SAC: Collaborative learning of structure and content features for Android malware detection framework

With the rapid development of Internet of Things (IoT) technology, Android devices have increasingly become primary targets for malware attacks. Although significant research has been conducted in the field of malware detection, existing methods still face challenges when dealing with complex sample...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 637; s. 130053
Hlavní autoři: Yang, Jin, Liang, Huijia, Ren, Hang, Jia, Dongqing, Wang, Xin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 07.07.2025
Témata:
ISSN:0925-2312
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the rapid development of Internet of Things (IoT) technology, Android devices have increasingly become primary targets for malware attacks. Although significant research has been conducted in the field of malware detection, existing methods still face challenges when dealing with complex samples. In particular, a more comprehensive analysis is required in the domain of feature extraction. To enhance the accuracy of malware detection, we propose the SAC framework. This method utilizes Dalvik Executable (DEX) files as the data source and achieves deep integration of multi-view features by collaboratively modeling image and graph data types. Specifically, to accurately capture the local features of malware and improve the identification of critical behavioral patterns, we designed a task-oriented convolutional neural network (CNN) named IFNeXt, which integrates visualization analysis with an inverted bottleneck structure. Furthermore, we introduced a dual-channel graph convolutional network (GCN) that models the hierarchical structure of bytecode as a directed graph, capturing the co-occurrence relationships and semantic similarities between method calls. This approach enables a deeper exploration of the global structural features of malware. The SAC framework fully leverages the complementary advantages of image and graph data structures, providing a more comprehensive characterization of malware features from both content and structural perspectives. Experimental results demonstrate that our method achieves a detection accuracy of 99.43% on multiple real-world public datasets, significantly outperforming existing state-of-the-art detection techniques. This indicates the potential and innovation of our approach in enhancing the security of the Android platform.
AbstractList With the rapid development of Internet of Things (IoT) technology, Android devices have increasingly become primary targets for malware attacks. Although significant research has been conducted in the field of malware detection, existing methods still face challenges when dealing with complex samples. In particular, a more comprehensive analysis is required in the domain of feature extraction. To enhance the accuracy of malware detection, we propose the SAC framework. This method utilizes Dalvik Executable (DEX) files as the data source and achieves deep integration of multi-view features by collaboratively modeling image and graph data types. Specifically, to accurately capture the local features of malware and improve the identification of critical behavioral patterns, we designed a task-oriented convolutional neural network (CNN) named IFNeXt, which integrates visualization analysis with an inverted bottleneck structure. Furthermore, we introduced a dual-channel graph convolutional network (GCN) that models the hierarchical structure of bytecode as a directed graph, capturing the co-occurrence relationships and semantic similarities between method calls. This approach enables a deeper exploration of the global structural features of malware. The SAC framework fully leverages the complementary advantages of image and graph data structures, providing a more comprehensive characterization of malware features from both content and structural perspectives. Experimental results demonstrate that our method achieves a detection accuracy of 99.43% on multiple real-world public datasets, significantly outperforming existing state-of-the-art detection techniques. This indicates the potential and innovation of our approach in enhancing the security of the Android platform.
ArticleNumber 130053
Author Jia, Dongqing
Yang, Jin
Ren, Hang
Liang, Huijia
Wang, Xin
Author_xml – sequence: 1
  givenname: Jin
  surname: Yang
  fullname: Yang, Jin
  organization: School of Cyber Science and Engineering, Sichuan University, Chengdu, 610207, Sichuan, China
– sequence: 2
  givenname: Huijia
  surname: Liang
  fullname: Liang, Huijia
  email: huijia.leung@foxmail.com
  organization: School of Cyber Science and Engineering, Sichuan University, Chengdu, 610207, Sichuan, China
– sequence: 3
  givenname: Hang
  surname: Ren
  fullname: Ren, Hang
  organization: Key Laboratory of Data Protection and Intelligent Management of the Ministry of Education, Chengdu, 610207, China
– sequence: 4
  givenname: Dongqing
  surname: Jia
  fullname: Jia, Dongqing
  organization: School of Cyber Science and Engineering, Sichuan University, Chengdu, 610207, Sichuan, China
– sequence: 5
  givenname: Xin
  orcidid: 0000-0002-8284-8640
  surname: Wang
  fullname: Wang, Xin
  email: xinwang201314@126.com
  organization: School of Cyber Science and Engineering, Sichuan University, Chengdu, 610207, Sichuan, China
BookMark eNp9kMtOwzAURL0oEm3hD1j4BxL8iOOEBVIV8ZIqsQDWluNcI5fURrbbir8nVVizutLozmjmrNDCBw8I3VBSUkLr213p4WDCvmSEiZJyQgRfoCVpmSgYp-wSrVLaEUIlZe0Swdumu8NdGEfdh6izOwIeQUfv_CcOFqccDyYfImDtB2yCz-AztqDPWsI2RLzxQwxuwHs9nvT0OEAGk13w2Ea9h1OIX1fowuoxwfXfXaOPx4f37rnYvj69dJttYZiQuRADaYUU3PBGV6Qhhoiq7kXfCFn3UhitRS2rlrDe6rYW3JqWi4FbKSk0jRF8jao518SQUgSrvqPb6_ijKFFnPGqnZjzqjEfNeCbb_WyDqdvRQVTJOPAGBhenKWoI7v-AXypCdNA
Cites_doi 10.1109/TIFS.2023.3302509
10.1023/B:VLSI.0000028532.53893.82
10.1016/j.cose.2020.102037
10.1016/j.knosys.2022.109512
10.1016/j.cose.2017.10.007
10.1007/s40747-021-00560-1
10.1016/j.knosys.2024.111991
10.1016/j.neucom.2020.10.054
10.1016/j.dcan.2021.11.007
10.1016/j.neucom.2024.128010
10.1016/j.future.2018.12.028
10.1109/TII.2017.2789219
10.1016/j.cose.2018.10.001
10.1016/j.ins.2020.08.082
10.1016/j.cose.2020.101740
10.3390/app10144966
10.1109/ACCESS.2021.3063748
10.1145/3073559
10.1145/3417978
10.1109/ACCESS.2020.3033026
10.1016/j.compeleceng.2019.06.014
10.1016/j.neucom.2023.126904
10.1007/s10922-021-09634-4
10.1016/j.future.2019.07.070
10.1016/j.eswa.2022.118705
10.1016/j.cose.2021.102386
10.1109/TIFS.2016.2523912
10.3390/sym13071107
10.1016/j.cose.2022.102915
10.1145/3313391
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2025.130053
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_neucom_2025_130053
S0925231225007258
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
WUQ
XPP
~HD
ID FETCH-LOGICAL-c257t-5d095753c38a4080c0546b5b8576b75caa5674902bfa9653fc935d3f771e88c53
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001458014800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 06:55:42 EST 2025
Sat May 24 17:04:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Graph convolutional network
Malware detection
Convolutional neural network
Android
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-5d095753c38a4080c0546b5b8576b75caa5674902bfa9653fc935d3f771e88c53
ORCID 0000-0002-8284-8640
ParticipantIDs crossref_primary_10_1016_j_neucom_2025_130053
elsevier_sciencedirect_doi_10_1016_j_neucom_2025_130053
PublicationCentury 2000
PublicationDate 2025-07-07
PublicationDateYYYYMMDD 2025-07-07
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mikolov (b59) 2013
Amin, Tanveer, Tehseen, Khan, Khan, Anwar (b4) 2020; 102
Jha, Prashar, Long, Taniar (b11) 2020; 99
Song, Han, Huang (b17) 2021
Daoudi, Samhi, Kabore, Allix, Bissyandé, Klein (b38) 2021; vol. 1482
Xu, Li, Deng (b48) 2016; 11
Nisa, Shah, Kanwal, Raza, Khan, Damasevicius, Blazauskas (b36) 2020; 10
Li, Sun, Yan, Li, Srisa-an, Ye (b23) 2018; 14
Yoo, Kim, Kim, Kang (b31) 2021; 546
Zhang, Thing, Cheng (b27) 2019; 80
Chen, Mao, Yang, Lv, Zhu (b26) 2018; 2018
Woo, Debnath, Hu, Chen, Liu, Kweon, Xie (b53) 2023
Wang, Cui, Yuan, Shi, Huang (b6) 2024; 598
Frenklach, Cohen, Shabtai, Puzis (b46) 2021; 109
Ranjan, Sanyal, Talukdar (b62) 2020
Liu, Mao, Wu, Feichtenhofer, Darrell, Xie (b52) 2022
Freitas, Duggal, Chau (b16) 2022
Zhang, Ren, Zhu, Ren (b25) 2019; 95
Rizvi, Aslam, Shahzad, Saleem, Fraz (b30) 2022; 8
Wu, Li, Zou, Yang, Zhang, Jin (b42) 2019
Brody, Alon, Yahav (b61) 2021
Vu, Jung (b37) 2021; 9
He, Zhang, Ren, Sun (b56) 2016
Gao, Huang, Li, Wu, Wu, Yuan (b21) 2024
Qiu, Zhang, Luo, Pan, Nepal, Xiang (b5) 2021; 53
Yuan, Wang, Liu, Guo, Wu, Bao (b35) 2020; 92
Zixuan, Chen (b8) 2022; 30
Wenna, Guojun, Jianming, Huanguo, Shilü (b13) 2019; 30
Xu, Li, Deng, Chen (b24) 2018
Liu, Lin, Cao, Hu, Wei, Zhang, Lin, Guo (b55) 2021
Ministry of Industry and Information Technology (b1) 2011
Kipf, Welling (b20) 2016
Ring, Schlör, Wunderlich, Landes, Hotho (b9) 2021; 109
Reza (b51) 2004; 38
Yang, Du, Yang, Liu (b43) 2021; 10
Zhang, Luktarhan, Ding, Lu (b49) 2021; 13
Han, Jian, Wang (b58) 2022; 253
Ye, Li, Adjeroh, Iyengar (b2) 2017; 50
Mahdavifar, Abdul Kadir, Fatemi, Alhadidi, Ghorbani (b63) 2020
Gao, Cai, Yin (b19) 2023
Zhu, Zhang, Yan, Chen, Gao (b7) 2022; 8
Yadav, Menon, Ravi, Vishvanathan, Pham (b18) 2020; 115
V.K.V., J.C.D. (b47) 2021
Cai, Jiang, Gao, Li, Yuan (b45) 2021; 423
Amin, Shah, Sharif, Ali, Kim, Anwar (b28) 2019
Silva, Ferreira da Costa, Rocha (b14) 2020
Xie, Girshick, Dollar, Tu, He (b54) 2017
Mahdavifar, Alhadidi, Ghorbani (b64) 2022; 30
Li, Cheng, Wu, Yuan, Gao, Yuan, Luo (b15) 2023
Zhang, Zhang, Zhong (b44) 2020
Kang, Jang, Li, Jeong, Sung (b10) 2019; 77
Onwuzurike, Mariconti, Andriotis, Cristofaro, Ross, Stringhini (b41) 2019; 22
Mantoo, Khurana (b3) 2020
Bai, Xie, Di, Ye (b29) 2020; 8
Tan, Le (b39) 2019
Hamilton, Ying, Leskovec (b60) 2017
Huang, Kao (b34) 2018
Ding, Xia, Chen, Li (b12) 2018; 73
Liu, Li, Liu, Li, Bao (b40) 2024; 299
Miranda-García, Zubillaga Rego, Pastor-López, Sanz, Tellaeche, Gaviria, Bringas (b50) 2024; 563
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (b66) 2020
Zhu, Gu, Wang, Xu, Sheng (b33) 2023; 212
Yang, Wang, Xu, Xu, Chen (b32) 2022; 123
Wang (b57) 2018
Arp, Spreitzenbarth, Huebner, Gascon, Rieck (b22) 2014
Simonyan, Zisserman (b65) 2015
Xie (10.1016/j.neucom.2025.130053_b54) 2017
Zhu (10.1016/j.neucom.2025.130053_b33) 2023; 212
Jha (10.1016/j.neucom.2025.130053_b11) 2020; 99
Kang (10.1016/j.neucom.2025.130053_b10) 2019; 77
Han (10.1016/j.neucom.2025.130053_b58) 2022; 253
Liu (10.1016/j.neucom.2025.130053_b52) 2022
Liu (10.1016/j.neucom.2025.130053_b55) 2021
Zhang (10.1016/j.neucom.2025.130053_b25) 2019; 95
Wang (10.1016/j.neucom.2025.130053_b6) 2024; 598
Ding (10.1016/j.neucom.2025.130053_b12) 2018; 73
Wu (10.1016/j.neucom.2025.130053_b42) 2019
Gao (10.1016/j.neucom.2025.130053_b19) 2023
Amin (10.1016/j.neucom.2025.130053_b28) 2019
Zhang (10.1016/j.neucom.2025.130053_b27) 2019; 80
He (10.1016/j.neucom.2025.130053_b56) 2016
Dosovitskiy (10.1016/j.neucom.2025.130053_b66) 2020
Liu (10.1016/j.neucom.2025.130053_b40) 2024; 299
Gao (10.1016/j.neucom.2025.130053_b21) 2024
Frenklach (10.1016/j.neucom.2025.130053_b46) 2021; 109
Yoo (10.1016/j.neucom.2025.130053_b31) 2021; 546
Wang (10.1016/j.neucom.2025.130053_b57) 2018
Li (10.1016/j.neucom.2025.130053_b15) 2023
Xu (10.1016/j.neucom.2025.130053_b48) 2016; 11
Kipf (10.1016/j.neucom.2025.130053_b20) 2016
Mikolov (10.1016/j.neucom.2025.130053_b59) 2013
Qiu (10.1016/j.neucom.2025.130053_b5) 2021; 53
Ye (10.1016/j.neucom.2025.130053_b2) 2017; 50
Chen (10.1016/j.neucom.2025.130053_b26) 2018; 2018
Song (10.1016/j.neucom.2025.130053_b17) 2021
Vu (10.1016/j.neucom.2025.130053_b37) 2021; 9
Ministry of Industry and Information Technology (10.1016/j.neucom.2025.130053_b1) 2011
Bai (10.1016/j.neucom.2025.130053_b29) 2020; 8
Zhu (10.1016/j.neucom.2025.130053_b7) 2022; 8
Hamilton (10.1016/j.neucom.2025.130053_b60) 2017
Rizvi (10.1016/j.neucom.2025.130053_b30) 2022; 8
Daoudi (10.1016/j.neucom.2025.130053_b38) 2021; vol. 1482
Cai (10.1016/j.neucom.2025.130053_b45) 2021; 423
V.K.V. (10.1016/j.neucom.2025.130053_b47) 2021
Silva (10.1016/j.neucom.2025.130053_b14) 2020
Li (10.1016/j.neucom.2025.130053_b23) 2018; 14
Simonyan (10.1016/j.neucom.2025.130053_b65) 2015
Mantoo (10.1016/j.neucom.2025.130053_b3) 2020
Reza (10.1016/j.neucom.2025.130053_b51) 2004; 38
Huang (10.1016/j.neucom.2025.130053_b34) 2018
Onwuzurike (10.1016/j.neucom.2025.130053_b41) 2019; 22
Brody (10.1016/j.neucom.2025.130053_b61) 2021
Ranjan (10.1016/j.neucom.2025.130053_b62) 2020
Nisa (10.1016/j.neucom.2025.130053_b36) 2020; 10
Mahdavifar (10.1016/j.neucom.2025.130053_b63) 2020
Miranda-García (10.1016/j.neucom.2025.130053_b50) 2024; 563
Zhang (10.1016/j.neucom.2025.130053_b49) 2021; 13
Amin (10.1016/j.neucom.2025.130053_b4) 2020; 102
Mahdavifar (10.1016/j.neucom.2025.130053_b64) 2022; 30
Xu (10.1016/j.neucom.2025.130053_b24) 2018
Woo (10.1016/j.neucom.2025.130053_b53) 2023
Wenna (10.1016/j.neucom.2025.130053_b13) 2019; 30
Yang (10.1016/j.neucom.2025.130053_b43) 2021; 10
Ring (10.1016/j.neucom.2025.130053_b9) 2021; 109
Yuan (10.1016/j.neucom.2025.130053_b35) 2020; 92
Zixuan (10.1016/j.neucom.2025.130053_b8) 2022; 30
Freitas (10.1016/j.neucom.2025.130053_b16) 2022
Tan (10.1016/j.neucom.2025.130053_b39) 2019
Yadav (10.1016/j.neucom.2025.130053_b18) 2020; 115
Zhang (10.1016/j.neucom.2025.130053_b44) 2020
Arp (10.1016/j.neucom.2025.130053_b22) 2014
Yang (10.1016/j.neucom.2025.130053_b32) 2022; 123
References_xml – year: 2014
  ident: b22
  article-title: Drebin: Effective and explainable detection of android malware in your pocket
  publication-title: 21st Annual Network and Distributed System Security Symposium
– volume: 563
  year: 2024
  ident: b50
  article-title: Deep learning applications on cybersecurity: A practical approach
  publication-title: Neurocomputing
– volume: 77
  start-page: 366
  year: 2019
  end-page: 375
  ident: b10
  article-title: Long short-term memory-based malware classification method for information security
  publication-title: Comput. Electr. Eng.
– volume: 30
  start-page: 67
  year: 2022
  end-page: 72
  ident: b8
  article-title: BiLSTM malicious code classification based on multifeature fusion
  publication-title: Electron. Des. Eng.
– volume: 14
  start-page: 3216
  year: 2018
  end-page: 3225
  ident: b23
  article-title: Significant permission identification for machine-learning-based android malware detection
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 6105
  year: 2019
  end-page: 6114
  ident: b39
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
  publication-title: Proceedings of the International Conference on Machine Learning
– volume: 50
  year: 2017
  ident: b2
  article-title: A survey on malware detection using data mining techniques
  publication-title: ACM Comput. Surv.
– start-page: 515
  year: 2020
  end-page: 522
  ident: b63
  article-title: Dynamic android malware category classification using semi-supervised deep learning
  publication-title: 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber SciTech
– year: 2023
  ident: b15
  article-title: Black-box adversarial example attack towards FCG based android malware detection under incomplete feature information
  publication-title: Proceedings of the 32nd USENIX Conference on Security Symposium
– start-page: 139
  year: 2019
  end-page: 150
  ident: b42
  article-title: MalScan: Fast market-wide mobile malware scanning by social-network centrality analysis
  publication-title: 2019 34th IEEE/ACM International Conference on Automated Software Engineering
– start-page: 471
  year: 2020
  end-page: 482
  ident: b14
  article-title: KNN applied to PDG for source code similarity classification
  publication-title: Intelligent Systems: 9th Brazilian Conference, BRACIS 2020, Rio Grande, Brazil, October (2020) 20–23, Proceedings, Part II
– volume: 11
  start-page: 1252
  year: 2016
  end-page: 1264
  ident: b48
  article-title: ICCDetector: ICC-based malware detection on android
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 299
  year: 2024
  ident: b40
  article-title: Evolving malware detection through instant dynamic graph inverse reinforcement learning
  publication-title: Knowl.-Based Syst.
– volume: vol. 1482
  year: 2021
  ident: b38
  article-title: DexRay: A simple, yet effective deep learning approach to android malware detection based on image representation of bytecode
  publication-title: Deployable Machine Learning for Security Defense. MLHat 2021. Communications in Computer and Information Science
– volume: 10
  year: 2021
  ident: b43
  article-title: Android malware detection based on structural features of the function call graph
  publication-title: Electronics
– year: 2016
  ident: b20
  article-title: Semi-supervised classification with graph convolutional networks
– start-page: 473
  year: 2018
  end-page: 487
  ident: b24
  article-title: DeepRefiner: Multi-layer android malware detection system applying deep neural networks
  publication-title: 2018 3rd IEEE European Symposium on Security and Privacy (EuroS & P 2018)
– volume: 53
  year: 2021
  ident: b5
  article-title: A survey of android malware detection with deep neural models
  publication-title: ACM Comput. Surv.
– start-page: 164
  year: 2021
  end-page: 165
  ident: b17
  article-title: IMGDroid: A static analyzer for detecting image loading defects in android applications
  publication-title: 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings
– start-page: 5987
  year: 2017
  end-page: 5995
  ident: b54
  article-title: Aggregated residual transformations for deep neural networks
  publication-title: 30th IEEE Conference on Computer Vision and Pattern Recognition
– volume: 30
  start-page: 2229
  year: 2019
  end-page: 2267
  ident: b13
  article-title: Research on malware evolution and tracing technology
  publication-title: J. Softw.
– volume: 22
  start-page: 14
  year: 2019
  ident: b41
  article-title: MaMaDroid: Detecting android malware by building Markov chains of behavioral models (extended version)
  publication-title: ACM Trans. Priv. Secur.
– start-page: 11976
  year: 2022
  end-page: 11986
  ident: b52
  article-title: A ConvNet for the 2020s
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 16133
  year: 2023
  end-page: 16142
  ident: b53
  article-title: ConvNeXt V2: Co-designing and scaling ConvNets with masked autoencoders
  publication-title: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 8
  start-page: 485
  year: 2022
  end-page: 491
  ident: b7
  article-title: N-gram MalGAN: Evading machine learning detection via feature n-gram
  publication-title: Digit. Commun. Netw.
– volume: 123
  year: 2022
  ident: b32
  article-title: An android malware detection and classification approach based on contrastive learning
  publication-title: Comput. Secur.
