publication-title: Artif. Intell. Med. – reference: arXiv:2103.14438, Mar. 2021, doi:10.48550/arXiv.2103.14438. – volume: 11 start-page: 25 year: Feb. 2024 ident: bib16 article-title: Survey of transformers and towards ensemble learning using transformers for natural language processing publication-title: J. Big Data – volume: 38 start-page: 5391 year: Nov. 2017 end-page: 5420 ident: bib17 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. – volume: 18 start-page: 26 year: Aug. 2025 end-page: 49 ident: bib1 article-title: Non-invasive brain-computer interfaces: state of the art and trends publication-title: IEEE Rev. Biomed. Eng. – volume: 5 start-page: 4938 year: Apr. 2024 end-page: 4947 ident: bib38 article-title: A robust Deep-Learning model to detect major depressive disorder utilising EEG signals publication-title: IEEE Trans. Artif. Intell. – start-page: 189 year: Jul 2020 end-page: 206 ident: bib36 article-title: Visualizing high-dimensional data using t-distributed stochastic neighbor embedding algorithm publication-title: Princ. Data Sci. – reference: Y. Song, X. Jia, L. Yang, et al., "Transformer-based spatial-temporal feature learning for EEG decoding," – reference: H. Liu, Y. Song, T. Liu, et al., "UGENet: Learning Discriminative Embeddings for Unconstrained Gaze Estimation Network via Self-Attention Mechanism in Human-Computer Interaction," presented at the Proceedings of the 5th International Conference on Computer Information and Big Data Applications, Wuhan, China, 2024, – volume: 35 start-page: 14681 year: Jul. 2023 end-page: 14722 ident: bib13 article-title: Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review publication-title: Neural Comput. Appl. – start-page: 1 year: Sep. 2024 end-page: 6 ident: bib37 article-title: Classification of motor imagery signals using neural networks for applications in Brain-Computer interface publication-title: 2024 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT) – start-page: 205 year: Sep. 2025 end-page: 218 ident: bib35 article-title: The optimized local sparse parallel multi-channel deep convolutional neural network-LSTM and the application in bearing fault diagnosis under noise and variable working condition publication-title: Proceedings Institution Mechanical Engineers Part C Journal Mechanical Engineering Science. – volume: 31 start-page: 1208 year: Feb. 2023 end-page: 1218 ident: bib19 article-title: Motor imagery EEG decoding based on multi-scale hybrid networks and feature enhancement publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 31 start-page: 710 year: Dec. 2022 end-page: 719 ident: bib27 article-title: EEG conformer: convolutional transformer for EEG decoding and visualization publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 165 start-page: 451 year: Jun. 2023 end-page: 462 ident: bib40 article-title: MI-CAT: a transformer-based domain adaptation network for motor imagery classification publication-title: Neural Netw. – volume: 32 start-page: 1068 year: Feb. 2024 end-page: 1077 ident: bib30 article-title: A novel CNN-BiLSTM ensemble model with attention mechanism for Sit-to-Stand phase identification using wearable inertial sensors publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 72 year: Feb. 2022 ident: bib23 article-title: Motor imagery EEG classification algorithm based on CNN-LSTM feature fusion network publication-title: Biomed. Signal Process. Control – reference: . – reference: H. Liu, C. Dong, P. Ma et al., "A CNN and GRU Based Composite Classification Method for Motor Imagery EEG Signals," in 2023 9th International Conference on Control, Decision and Information Technologies (CoDIT), Oct. 2023, pp. 2287-2292, – volume: 27 start-page: 1677 year: 2025 end-page: 1690 ident: bib20 article-title: TransIFC: invariant Cues-aware feature concentration learning for efficient Fine-grained bird image classification publication-title: IEEE Trans. Multimed. – reference: M. Liu, S. Ren, S. Ma, et al., "Gated transformer networks for multivariate time series classification," – volume: 620 year: Mar. 2025 ident: bib32 article-title: MCMTNet: advanced network architectures for EEG-based motor imagery classification publication-title: Neurocomputing – volume: 610 year: Sep. 2024 ident: bib6 article-title: Deep learning in motor imagery EEG signal decoding: a systematic review publication-title: Neurocomputing – volume: 639 year: Jul. 2025 ident: bib14 article-title: A riemannian convolutional neural network for EEG-based motor imagery decoding publication-title: Neurocomputing – volume: 164 year: Sep. 2025 ident: bib22 article-title: DSR-Net: distinct selective rollback queries for road cracks detection with detection transformer publication-title: Digit. Signal Process. – year: 2024 ident: bib2 article-title: A comprehensive survey of Brain-Computer interface technology in healthcare: research perspectives publication-title: Preprints – volume: 32 start-page: 3399 year: Sep. 2024 end-page: 3409 ident: bib28 article-title: Decoding Multi-Class motor imagery from unilateral limbs using EEG signals publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 83 year: Oct. 2025 end-page: 90 ident: bib5 article-title: A review on the brain-computer interface and its applications publication-title: Artif. Intell. Biomed. Mod. Healthc. Inform. – volume: 26 start-page: 8464 year: 2024 end-page: 8475 ident: bib9 article-title: EHPE: skeleton Cues-based Gaussian coordinate encoding for efficient human pose estimation publication-title: IEEE Trans. Multimed. – volume: 147 year: Dec. 2024 ident: bib4 article-title: An in-depth survey on deep Learning-based motor imagery electroencephalogram (EEG) classification publication-title: Artif. Intell. Med. – volume: 20 start-page: 8068 year: Jun. 2024 end-page: 8078 ident: bib8 article-title: LDCNet: limb direction Cues-Aware network for flexible HPE in industrial behavioral biometrics systems publication-title: IEEE Trans. Ind. Inf. – reference: arXiv:2312.00752, May. 2023. – volume: 103 year: 2020 ident: 10.1016/j.neucom.2025.131858_bib12 article-title: A novel method of motor imagery classification using eeg signal publication-title: Artif. Intell. Med. – ident: 10.1016/j.neucom.2025.131858_bib39 – volume: 147 year: 2024 ident: 10.1016/j.neucom.2025.131858_bib4 article-title: An in-depth survey on deep Learning-based motor imagery electroencephalogram (EEG) classification publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2023.102738 – volume: 610 year: 2024 ident: 10.1016/j.neucom.2025.131858_bib6 article-title: Deep learning in motor imagery EEG signal decoding: a systematic review publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.128577 – volume: 38 start-page: 5391 issue: 11 year: 2017 ident: 10.1016/j.neucom.2025.131858_bib17 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – ident: 10.1016/j.neucom.2025.131858_bib21 doi: 10.1145/3671151.3671152 – volume: 165 start-page: 451 year: 2023 ident: 10.1016/j.neucom.2025.131858_bib40 article-title: MI-CAT: a transformer-based domain adaptation network for motor imagery classification publication-title: Neural Netw. doi: 10.1016/j.neunet.2023.06.005 – volume: 32 start-page: 1068 year: 2024 ident: 10.1016/j.neucom.2025.131858_bib30 article-title: A novel CNN-BiLSTM ensemble model with attention mechanism for Sit-to-Stand phase identification using wearable inertial sensors publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2024.3366907 – volume: 5 start-page: 4938 issue: 10 year: 2024 ident: 10.1016/j.neucom.2025.131858_bib38 article-title: A robust Deep-Learning model to detect major depressive disorder utilising EEG signals publication-title: IEEE Trans. Artif. Intell. doi: 10.1109/TAI.2024.3394792 – start-page: 189 year: 2020 ident: 10.1016/j.neucom.2025.131858_bib36 article-title: Visualizing high-dimensional data using t-distributed stochastic neighbor embedding algorithm publication-title: Princ. Data Sci. doi: 10.1007/978-3-030-43981-1_9 – volume: 32 start-page: 3399 year: 2024 ident: 10.1016/j.neucom.2025.131858_bib28 article-title: Decoding Multi-Class motor imagery from unilateral limbs using EEG signals publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2024.3454088 – volume: 1 start-page: 12 year: 2021 ident: 10.1016/j.neucom.2025.131858_bib3 article-title: A survey on robots controlled by motor imagery brain-computer interfaces publication-title: Cogn. Rob. – volume: 15 issue: 5 year: 2018 ident: 10.1016/j.neucom.2025.131858_bib18 article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 639 year: 2025 ident: 10.1016/j.neucom.2025.131858_bib14 article-title: A riemannian convolutional neural network for EEG-based motor imagery decoding publication-title: Neurocomputing doi: 10.1016/j.neucom.2025.130206 – volume: 11 start-page: 25 issue: 1 year: 2024 ident: 10.1016/j.neucom.2025.131858_bib16 article-title: Survey of transformers and towards ensemble learning using transformers for natural language processing publication-title: J. Big Data doi: 10.1186/s40537-023-00842-0 – volume: 164 year: 2025 ident: 10.1016/j.neucom.2025.131858_bib22 article-title: DSR-Net: distinct selective rollback queries for road cracks detection with detection transformer publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2025.105266 – volume: 20 start-page: 13753 year: 2024 ident: 10.1016/j.neucom.2025.131858_bib7 article-title: MMATrans: muscle movement aware representation learning for facial expression recognition via transformers publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2024.3431640 – volume: 221 year: 2024 ident: 10.1016/j.neucom.2025.131858_bib33 article-title: Advanced hyperparameter optimization of deep learning models for wind power prediction publication-title: Renew. Energy doi: 10.1016/j.renene.2023.119700 – start-page: 1 year: 2024 ident: 10.1016/j.neucom.2025.131858_bib37 article-title: Classification of motor imagery signals using neural networks for applications in Brain-Computer interface – volume: 31 start-page: 1208 year: 2023 ident: 10.1016/j.neucom.2025.131858_bib19 article-title: Motor imagery EEG decoding based on multi-scale hybrid networks and feature enhancement publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3242280 – volume: 35 start-page: 14681 issue: 20 year: 2023 ident: 10.1016/j.neucom.2025.131858_bib13 article-title: Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06352-5 – volume: 27 start-page: 1677 year: 2025 ident: 10.1016/j.neucom.2025.131858_bib20 article-title: TransIFC: invariant Cues-aware feature concentration learning for efficient Fine-grained bird image classification publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2023.3238548 – ident: 10.1016/j.neucom.2025.131858_bib24 doi: 10.1109/CoDIT58514.2023.10284340 – volume: 14 start-page: 20237 issue: 1 year: 2024 ident: 10.1016/j.neucom.2025.131858_bib25 article-title: CTNet: a convolutional transformer network for EEG-based motor imagery classification publication-title: Sci. Rep. doi: 10.1038/s41598-024-71118-7 – ident: 10.1016/j.neucom.2025.131858_bib15 – volume: 32 issue: 3 year: 2020 ident: 10.1016/j.neucom.2025.131858_bib10 article-title: A motor-imagery channel-selection method based on SVM-CCA-CS publication-title: Meas. Sci. Technol. – volume: 620 year: 2025 ident: 10.1016/j.neucom.2025.131858_bib32 article-title: MCMTNet: advanced network architectures for EEG-based motor imagery classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.129255 – start-page: 1 year: 2022 ident: 10.1016/j.neucom.2025.131858_bib34 article-title: A comprehensive study on the performance of different Multi-class classification algorithms and hyperparameter tuning techniques using optuna – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.neucom.2025.131858_bib11 article-title: A sliding window common spatial pattern for enhancing motor imagery classification in EEG-BCI publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3051996 – volume: 29 start-page: 198 issue: 1 year: 2024 ident: 10.1016/j.neucom.2025.131858_bib29 article-title: Multiscale spatial-temporal feature fusion neural network for motor imagery brain-computer interfaces publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2024.3472097 – start-page: 83 year: 2025 ident: 10.1016/j.neucom.2025.131858_bib5 article-title: A review on the brain-computer interface and its applications publication-title: Artif. Intell. Biomed. Mod. Healthc. Inform. – ident: 10.1016/j.neucom.2025.131858_bib26 – start-page: 205 year: 2025 ident: 10.1016/j.neucom.2025.131858_bib35 article-title: The optimized local sparse parallel multi-channel deep convolutional neural network-LSTM and the application in bearing fault diagnosis under noise and variable working condition – volume: 31 start-page: 710 year: 2022 ident: 10.1016/j.neucom.2025.131858_bib27 article-title: EEG conformer: convolutional transformer for EEG decoding and visualization publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3230250 – volume: 18 start-page: 26 year: 2025 ident: 10.1016/j.neucom.2025.131858_bib1 article-title: Non-invasive brain-computer interfaces: state of the art and trends publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2024.3449790 – volume: 26 start-page: 8464 year: 2024 ident: 10.1016/j.neucom.2025.131858_bib9 article-title: EHPE: skeleton Cues-based Gaussian coordinate encoding for efficient human pose estimation publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2022.3197364 – year: 2024 ident: 10.1016/j.neucom.2025.131858_bib2 article-title: A comprehensive survey of Brain-Computer interface technology in healthcare: research perspectives publication-title: Preprints – volume: 20 start-page: 8068 year: 2024 ident: 10.1016/j.neucom.2025.131858_bib8 article-title: LDCNet: limb direction Cues-Aware network for flexible HPE in industrial behavioral biometrics systems publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2023.3266366 – volume: 72 year: 2022 ident: 10.1016/j.neucom.2025.131858_bib23 article-title: Motor imagery EEG classification algorithm based on CNN-LSTM feature fusion network publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103342 – ident: 10.1016/j.neucom.2025.131858_bib31 |
| SSID | ssj0017129 |
| Score | 2.4612744 |
| Snippet | The accuracy and stability of decoding EEG-based motor imagery (MI-EEG) is critical for achieving effective human-machine interaction and promoting motor... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 131858 |
| SubjectTerms | Adaptive weighted feature fusion Brain-computer interface (BCI) Electroencephalogram (EEG) Motor imagery (MI) Temporal–Spatial parallel network Transformer |
| Title | DBTSP-net: A temporal-spatial parallel network with optuna optimization for subject-specific motor imagery EEG decoding and visualization |
| URI | https://dx.doi.org/10.1016/j.neucom.2025.131858 |
| Volume | 660 |
| WOSCitedRecordID | wos001606606100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017129 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3dbtowFMctRne772ndl3yxu8gVSQyOd0dbtm6qqkpjEruKEtupgsAgIKjtG_RF9pw7ju0UWFWtF7sBZIET5fzkc_znnGOEPoHHEIKrjFCqGKEx7REulSK9PM9l1ompyuo-s6fs7CwZjfh5q_Xb18KsJ0zr5PKSz_-rqWEMjG1KZx9g7mZSGIDPYHR4BbPD6z8Z_vhw-OOcaGU1v8D1npqQpcmdNnVX2cKcnzIJtM0At1LsbL6qdGbeyqkrzawzEJdVbpQaYioyTVZRAKY1KexT0_viKhgMvgYSdrDS1zquy6Up07y-NfjY94eqwFfWZ0g4daI_NU0apCGyUSOOXLHIqGyg_VXV2sFMX4zLhsJT2_rgBEavm8HjyhYC6IuralPNiKyawTZlyahLIObcWqF79sgBt8aGpuA7uXP5t0rE-ECryuQCwQW6B7df3-62veMFm9xEn_Y2Tu0sqZkltbM8QnsR6_Kkjfb63waj783_VSyMbFdHd_e-SLPOJPz7bu4OgjYCm-Ez9MTtSHDfkvQctZR-gZ760z6wW_xfopsGrM-4j3exwh4r7LDCBitsscKbWGHACu9ihWussMMKA1bYY4UBK7yF1Sv088tgeHRC3EEeRIBHWBHYskpOOypiMgxzGqpMFTKOWKcIO4mAmDWKeBbSPMmo4rHMBXgJIQsRKZqrPBHxa9TWM63eIMwobDhiCGulYMbdZCzmeREWEU0EFzzZR8Q_2XRu-7Wk91l0HzH_-FMXc9pYMgWm7v3l2wde6Z2RhGrtDoB_j9qrRaU-oMdivSqXi48OqD9Zsqn5 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DBTSP-net%3A+A+temporal-spatial+parallel+network+with+optuna+optimization+for+subject-specific+motor+imagery+EEG+decoding+and+visualization&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Chen%2C+Xin&rft.au=Yu%2C+Longjie&rft.au=Lin%2C+Hongze&rft.au=Du%2C+Mingyu&rft.date=2026-01-07&rft.issn=0925-2312&rft.volume=660&rft.spage=131858&rft_id=info:doi/10.1016%2Fj.neucom.2025.131858&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2025_131858 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |