AI-driven orchestration at scale: Estimating service metrics on national-wide testbeds
Network Slicing (NS) realization requires AI-native orchestration architectures to efficiently and intelligently handle heterogeneous user requirements. To achieve this, network slicing is evolving towards a more user-centric digital transformation, focusing on architectures that incorporate native...
Uloženo v:
| Vydáno v: | Future generation computer systems Ročník 174; s. 107971 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.01.2026
|
| Témata: | |
| ISSN: | 0167-739X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Network Slicing (NS) realization requires AI-native orchestration architectures to efficiently and intelligently handle heterogeneous user requirements. To achieve this, network slicing is evolving towards a more user-centric digital transformation, focusing on architectures that incorporate native intelligence to enable self-managed connectivity in an integrated and isolated manner. However, these initiatives face the challenge of validating their results in production environments, particularly those utilizing ML-enabled orchestration, as they are often tested in local networks or laboratory simulations. This paper proposes a large-scale validation method using a network slicing prediction model to forecast latency using Deep Neural Networks (DNNs) and basic ML algorithms embedded within an NS architecture evaluated in real large-scale production testbeds. It measures and compares the performance of different DNNs and ML algorithms, considering a distributed database application deployed as a network slice over two large-scale production testbeds. The investigation highlights how AI-based prediction models can enhance network slicing orchestration architectures and presents a seamless, production-ready validation method as an alternative to fully controlled simulations or laboratory setups.
•Forecasting behavior in production-ready network slicing architectures.•Architectural study of embedded DNNs and basic ML for slicing SLA conformance.•Evaluation of hyperparameter tuning for AI-native network slices on testbeds.•Creation of a dataset workflow for realistic slicing application workloads; |
|---|---|
| ISSN: | 0167-739X |
| DOI: | 10.1016/j.future.2025.107971 |