– year: 2018
  ident: b57
  article-title: GLUE: A multi-task benchmark and analysis platform for natural language understanding
– volume: 92
  year: 2020
  ident: b35
  article-title: Byte-level malware classification based on Markov images and deep learning
  publication-title: Comput. Secur.
– volume: 109
  year: 2021
  ident: b46
  article-title: Android malware detection via an app similarity graph
  publication-title: Comput. Secur.
– year: 2011
  ident: b1
  article-title: Mobile internet malicious program description format
– volume: 38
  start-page: 35
  year: 2004
  end-page: 44
  ident: b51
  article-title: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement
  publication-title: J. VLSI Signal Process. Syst. Signal, Image Video Technol.
– volume: 73
  start-page: 73
  year: 2018
  end-page: 86
  ident: b12
  article-title: A malware detection method based on family behavior graph
  publication-title: Comput. Secur.
– volume: 546
  start-page: 420
  year: 2021
  end-page: 435
  ident: b31
  article-title: AI-HydRa: Advanced hybrid approach using random forest and deep learning for malware classification
  publication-title: Inform. Sci.
– volume: 598
  year: 2024
  ident: b6
  article-title: A review of deep learning-based malware detection techniques
  publication-title: Neurocomputing
– volume: 102
  start-page: 112
  year: 2020
  end-page: 126
  ident: b4
  article-title: Static malware detection and attribution in android byte-code through an end-to-end deep system
  publication-title: Future Gener. Comput. Syst.
– start-page: 3948
  year: 2022
  end-page: 3952
  ident: b16
  article-title: MalNet: A large-scale image database of malicious software
  publication-title: Proceedings of the 31st ACM International Conference on Information & Knowledge Management
– volume: 80
  start-page: 120
  year: 2019
  end-page: 133
  ident: b27
  article-title: A scalable and extensible framework for android malware detection and family attribution
  publication-title: Comput. Secur.
– volume: 115
  year: 2020
  ident: b18
  article-title: EfficientNet convolutional neural networks-based android malware detection
  publication-title: Comput. Secur.
– volume: 9
  start-page: 39680
  year: 2021
  end-page: 39694
  ident: b37
  article-title: AdMat: A CNN-on-matrix approach to android malware detection and classification
  publication-title: IEEE Access
– volume: 2018
  year: 2018
  ident: b26
  article-title: TinyDroid: A lightweight and efficient model for android malware detection and classification
  publication-title: Mob. Inf. Syst.
– volume: 30
  start-page: 22
  year: 2022
  ident: b64
  article-title: Effective and efficient hybrid android malware classification using pseudo-label stacked auto-encoder
  publication-title: J. Netw. Syst. Manage.
– start-page: 757
  year: 2020
  end-page: 770
  ident: b44
  article-title: Enhancing state-of-the-art classifiers with API semantics to detect evolved android malware
  publication-title: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security
– year: 2013
  ident: b59
  article-title: Efficient estimation of word representations in vector space
– year: 2020
  ident: b66
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– volume: 253
  year: 2022
  ident: b58
  article-title: ConvUNeXt: An efficient convolution neural network for medical image segmentation
  publication-title: Knowl.-Based Syst.
– start-page: 31
  year: 2020
  end-page: 45
  ident: b3
  article-title: Static, dynamic and intrinsic features based android malware detection using machine learning
  publication-title: Proceedings of ICRIC 2019: Recent Innovations in Computing
– volume: 212
  year: 2023
  ident: b33
  article-title: Android malware detection based on multi-head squeeze-and-excitation residual network
  publication-title: Expert Syst. Appl.
– year: 2021
  ident: b61
  article-title: How attentive are graph attention networks?
– start-page: 770
  year: 2016
  end-page: 778
  ident: b56
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition
– year: 2015
  ident: b65
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: 3rd International Conference on Learning Representations
– volume: 95
  start-page: 548
  year: 2019
  end-page: 559
  ident: b25
  article-title: SaaS: A situational awareness and analysis system for massive android malware detection
  publication-title: Future Gener. Comput. Syst.
– volume: 109
  year: 2021
  ident: b9
  article-title: Malware detection on windows audit logs using LSTMs
  publication-title: Comput. Secur.
– start-page: 5470
  year: 2020
  end-page: 5477
  ident: b62
  article-title: ASAP: Adaptive structure aware pooling for learning hierarchical graph representations
  publication-title: Thirty-Fourth AAAI Conference on Artificial Intelligence
– volume: 13
  start-page: 1107
  year: 2021
  ident: b49
  article-title: Android malware detection using TCN with bytecode image
  publication-title: Symmetry
– year: 2024
  ident: b21
  article-title: A comprehensive study of learning-based android malware detectors under challenging environments
  publication-title: Proceedings of the IEEE/ACM 46th International Conference on Software Engineering
– start-page: 9992
  year: 2021
  end-page: 10002
  ident: b55
  article-title: Swin transformer: Hierarchical vision transformer using shifted windows
  publication-title: 2021 IEEE/ CVF International Conference on Computer Vision
– volume: 99
  year: 2020
  ident: b11
  article-title: Recurrent neural network for detecting malware
  publication-title: Comput. Secur.
– start-page: 279
  year: 2021
  end-page: 287
  ident: b47
  article-title: Android malware detection using function call graph with graph convolutional networks
  publication-title: 2021 2nd International Conference on Secure Cyber Computing and Communications
– volume: 423
  start-page: 301
  year: 2021
  end-page: 307
  ident: b45
  article-title: Learning features from enhanced function call graphs for android malware detection
  publication-title: Neurocomputing
– start-page: 2633
  year: 2018
  end-page: 2642
  ident: b34
  article-title: R2-d2: Color-inspired convolutional neural network (CNN)-based android malware detections
  publication-title: 2018 IEEE International Conference on Big Data (Big Data)
– volume: 8
  start-page: 673
  year: 2022
  end-page: 685
  ident: b30
  article-title: PROUD-MAL: Static analysis-based progressive framework for deep unsupervised malware classification of windows portable executable
  publication-title: Complex Intell. Syst.
– year: 2023
  ident: b19
  article-title: Obfuscation-resilient android malware analysis based on complementary features
  publication-title: IEEE Trans. Inf. Forensics Secur.
– year: 2019
  ident: b28
  article-title: Android malware detection through generative adversarial networks
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: 8
  start-page: 194729
  year: 2020
  end-page: 194740
  ident: b29
  article-title: FAMD: A fast multifeature android malware detection framework, design, and implementation
  publication-title: IEEE Access
– volume: 10
  start-page: 4966
  year: 2020
  ident: b36
  article-title: Hybrid malware classification method using segmentation-based fractal texture analysis and deep convolution neural network features
  publication-title: Appl. Sci.- Basel
– start-page: 30
  year: 2017
  ident: b60
  article-title: Inductive representation learning on large graphs
  publication-title: Advances in Neural Information Processing Systems
– year: 2024
  ident: 10.1016/j.neucom.2025.130053_b21
  article-title: A comprehensive study of learning-based android malware detectors under challenging environments
– volume: 109
  issue: C
  year: 2021
  ident: 10.1016/j.neucom.2025.130053_b9
  article-title: Malware detection on windows audit logs using LSTMs
  publication-title: Comput. Secur.
– start-page: 5987
  year: 2017
  ident: 10.1016/j.neucom.2025.130053_b54
  article-title: Aggregated residual transformations for deep neural networks
– year: 2023
  ident: 10.1016/j.neucom.2025.130053_b19
  article-title: Obfuscation-resilient android malware analysis based on complementary features
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2023.3302509
– start-page: 5470
  year: 2020
  ident: 10.1016/j.neucom.2025.130053_b62
  article-title: ASAP: Adaptive structure aware pooling for learning hierarchical graph representations
– year: 2011
  ident: 10.1016/j.neucom.2025.130053_b1
– start-page: 2633
  year: 2018
  ident: 10.1016/j.neucom.2025.130053_b34
  article-title: R2-d2: Color-inspired convolutional neural network (CNN)-based android malware detections
– start-page: 473
  year: 2018
  ident: 10.1016/j.neucom.2025.130053_b24
  article-title: DeepRefiner: Multi-layer android malware detection system applying deep neural networks
– volume: 30
  start-page: 67
  year: 2022
  ident: 10.1016/j.neucom.2025.130053_b8
  article-title: BiLSTM malicious code classification based on multifeature fusion
  publication-title: Electron. Des. Eng.
– start-page: 9992
  year: 2021
  ident: 10.1016/j.neucom.2025.130053_b55
  article-title: Swin transformer: Hierarchical vision transformer using shifted windows
– volume: 38
  start-page: 35
  issue: 1
  year: 2004
  ident: 10.1016/j.neucom.2025.130053_b51
  article-title: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement
  publication-title: J. VLSI Signal Process. Syst. Signal, Image Video Technol.
  doi: 10.1023/B:VLSI.0000028532.53893.82
– year: 2018
  ident: 10.1016/j.neucom.2025.130053_b57
– volume: 99
  year: 2020
  ident: 10.1016/j.neucom.2025.130053_b11
  article-title: Recurrent neural network for detecting malware
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2020.102037
– year: 2020
  ident: 10.1016/j.neucom.2025.130053_b66
– volume: 2018
  year: 2018
  ident: 10.1016/j.neucom.2025.130053_b26
  article-title: TinyDroid: A lightweight and efficient model for android malware detection and classification
  publication-title: Mob. Inf. Syst.
– start-page: 16133
  year: 2023
  ident: 10.1016/j.neucom.2025.130053_b53
  article-title: ConvNeXt V2: Co-designing and scaling ConvNets with masked autoencoders
– start-page: 31
  year: 2020
  ident: 10.1016/j.neucom.2025.130053_b3
  article-title: Static, dynamic and intrinsic features based android malware detection using machine learning
– start-page: 770
  year: 2016
  ident: 10.1016/j.neucom.2025.130053_b56
  article-title: Deep residual learning for image recognition
– volume: 253
  year: 2022
  ident: 10.1016/j.neucom.2025.130053_b58
  article-title: ConvUNeXt: An efficient convolution neural network for medical image segmentation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109512
– year: 2016
  ident: 10.1016/j.neucom.2025.130053_b20
– volume: vol. 1482
  year: 2021
  ident: 10.1016/j.neucom.2025.130053_b38
  article-title: DexRay: A simple, yet effective deep learning approach to android malware detection based on image representation of bytecode
– year: 2021
  ident: 10.1016/j.neucom.2025.130053_b61
– volume: 73
  start-page: 73
  year: 2018
  ident: 10.1016/j.neucom.2025.130053_b12
  article-title: A malware detection method based on family behavior graph
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2017.10.007
– volume: 8
  start-page: 673
  issue: 1
  year: 2022
  ident: 10.1016/j.neucom.2025.130053_b30
  article-title: PROUD-MAL: Static analysis-based progressive framework for deep unsupervised malware classification of windows portable executable
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00560-1
– volume: 299
  year: 2024
  ident: 10.1016/j.neucom.2025.130053_b40
  article-title: Evolving malware detection through instant dynamic graph inverse reinforcement learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.111991
– start-page: 30
  year: 2017
  ident: 10.1016/j.neucom.2025.130053_b60
  article-title: Inductive representation learning on large graphs
– start-page: 471
  year: 2020
  ident: 10.1016/j.neucom.2025.130053_b14
  article-title: KNN applied to PDG for source code similarity classification
– volume: 423
  start-page: 301
  year: 2021
  ident: 10.1016/j.neucom.2025.130053_b45
  article-title: Learning features from enhanced function call graphs for android malware detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.054
– start-page: 757
  year: 2020
  ident: 10.1016/j.neucom.2025.130053_b44
  article-title: Enhancing state-of-the-art classifiers with API semantics to detect evolved android malware
– volume: 8
  start-page: 485
  issue: 4
  year: 2022
  ident: 10.1016/j.neucom.2025.130053_b7
  article-title: N-gram MalGAN: Evading machine learning detection via feature n-gram
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2021.11.007
– start-page: 139
  year: 2019
  ident: 10.1016/j.neucom.2025.130053_b42
  article-title: MalScan: Fast market-wide mobile malware scanning by social-network centrality analysis
– volume: 598
  year: 2024
  ident: 10.1016/j.neucom.2025.130053_b6
  article-title: A review of deep learning-based malware detection techniques
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.128010
– year: 2015
  ident: 10.1016/j.neucom.2025.130053_b65
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 95
  start-page: 548
  year: 2019
  ident: 10.1016/j.neucom.2025.130053_b25
  article-title: SaaS: A situational awareness and analysis system for massive android malware detection
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.12.028
– volume: 14
  start-page: 3216
  issue: 7
  year: 2018
  ident: 10.1016/j.neucom.2025.130053_b23
  article-title: Significant permission identification for machine-learning-based android malware detection
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2789219
– volume: 80
  start-page: 120
  year: 2019
  ident: 10.1016/j.neucom.2025.130053_b27
  article-title: A scalable and extensible framework for android malware detection and family attribution
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2018.10.001
– volume: 546
  start-page: 420
  year: 2021
  ident: 10.1016/j.neucom.2025.130053_b31
  article-title: AI-HydRa: Advanced hybrid approach using random forest and deep learning for malware classification
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.08.082
– volume: 92
  year: 2020
  ident: 10.1016/j.neucom.2025.130053_b35
  article-title: Byte-level malware classification based on Markov images and deep learning
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2020.101740
– year: 2014
  ident: 10.1016/j.neucom.2025.130053_b22
  article-title: Drebin: Effective and explainable detection of android malware in your pocket
– volume: 10
  start-page: 4966
  issue: 14
  year: 2020
  ident: 10.1016/j.neucom.2025.130053_b36
  article-title: Hybrid malware classification method using segmentation-based fractal texture analysis and deep convolution neural network features
  publication-title: Appl. Sci.- Basel
  doi: 10.3390/app10144966
– volume: 9
  start-page: 39680
  year: 2021
  ident: 10.1016/j.neucom.2025.130053_b37
  article-title: AdMat: A CNN-on-matrix approach to android malware detection and classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3063748
– start-page: 164
  year: 2021
  ident: 10.1016/j.neucom.2025.130053_b17
  article-title: IMGDroid: A static analyzer for detecting image loading defects in android applications
– volume: 50
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2025.130053_b2
  article-title: A survey on malware detection using data mining techniques
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3073559
– start-page: 3948
  year: 2022
  ident: 10.1016/j.neucom.2025.130053_b16
  article-title: MalNet: A large-scale image database of malicious software
– start-page: 6105
  year: 2019
  ident: 10.1016/j.neucom.2025.130053_b39
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
– volume: 53
  issue: 6
  year: 2021
  ident: 10.1016/j.neucom.2025.130053_b5
  article-title: A survey of android malware detection with deep neural models
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3417978
– volume: 8
  start-page: 194729
  year: 2020
  ident: 10.1016/j.neucom.2025.130053_b29
  article-title: FAMD: A fast multifeature android malware detection framework, design, and implementation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3033026
– year: 2019
  ident: 10.1016/j.neucom.2025.130053_b28
  article-title: Android malware detection through generative adversarial networks
  publication-title: Trans. Emerg. Telecommun. Technol.
– start-page: 11976
  year: 2022
  ident: 10.1016/j.neucom.2025.130053_b52
  article-title: A ConvNet for the 2020s
– start-page: 279
  year: 2021
  ident: 10.1016/j.neucom.2025.130053_b47
  article-title: Android malware detection using function call graph with graph convolutional networks
– volume: 77
  start-page: 366
  issue: C
  year: 2019
  ident: 10.1016/j.neucom.2025.130053_b10
  article-title: Long short-term memory-based malware classification method for information security
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2019.06.014
– volume: 563
  year: 2024
  ident: 10.1016/j.neucom.2025.130053_b50
  article-title: Deep learning applications on cybersecurity: A practical approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126904
– volume: 30
  start-page: 22
  issue: 1
  year: 2022
  ident: 10.1016/j.neucom.2025.130053_b64
  article-title: Effective and efficient hybrid android malware classification using pseudo-label stacked auto-encoder
  publication-title: J. Netw. Syst. Manage.
  doi: 10.1007/s10922-021-09634-4
– volume: 102
  start-page: 112
  year: 2020
  ident: 10.1016/j.neucom.2025.130053_b4
  article-title: Static malware detection and attribution in android byte-code through an end-to-end deep system
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.07.070
– volume: 115
  year: 2020
  ident: 10.1016/j.neucom.2025.130053_b18
  article-title: EfficientNet convolutional neural networks-based android malware detection
  publication-title: Comput. Secur.
– volume: 212
  year: 2023
  ident: 10.1016/j.neucom.2025.130053_b33
  article-title: Android malware detection based on multi-head squeeze-and-excitation residual network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118705
– year: 2023
  ident: 10.1016/j.neucom.2025.130053_b15
  article-title: Black-box adversarial example attack towards FCG based android malware detection under incomplete feature information
– volume: 109
  year: 2021
  ident: 10.1016/j.neucom.2025.130053_b46
  article-title: Android malware detection via an app similarity graph
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102386
– volume: 11
  start-page: 1252
  issue: 6
  year: 2016
  ident: 10.1016/j.neucom.2025.130053_b48
  article-title: ICCDetector: ICC-based malware detection on android
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2016.2523912
– volume: 13
  start-page: 1107
  issue: 7
  year: 2021
  ident: 10.1016/j.neucom.2025.130053_b49
  article-title: Android malware detection using TCN with bytecode image
  publication-title: Symmetry
  doi: 10.3390/sym13071107
– start-page: 515
  year: 2020
  ident: 10.1016/j.neucom.2025.130053_b63
  article-title: Dynamic android malware category classification using semi-supervised deep learning
– volume: 123
  year: 2022
  ident: 10.1016/j.neucom.2025.130053_b32
  article-title: An android malware detection and classification approach based on contrastive learning
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2022.102915
– volume: 22
  start-page: 14
  issue: 2
  year: 2019
  ident: 10.1016/j.neucom.2025.130053_b41
  article-title: MaMaDroid: Detecting android malware by building Markov chains of behavioral models (extended version)
  publication-title: ACM Trans. Priv. Secur.
  doi: 10.1145/3313391
– year: 2013
  ident: 10.1016/j.neucom.2025.130053_b59
– volume: 30
  start-page: 2229
  issue: 8
  year: 2019
  ident: 10.1016/j.neucom.2025.130053_b13
  article-title: Research on malware evolution and tracing technology
  publication-title: J. Softw.
– volume: 10
  issue: 186
  year: 2021
  ident: 10.1016/j.neucom.2025.130053_b43
  article-title: Android malware detection based on structural features of the function call graph
  publication-title: Electronics
SSID ssj0017129
Score 2.452715
Snippet With the rapid development of Internet of Things (IoT) technology, Android devices have increasingly become primary targets for malware attacks. Although...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 130053
SubjectTerms Android
Convolutional neural network
Deep learning
Graph convolutional network
Malware detection
Title SAC: Collaborative learning of structure and content features for Android malware detection framework
URI https://dx.doi.org/10.1016/j.neucom.2025.130053
Volume 637
WOSCitedRecordID wos001458014800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELaWpQcu0FIQj7byoTcURB6O7d5WW6otqlDVAlpOkWM7KCvI8li2_IH-745f2d1SoXLgEkVW4kSeT-Px-PM3CH1UVaa4pMpIIWZRVh6oiJcJiRhPJMtLTpXV2T77Ro-P2XDIv3c6v8NZmOklbRr28MCvX9TU0AbGNkdnn2HutlNogHswOlzB7HD9L8P_7PXNMr8_M_BUh-IQluDsJGPDxoHhqluBJm0lPq08g6U5jmu1dyUufxlqmNIT7WqKV4HMNR_VWoUPaetD-MxD78oIMCiDtjbTcO5T00f1jAZU-7bBfT2q2xnih_OFA-GnVcPwcaTez-Pm4ibMtj5ZATa3idD5rCO0QUi54IBzJ_viXajZX3P6wY-8u0s0jPYbfW-oPuYD-7PHF8W0_5rkWuphYLWNCtdLYXopXC9LaDmhhLMuWu59PRwetdtRNE6caKP_-3AG0xIFH__Nv2Ocubjl5DVa9QsO3HNAeYM6ullHa6GYB_a-_S3SgJtPeAE1OKAGjyvcogYDarBHDQ6owYAa7FGDPWpwixrcomYDnX45POkPIl-DI5LgzCcRURCDw5JWpkxksLqQEOLnJSkZrFNLSqQQJKcZP0jKSvCcpJXkKVFpRWmsGZMk3UTdZtzoLYR5LLjKYiHMtFFlXKSMJDJNdVzGhLF4G0Vh1IprJ7VSPGWtbUTD0BY-XHRhYAF4efLNnWd-aRetzMD8DnVhwPV79EpOJ_Xd7QcPlj8AD42y
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAC%3A+Collaborative+learning+of+structure+and+content+features+for+Android+malware+detection+framework&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yang%2C+Jin&rft.au=Liang%2C+Huijia&rft.au=Ren%2C+Hang&rft.au=Jia%2C+Dongqing&rft.date=2025-07-07&rft.issn=0925-2312&rft.volume=637&rft.spage=130053&rft_id=info:doi/10.1016%2Fj.neucom.2025.130053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2025_130053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon