Exploring and reconstructing latent domains for multi-source domain adaptation

Multi-Source Domain Adaptation (MSDA) is receiving increased focus as a technique for reliably transferring knowledge from several source domains to a specific target domain. Traditional approaches generally operate under the assumption that samples in each source conform to a consistent distributio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing Jg. 238; S. 110145
Hauptverfasser: Liang, Wanjun, Tan, Meijuan, Meng, Xiangyu, Zhang, Chengzhe, Zhou, Jun, Fu, Chilin, Zhang, Xiaolu, Li, Changsheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.01.2026
Schlagworte:
ISSN:0165-1684
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multi-Source Domain Adaptation (MSDA) is receiving increased focus as a technique for reliably transferring knowledge from several source domains to a specific target domain. Traditional approaches generally operate under the assumption that samples in each source conform to a consistent distribution. However, real-world conditions often involve samples derived from diverse distributions, as well as potential data imbalance among different domains. Addressing these challenges, we introduce a novel and trustworthy framework, Multi-source Reconstructed Domain Adaptation (MSRDA), designed to enhance adaptation efficacy while maintaining robust performance and reliability across heterogeneous data sources. To start with,we delve into the latent mixed distributions of each source using clustering techniques, followed by the reconstruction of the latent domains following the original distribution. Additionally, we introduce an adaptive weighting mechanism to mitigate data imbalances.In cases where an latent domain consists of only a few samples, the global features are identified and dominate in that particular domain to help avoid overfitting. Moreover, given the difficulties of optimizing clustering while updating the model,we apply ExpectationMaximization (EM) algorithm to iteratively perform domain reconstruction and domain adaptation.Experiments are performed on two public datasets and one real-world datasets, and experimental results demonstrate that our MSRDA can effectively achieve multi-source domain adaptation through re-. constructing source domain with identified latent domains.
AbstractList Multi-Source Domain Adaptation (MSDA) is receiving increased focus as a technique for reliably transferring knowledge from several source domains to a specific target domain. Traditional approaches generally operate under the assumption that samples in each source conform to a consistent distribution. However, real-world conditions often involve samples derived from diverse distributions, as well as potential data imbalance among different domains. Addressing these challenges, we introduce a novel and trustworthy framework, Multi-source Reconstructed Domain Adaptation (MSRDA), designed to enhance adaptation efficacy while maintaining robust performance and reliability across heterogeneous data sources. To start with,we delve into the latent mixed distributions of each source using clustering techniques, followed by the reconstruction of the latent domains following the original distribution. Additionally, we introduce an adaptive weighting mechanism to mitigate data imbalances.In cases where an latent domain consists of only a few samples, the global features are identified and dominate in that particular domain to help avoid overfitting. Moreover, given the difficulties of optimizing clustering while updating the model,we apply ExpectationMaximization (EM) algorithm to iteratively perform domain reconstruction and domain adaptation.Experiments are performed on two public datasets and one real-world datasets, and experimental results demonstrate that our MSRDA can effectively achieve multi-source domain adaptation through re-. constructing source domain with identified latent domains.
ArticleNumber 110145
Author Meng, Xiangyu
Zhou, Jun
Li, Changsheng
Zhang, Chengzhe
Fu, Chilin
Tan, Meijuan
Liang, Wanjun
Zhang, Xiaolu
Author_xml – sequence: 1
  givenname: Wanjun
  surname: Liang
  fullname: Liang, Wanjun
  organization: Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing,100081, Beijing, PR China
– sequence: 2
  givenname: Meijuan
  surname: Tan
  fullname: Tan, Meijuan
  organization: Minzu University of China, 27 Zhongguancun South Street, Haidian District, Beijing, 100081, Beijing, PR China
– sequence: 3
  givenname: Xiangyu
  surname: Meng
  fullname: Meng, Xiangyu
  organization: Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin, 150040, Heilongjiang, PR China
– sequence: 4
  givenname: Chengzhe
  surname: Zhang
  fullname: Zhang, Chengzhe
  organization: Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing,100081, Beijing, PR China
– sequence: 5
  givenname: Jun
  surname: Zhou
  fullname: Zhou, Jun
  organization: Ant Group, A Space, No.569 Xixi Road, Hangzhou, 310000 Zhejiang, PR China
– sequence: 6
  givenname: Chilin
  surname: Fu
  fullname: Fu, Chilin
  organization: Ant Group, A Space, No.569 Xixi Road, Hangzhou, 310000 Zhejiang, PR China
– sequence: 7
  givenname: Xiaolu
  surname: Zhang
  fullname: Zhang, Xiaolu
  organization: Ant Group, A Space, No.569 Xixi Road, Hangzhou, 310000 Zhejiang, PR China
– sequence: 8
  givenname: Changsheng
  surname: Li
  fullname: Li, Changsheng
  email: lcs@bit.edu.cn
  organization: Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing,100081, Beijing, PR China
BookMark eNp9kM1KxDAUhbMYwZnRN3DRF2hNmiZtN4IM4w8MutF1iMnNkNImJUlF396WztrVhXM4h3O_Hdo47wChO4ILggm_74poz2PwRYlLVpBZq9gGbWeL5YQ31TXaxdhhjAnleIvejj9j74N150w6nQVQ3sUUJpUWqZcJXMq0H6R1MTM-ZMPUJ5tHPwUFFyOTWo5JJuvdDboyso9we7l79Pl0_Di85Kf359fD4ylXJatTzpkC3phaQ8MpaxVvWFVLxmvDao4bw4mmJWDamlZVksAXNY2pDFaspWWtCd2jau1VwccYwIgx2EGGX0GwWDiITqwcxMJBrBzm2MMag3nbt4UgorLgFGg7f56E9vb_gj-XUm1_
Cites_doi 10.1007/978-3-642-33709-3_50
10.1016/j.eswa.2020.114078
10.1609/aaai.v32i1.11767
10.18653/v1/D19-1018
10.1109/TIE.2018.2868023
10.1007/s11263-015-0816-y
10.1016/j.sigpro.2018.12.005
10.1145/3065386
10.1609/aaai.v33i01.33015989
10.1007/978-3-642-15561-1_16
10.1109/MSP.2012.2205597
10.1609/aaai.v28i1.9136
10.1016/j.knosys.2022.108466
10.1016/j.inffus.2014.12.003
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2025.110145
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_sigpro_2025_110145
S0165168425002592
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c257t-65ce68f7de86359c68547a567f57608f61d32e039f9c4a1eb3f8f4f0c59327d13
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001541942500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Sat Nov 29 07:30:00 EST 2025
Sat Oct 25 17:21:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-Source domain adaptation
Expectation-maximization algorithm
Latent domain reconstruction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-65ce68f7de86359c68547a567f57608f61d32e039f9c4a1eb3f8f4f0c59327d13
ParticipantIDs crossref_primary_10_1016_j_sigpro_2025_110145
elsevier_sciencedirect_doi_10_1016_j_sigpro_2025_110145
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ghifary, Kleijn, Zhang, Balduzzi, Li (bib0010) 2016
Fan, Chang, Zhang, Cheng, Sun, Kankanhalli (bib0038) 2022
J. Hoffman, M. Mohri, and N. Zhang, “Algorithms and theory for multiple-source adaptation,” in NeurIPS, 2018.
K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to new domains,”in ECCV,2010.
M. Long, H. Zhu, J. Wang, and M.I. Jordan, “Deep transfer learning with joint adaptation networks,” in ICML, 2017.
C. Xiong, S. McCloskey, S.-H. Hsieh, and J.J. Corso, “Latent domains modeling for visual domain adaptation,” in AAAI, 2014.
G.Hinton, D.Yu, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath (bib0002) 2012; 29
J. Ni, J. Li, and J. McAuley,“Justifying recommendation using distantly-labeled reviews and fine-grained aspects, in EMNLP/IJCNLP, 2019.
Li, Zhang, Ding, Sun (bib0023) 2019; 157
Li, Zhang, Ding (bib0022) 2018; 66
Tian, Han, Li, Shi (bib0030) 2022; 243
Amosy, Chechik (bib0016) 2022
H. Zhao, S. Zhang, G. Wu, J. Costeira, J.M.F. Moura, and G. Gordon, Multiple source domain adaptation with adversarial learning,” in ICLR, 2018.
Z. Pei, Z. Cao, M. Long, and J. Wang, “Multi-adversarial domain adaptation,” in AAAI, 2018.
Pernes, Cardoso (bib0015) 2022; 194
Sun, Chattopadhyay, Panchanathan, Ye (bib0017) 2011; 24
Wilson, Doppa, Cook (bib0028) 2020
Wen, Zhang, Wang, Lv, Yang (bib0047) 2020
Yang, Zhang, Wang, Li, Hu (bib0009) 2020; 160
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0049) 2014; 15
Zhou, Song, Zhu, Ma, Yan, Dai, Zhu, Jin, Li, Gai (bib0019) 2018
Wang, Li, Li, Yuan, Wang (bib0039) 2023; 32
R.K.Sanodiya, R.Aditya, Nayanar (bib0011) 2021; 167
J. Hoffman, B. Kulis, T. Darrell, and K. Saenko, “Discovering latent domains for multisource domain adaptation,” in ECCV, 2012.
Xu, Chen, Zuo, Yan, Lin (bib0012) 2018
Tzeng, Hoffiman, Zhang, Saenko, Darrell (bib0008) 2014
Hsu, Yao, Tsai, Hung, Tseng, Singh, Yang (bib0018) 2020
Long, Cao, Wang, Jordan (bib0006) 2015
Liu, Xiao, Fan, Zhao, Tang, Liu (bib0024) 2020; 155
LeCun, Bottou, Bengio, Haffner (bib0005) 1998; 86
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollar, Zitnick (bib0004) 2014
Mezza, Habets, Miller, Sarti (bib0026) 2021
S. Zhao, G. Wang, S. Zhang, Y. Gu, Y. Li, Z-C. Song, P. Xu, R. Hu, H. Chai, and K. Keutzer, Multi-source distilling domain adaptation, ArXiv, vol. abs/1911.11554, 2020.
Asano, Rupprecht, Vedaldi (bib0041) 2020
Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation, ArXiv, vol. abs/1409.7495, 2015.
Mancini, Porzi, Bulo, Caputo, Ricci (bib0036) 2018
S. Sun, H. Shi, and Y. Wu, “A survey of multi-source domain adaptationInformation Fusionvol.24pp.84–92,2015.
Kang, Lu, Su, Li, Xu (bib0037) 2019; 33
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, and I. Polosukhin,“Attention is all you need” ArXiu, vol. abs/1706.03762, 2017.
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “Decaf: a deep convolutional activation feature for generic visual recognition,” in ICML, 2014.
Peng, Bai, Xia, Huang, Saenko, Wang (bib0021) 2019
Li, Li, Li (bib0025) 2021; 169
Krizhevsky, Sutskever, Hinton (bib0001) 2017; 60
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (bib0003) 2015; 115
Y. Zhu, F. Zhuang, and D. Wang, “Aligning domain-specific distributior and classifier for cross-domain classification from multiple sources,” in AAAI, 2019.
Zhan, Xie, Liu, Ong, Loy (bib0040) 2020
Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, Darrell (bib0020) 2018
Peng, Bai, Xia, Huang, Saenko, Wang (bib0013) 2019
Deng, Tu, Xu (bib0029) 2021
B. Gong, K. Grauman, and F. Sha,“Reshaping visual datasets for domain adaptation,” in NIPs, 2013.
Hoffman (10.1016/j.sigpro.2025.110145_bib0020) 2018
Mezza (10.1016/j.sigpro.2025.110145_bib0026) 2021
Wilson (10.1016/j.sigpro.2025.110145_bib0028) 2020
Amosy (10.1016/j.sigpro.2025.110145_bib0016) 2022
Kang (10.1016/j.sigpro.2025.110145_bib0037) 2019; 33
Pernes (10.1016/j.sigpro.2025.110145_bib0015) 2022; 194
Xu (10.1016/j.sigpro.2025.110145_bib0012) 2018
Russakovsky (10.1016/j.sigpro.2025.110145_bib0003) 2015; 115
Zhou (10.1016/j.sigpro.2025.110145_bib0019) 2018
Ghifary (10.1016/j.sigpro.2025.110145_bib0010) 2016
10.1016/j.sigpro.2025.110145_bib0027
Peng (10.1016/j.sigpro.2025.110145_bib0013) 2019
Hsu (10.1016/j.sigpro.2025.110145_bib0018) 2020
Zhan (10.1016/j.sigpro.2025.110145_bib0040) 2020
Peng (10.1016/j.sigpro.2025.110145_bib0021) 2019
Fan (10.1016/j.sigpro.2025.110145_bib0038) 2022
Sun (10.1016/j.sigpro.2025.110145_bib0017) 2011; 24
Srivastava (10.1016/j.sigpro.2025.110145_bib0049) 2014; 15
Li (10.1016/j.sigpro.2025.110145_bib0025) 2021; 169
Liu (10.1016/j.sigpro.2025.110145_bib0024) 2020; 155
10.1016/j.sigpro.2025.110145_bib0031
10.1016/j.sigpro.2025.110145_bib0033
10.1016/j.sigpro.2025.110145_bib0032
10.1016/j.sigpro.2025.110145_bib0035
LeCun (10.1016/j.sigpro.2025.110145_bib0005) 1998; 86
10.1016/j.sigpro.2025.110145_bib0034
G.Hinton (10.1016/j.sigpro.2025.110145_bib0002) 2012; 29
Asano (10.1016/j.sigpro.2025.110145_bib0041) 2020
Lin (10.1016/j.sigpro.2025.110145_bib0004) 2014
Mancini (10.1016/j.sigpro.2025.110145_bib0036) 2018
Wang (10.1016/j.sigpro.2025.110145_bib0039) 2023; 32
Tian (10.1016/j.sigpro.2025.110145_bib0030) 2022; 243
10.1016/j.sigpro.2025.110145_bib0042
10.1016/j.sigpro.2025.110145_bib0044
10.1016/j.sigpro.2025.110145_bib0043
10.1016/j.sigpro.2025.110145_bib0046
R.K.Sanodiya (10.1016/j.sigpro.2025.110145_bib0011) 2021; 167
10.1016/j.sigpro.2025.110145_bib0045
10.1016/j.sigpro.2025.110145_bib0048
10.1016/j.sigpro.2025.110145_bib0007
Deng (10.1016/j.sigpro.2025.110145_bib0029) 2021
Long (10.1016/j.sigpro.2025.110145_bib0006) 2015
Tzeng (10.1016/j.sigpro.2025.110145_bib0008) 2014
Krizhevsky (10.1016/j.sigpro.2025.110145_bib0001) 2017; 60
Wen (10.1016/j.sigpro.2025.110145_bib0047) 2020
Yang (10.1016/j.sigpro.2025.110145_bib0009) 2020; 160
10.1016/j.sigpro.2025.110145_bib0050
Li (10.1016/j.sigpro.2025.110145_bib0023) 2019; 157
Li (10.1016/j.sigpro.2025.110145_bib0022) 2018; 66
10.1016/j.sigpro.2025.110145_bib0014
References_xml – reference: J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “Decaf: a deep convolutional activation feature for generic visual recognition,” in ICML, 2014.
– volume: 194
  year: 2022
  ident: bib0015
  article-title: Tackling unsupervised multi-source domain adaptation with optimism and consistency
  publication-title: Erpert Syst. Appl.
– year: 2020
  ident: bib0047
  article-title: Entire space multitask modeling via post-click behavior decomposition for conversion rate prediction
  publication-title: SIGIR ’20: The 43rd International ACM SIGIR confer ence on research and development in Information Retrieval
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib0003
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– volume: 157
  year: 2019
  ident: bib0023
  article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis
  publication-title: Signal Process.
– volume: 33
  start-page: 4057
  year: 2019
  end-page: 4064
  ident: bib0037
  article-title: Similarity learning via kernel preserving embedding
  publication-title: proceedings of the AAAI Conference on Artificial Intelligence
– reference: M. Long, H. Zhu, J. Wang, and M.I. Jordan, “Deep transfer learning with joint adaptation networks,” in ICML, 2017.
– reference: J. Hoffman, B. Kulis, T. Darrell, and K. Saenko, “Discovering latent domains for multisource domain adaptation,” in ECCV, 2012.
– reference: H. Zhao, S. Zhang, G. Wu, J. Costeira, J.M.F. Moura, and G. Gordon, Multiple source domain adaptation with adversarial learning,” in ICLR, 2018.
– start-page: 6377
  year: 2022
  end-page: 6386
  ident: bib0038
  article-title: Self-supervised global-local structure modeling for point cloud domain adaptation with reliable voted pseudo labels
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– reference: C. Xiong, S. McCloskey, S.-H. Hsieh, and J.J. Corso, “Latent domains modeling for visual domain adaptation,” in AAAI, 2014.
– start-page: 3964
  year: 2018
  end-page: 3973
  ident: bib0012
  article-title: Deep cocktail network: multi-source unsupervised domain adaptation with category shift
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 24
  year: 2011
  ident: bib0017
  article-title: A two-stage weighting framework for multi-source domain adaptation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 29
  start-page: 8297
  year: 2012
  ident: bib0002
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
– year: 2019
  ident: bib0021
  article-title: Mo ment matching for multi-source domain adaptation
  publication-title: Proceedings of the IEEE/CVF international conference on computer vision
– start-page: 1768
  year: 2020
  end-page: 1778
  ident: bib0028
  article-title: Multi-source deep domain adaptation with weak supervision for time-series sensor data
  publication-title: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining
– reference: Z. Pei, Z. Cao, M. Long, and J. Wang, “Multi-adversarial domain adaptation,” in AAAI, 2018.
– volume: 167
  year: 2021
  ident: bib0011
  article-title: Kernelized unified domain adaptation on geometrical manifolds
  publication-title: Expert Syst. Appl.
– volume: 169
  year: 2021
  ident: bib0025
  article-title: Feature concatenation for adversarial domain adaptation
  publication-title: Ezpert Syst. Appl.
– start-page: 749
  year: 2020
  end-page: 757
  ident: bib0018
  article-title: Progressive domain adaptation for object detection
  publication-title: Proceedings of the IEEE/CVF winter conference on applications of computer vision
– start-page: 3771
  year: 2018
  end-page: 3780
  ident: bib0036
  article-title: Boosting domain adaptation by discovering latent domains
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2018
  ident: bib0019
  article-title: Deep interest network for click-through rate prediction
  publication-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– reference: J. Hoffman, M. Mohri, and N. Zhang, “Algorithms and theory for multiple-source adaptation,” in NeurIPS, 2018.
– year: 2014
  ident: bib0004
  article-title: Microsoft COCO: common objects in context
  publication-title: Computer Vision - ECCV 2014 - 13th European Conference
– reference: K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to new domains,”in ECCV,2010.
– start-page: 6687
  year: 2020
  end-page: 6696
  ident: bib0040
  article-title: Online deep clustering for unsupervised representation learning
  publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 597
  year: 2016
  end-page: 613
  ident: bib0010
  article-title: Deep reconstruction-classification networks for unsupervised domain adaptation
  publication-title: Computer Vision-ECCV 2016: 14th European Conference
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0005
  article-title: Gradientbased learning applied to document recognition
  publication-title: Proc. IEEE
– reference: B. Gong, K. Grauman, and F. Sha,“Reshaping visual datasets for domain adaptation,” in NIPs, 2013.
– start-page: 11
  year: 2021
  end-page: 15
  ident: bib0026
  article-title: Unsupervised domain adaptation for acoustic scene classification using band-wise statistics matching
  publication-title: 2020 28th European Signal Processing Conference EUSIPCO)
– volume: 160
  year: 2020
  ident: bib0009
  article-title: Representation learning via serial robust autoencoder for domain adaptation
  publication-title: Erpert Syst Appl.
– volume: 60
  start-page: 8490
  year: 2017
  ident: bib0001
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– reference: S. Zhao, G. Wang, S. Zhang, Y. Gu, Y. Li, Z-C. Song, P. Xu, R. Hu, H. Chai, and K. Keutzer, Multi-source distilling domain adaptation, ArXiv, vol. abs/1911.11554, 2020.
– volume: 243
  year: 2022
  ident: bib0030
  article-title: A multi-source information transfer learning method with subdomain adaptation for cross-domain fault diagnosis
  publication-title: Knowl. Based Syst.
– year: 2020
  ident: bib0041
  article-title: Self-labelling via simultaneous clustering and representation learning
  publication-title: ArXiv
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0049
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 854
  year: 2021
  end-page: 859
  ident: bib0029
  article-title: Multi-source unsupervised domain adaptation for ecg classification
  publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– reference: A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, and I. Polosukhin,“Attention is all you need” ArXiu, vol. abs/1706.03762, 2017.
– year: 2014
  ident: bib0008
  article-title: Deep domain confusion: maximizing for domain invariance
  publication-title: ArXiv
– reference: J. Ni, J. Li, and J. McAuley,“Justifying recommendation using distantly-labeled reviews and fine-grained aspects, in EMNLP/IJCNLP, 2019.
– reference: S. Sun, H. Shi, and Y. Wu, “A survey of multi-source domain adaptationInformation Fusionvol.24pp.84–92,2015.
– year: 2015
  ident: bib0006
  article-title: Learning transferable features with deep adaptation networks
  publication-title: ArXiv
– volume: 66
  start-page: 5525
  year: 2018
  end-page: 5534
  ident: bib0022
  article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks
  publication-title: IEEE Trans. Ind. Electr.
– volume: 155
  year: 2020
  ident: bib0024
  article-title: Importanceweighted conditional adversarial network for unsupervised domain adaptationExpert
  publication-title: Syst. Appl.
– reference: Y. Zhu, F. Zhuang, and D. Wang, “Aligning domain-specific distributior and classifier for cross-domain classification from multiple sources,” in AAAI, 2019.
– start-page: 1071
  year: 2022
  end-page: 1080
  ident: bib0016
  article-title: Coupled training for multi-source domain adaptation
  publication-title: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
– start-page: 1406
  year: 2019
  end-page: 1415
  ident: bib0013
  article-title: Moment matching for multi-source domain adaptation
  publication-title: 2019 IEEE/CVF International Conference on Computer Vision (ICCV)
– reference: Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation, ArXiv, vol. abs/1409.7495, 2015.
– start-page: 1989
  year: 2018
  end-page: 1998
  ident: bib0020
  article-title: Cycada: cycle-consistent adversarial domain adaptation
  publication-title: International conference on machine learning. Pmlr
– volume: 32
  start-page: 1555
  year: 2023
  end-page: 1567
  ident: bib0039
  article-title: Self-supervised information bottleneck for deep multi-view subspace clustering
  publication-title: IEEE Transactions on Image Processing
– ident: 10.1016/j.sigpro.2025.110145_bib0033
  doi: 10.1007/978-3-642-33709-3_50
– volume: 167
  year: 2021
  ident: 10.1016/j.sigpro.2025.110145_bib0011
  article-title: Kernelized unified domain adaptation on geometrical manifolds
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114078
– ident: 10.1016/j.sigpro.2025.110145_bib0042
  doi: 10.1609/aaai.v32i1.11767
– ident: 10.1016/j.sigpro.2025.110145_bib0044
  doi: 10.18653/v1/D19-1018
– year: 2014
  ident: 10.1016/j.sigpro.2025.110145_bib0008
  article-title: Deep domain confusion: maximizing for domain invariance
  publication-title: ArXiv
– year: 2018
  ident: 10.1016/j.sigpro.2025.110145_bib0019
  article-title: Deep interest network for click-through rate prediction
– start-page: 1406
  year: 2019
  ident: 10.1016/j.sigpro.2025.110145_bib0013
  article-title: Moment matching for multi-source domain adaptation
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.sigpro.2025.110145_bib0049
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2020
  ident: 10.1016/j.sigpro.2025.110145_bib0041
  article-title: Self-labelling via simultaneous clustering and representation learning
  publication-title: ArXiv
– year: 2014
  ident: 10.1016/j.sigpro.2025.110145_bib0004
  article-title: Microsoft COCO: common objects in context
– ident: 10.1016/j.sigpro.2025.110145_bib0014
– volume: 66
  start-page: 5525
  issue: 7
  year: 2018
  ident: 10.1016/j.sigpro.2025.110145_bib0022
  article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks
  publication-title: IEEE Trans. Ind. Electr.
  doi: 10.1109/TIE.2018.2868023
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.sigpro.2025.110145_bib0003
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– ident: 10.1016/j.sigpro.2025.110145_bib0046
– start-page: 597
  year: 2016
  ident: 10.1016/j.sigpro.2025.110145_bib0010
  article-title: Deep reconstruction-classification networks for unsupervised domain adaptation
– start-page: 6377
  year: 2022
  ident: 10.1016/j.sigpro.2025.110145_bib0038
  article-title: Self-supervised global-local structure modeling for point cloud domain adaptation with reliable voted pseudo labels
– volume: 157
  year: 2019
  ident: 10.1016/j.sigpro.2025.110145_bib0023
  article-title: Multi-layer domain adaptation method for rolling bearing fault diagnosis
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.12.005
– year: 2019
  ident: 10.1016/j.sigpro.2025.110145_bib0021
  article-title: Mo ment matching for multi-source domain adaptation
– volume: 33
  start-page: 4057
  year: 2019
  ident: 10.1016/j.sigpro.2025.110145_bib0037
  article-title: Similarity learning via kernel preserving embedding
– year: 2020
  ident: 10.1016/j.sigpro.2025.110145_bib0047
  article-title: Entire space multitask modeling via post-click behavior decomposition for conversion rate prediction
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.sigpro.2025.110145_bib0005
  article-title: Gradientbased learning applied to document recognition
– start-page: 3771
  year: 2018
  ident: 10.1016/j.sigpro.2025.110145_bib0036
  article-title: Boosting domain adaptation by discovering latent domains
– ident: 10.1016/j.sigpro.2025.110145_bib0032
– start-page: 3964
  year: 2018
  ident: 10.1016/j.sigpro.2025.110145_bib0012
  article-title: Deep cocktail network: multi-source unsupervised domain adaptation with category shift
– volume: 60
  start-page: 8490
  issue: 6
  year: 2017
  ident: 10.1016/j.sigpro.2025.110145_bib0001
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– start-page: 11
  year: 2021
  ident: 10.1016/j.sigpro.2025.110145_bib0026
  article-title: Unsupervised domain adaptation for acoustic scene classification using band-wise statistics matching
– start-page: 749
  year: 2020
  ident: 10.1016/j.sigpro.2025.110145_bib0018
  article-title: Progressive domain adaptation for object detection
– ident: 10.1016/j.sigpro.2025.110145_bib0043
  doi: 10.1609/aaai.v33i01.33015989
– ident: 10.1016/j.sigpro.2025.110145_bib0045
  doi: 10.1007/978-3-642-15561-1_16
– start-page: 854
  year: 2021
  ident: 10.1016/j.sigpro.2025.110145_bib0029
  article-title: Multi-source unsupervised domain adaptation for ecg classification
– volume: 29
  start-page: 8297
  issue: 6
  year: 2012
  ident: 10.1016/j.sigpro.2025.110145_bib0002
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– start-page: 1071
  year: 2022
  ident: 10.1016/j.sigpro.2025.110145_bib0016
  article-title: Coupled training for multi-source domain adaptation
– start-page: 1768
  year: 2020
  ident: 10.1016/j.sigpro.2025.110145_bib0028
  article-title: Multi-source deep domain adaptation with weak supervision for time-series sensor data
– start-page: 1989
  year: 2018
  ident: 10.1016/j.sigpro.2025.110145_bib0020
  article-title: Cycada: cycle-consistent adversarial domain adaptation
– ident: 10.1016/j.sigpro.2025.110145_bib0031
– ident: 10.1016/j.sigpro.2025.110145_bib0050
– year: 2015
  ident: 10.1016/j.sigpro.2025.110145_bib0006
  article-title: Learning transferable features with deep adaptation networks
  publication-title: ArXiv
– volume: 160
  year: 2020
  ident: 10.1016/j.sigpro.2025.110145_bib0009
  article-title: Representation learning via serial robust autoencoder for domain adaptation
  publication-title: Erpert Syst Appl.
– ident: 10.1016/j.sigpro.2025.110145_bib0048
– ident: 10.1016/j.sigpro.2025.110145_bib0035
  doi: 10.1609/aaai.v28i1.9136
– ident: 10.1016/j.sigpro.2025.110145_bib0007
– volume: 32
  start-page: 1555
  year: 2023
  ident: 10.1016/j.sigpro.2025.110145_bib0039
  article-title: Self-supervised information bottleneck for deep multi-view subspace clustering
– volume: 169
  year: 2021
  ident: 10.1016/j.sigpro.2025.110145_bib0025
  article-title: Feature concatenation for adversarial domain adaptation
  publication-title: Ezpert Syst. Appl.
– start-page: 6687
  year: 2020
  ident: 10.1016/j.sigpro.2025.110145_bib0040
  article-title: Online deep clustering for unsupervised representation learning
– volume: 24
  year: 2011
  ident: 10.1016/j.sigpro.2025.110145_bib0017
  article-title: A two-stage weighting framework for multi-source domain adaptation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 243
  year: 2022
  ident: 10.1016/j.sigpro.2025.110145_bib0030
  article-title: A multi-source information transfer learning method with subdomain adaptation for cross-domain fault diagnosis
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.108466
– ident: 10.1016/j.sigpro.2025.110145_bib0027
  doi: 10.1016/j.inffus.2014.12.003
– ident: 10.1016/j.sigpro.2025.110145_bib0034
– volume: 155
  year: 2020
  ident: 10.1016/j.sigpro.2025.110145_bib0024
  article-title: Importanceweighted conditional adversarial network for unsupervised domain adaptationExpert
  publication-title: Syst. Appl.
– volume: 194
  year: 2022
  ident: 10.1016/j.sigpro.2025.110145_bib0015
  article-title: Tackling unsupervised multi-source domain adaptation with optimism and consistency
  publication-title: Erpert Syst. Appl.
SSID ssj0001360
Score 2.465878
Snippet Multi-Source Domain Adaptation (MSDA) is receiving increased focus as a technique for reliably transferring knowledge from several source domains to a specific...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110145
SubjectTerms Expectation-maximization algorithm
Latent domain reconstruction
Multi-Source domain adaptation
Title Exploring and reconstructing latent domains for multi-source domain adaptation
URI https://dx.doi.org/10.1016/j.sigpro.2025.110145
Volume 238
WOSCitedRecordID wos001541942500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001360
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELXYDnBArGKXD9xQqiaplxwRAgGCComtt8iJHUgFoaItAr6ecewspQjRA5cochI38TzZz9M3Mwjt69hH6UVggTypdiSEIxRTDpWeZLzpC5lXa7i7YO0273SCK-vQ7-flBFiW8ff3oPevpoY2MLYOnZ3A3GWn0ADnYHQ4gtnh-CfDV6q6XDquN7w2SSw0PQG1zAYH8uVZaG2M1hjmkkLHOPHthQMhRa_2H70lr9fpg-auPRNbUKx5Ws2TWq_zvci6w0raa5yrlyrtDisQah2tbu7ohz6GY57ro0e44fNR1f0RXt0fYV2UlDguNYXfijnWMylc7Czp5gWCf5zAjS-h2-inD_A1sH_3SKO6fTRf9rd1rFQXFsK1bmh6CXUvoellGs16jAQw_80enh13zstV2_XziPLy7Yswy1wLOP42P9OYGjW5WUKLdk-BDw0WltGUylbQQi3T5Cpql6jAgAo8igpsUIEtKjCgAtdRYS_gChVr6Pbk-Obo1LGlNJwY5uSBQ0msKE-YVBwYZhBTTlpMEMoS2G82eUJd6Xuq6QdJELeEqyI_4UkracYE-D2Trr-OZrKXTG0gHHBJiRuRQBIJzEYBvwYKL1w_IrEfe61N5BQjE_ZMxpTwN4tsIlYMX2hZn2FzIWDi1ye3JvylbTRfAXYHzcAoq100F78N0v7rngXEFytbfFk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+and+reconstructing+latent+domains+for+multi-source+domain+adaptation&rft.jtitle=Signal+processing&rft.au=Liang%2C+Wanjun&rft.au=Tan%2C+Meijuan&rft.au=Meng%2C+Xiangyu&rft.au=Zhang%2C+Chengzhe&rft.date=2026-01-01&rft.issn=0165-1684&rft.volume=238&rft.spage=110145&rft_id=info:doi/10.1016%2Fj.sigpro.2025.110145&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2025_110145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon