AI-driven orchestration at scale: Estimating service metrics on national-wide testbeds

Network Slicing (NS) realization requires AI-native orchestration architectures to efficiently and intelligently handle heterogeneous user requirements. To achieve this, network slicing is evolving towards a more user-centric digital transformation, focusing on architectures that incorporate native...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Future generation computer systems Ročník 174; s. 107971
Hlavní autori: Moreira, Rodrigo, Pasquini, Rafael, Martins, Joberto S.B., Carvalho, Tereza C., de Oliveira Silva, Flávio
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2026
Predmet:
ISSN:0167-739X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Network Slicing (NS) realization requires AI-native orchestration architectures to efficiently and intelligently handle heterogeneous user requirements. To achieve this, network slicing is evolving towards a more user-centric digital transformation, focusing on architectures that incorporate native intelligence to enable self-managed connectivity in an integrated and isolated manner. However, these initiatives face the challenge of validating their results in production environments, particularly those utilizing ML-enabled orchestration, as they are often tested in local networks or laboratory simulations. This paper proposes a large-scale validation method using a network slicing prediction model to forecast latency using Deep Neural Networks (DNNs) and basic ML algorithms embedded within an NS architecture evaluated in real large-scale production testbeds. It measures and compares the performance of different DNNs and ML algorithms, considering a distributed database application deployed as a network slice over two large-scale production testbeds. The investigation highlights how AI-based prediction models can enhance network slicing orchestration architectures and presents a seamless, production-ready validation method as an alternative to fully controlled simulations or laboratory setups. •Forecasting behavior in production-ready network slicing architectures.•Architectural study of embedded DNNs and basic ML for slicing SLA conformance.•Evaluation of hyperparameter tuning for AI-native network slices on testbeds.•Creation of a dataset workflow for realistic slicing application workloads;
AbstractList Network Slicing (NS) realization requires AI-native orchestration architectures to efficiently and intelligently handle heterogeneous user requirements. To achieve this, network slicing is evolving towards a more user-centric digital transformation, focusing on architectures that incorporate native intelligence to enable self-managed connectivity in an integrated and isolated manner. However, these initiatives face the challenge of validating their results in production environments, particularly those utilizing ML-enabled orchestration, as they are often tested in local networks or laboratory simulations. This paper proposes a large-scale validation method using a network slicing prediction model to forecast latency using Deep Neural Networks (DNNs) and basic ML algorithms embedded within an NS architecture evaluated in real large-scale production testbeds. It measures and compares the performance of different DNNs and ML algorithms, considering a distributed database application deployed as a network slice over two large-scale production testbeds. The investigation highlights how AI-based prediction models can enhance network slicing orchestration architectures and presents a seamless, production-ready validation method as an alternative to fully controlled simulations or laboratory setups. •Forecasting behavior in production-ready network slicing architectures.•Architectural study of embedded DNNs and basic ML for slicing SLA conformance.•Evaluation of hyperparameter tuning for AI-native network slices on testbeds.•Creation of a dataset workflow for realistic slicing application workloads;
ArticleNumber 107971
Author Carvalho, Tereza C.
Martins, Joberto S.B.
de Oliveira Silva, Flávio
Pasquini, Rafael
Moreira, Rodrigo
Author_xml – sequence: 1
  givenname: Rodrigo
  orcidid: 0000-0002-9328-8618
  surname: Moreira
  fullname: Moreira, Rodrigo
  email: rodrigo@ufv.br
  organization: Federal University of Viçosa (UFV), Rio Paranaíba, Minas Gerais, Brazil
– sequence: 2
  givenname: Rafael
  orcidid: 0000-0002-8781-3914
  surname: Pasquini
  fullname: Pasquini, Rafael
  email: rafael.pasquini@ufu.br
  organization: Federal University of Uberlândia (UFU), Uberlândia, Brazil
– sequence: 3
  givenname: Joberto S.B.
  orcidid: 0000-0003-1310-9366
  surname: Martins
  fullname: Martins, Joberto S.B.
  email: joberto.martins@animaeducacao.com.br
  organization: Salvador University (UNIFACS), Salvador, Bahia, Brazil
– sequence: 4
  givenname: Tereza C.
  orcidid: 0000-0002-0821-0614
  surname: Carvalho
  fullname: Carvalho, Tereza C.
  email: terezacarvalho@usp.br
  organization: University of São Paulo (USP), São Paulo, Brazil
– sequence: 5
  givenname: Flávio
  surname: de Oliveira Silva
  fullname: de Oliveira Silva, Flávio
  email: flavio@di.uminho.pt
  organization: University of Minho (UMinho), Braga, Portugal
BookMark eNp9kM1KAzEUhbOoYFt9Axd5gan56UwyLoRSqi0U3Ki4C5nkRlPajCRpxbc3dVy7unDuOYfDN0Gj0AdA6IaSGSW0ud3N3DEfI8wYYXWRRCvoCI3LS1SCt2-XaJLSjhBCBadj9LrYVDb6EwTcR_MBKUedfR-wzjgZvYc7vErZH4oY3nGCePIG8AFy9Cbh4gu_dr2vvrwFnEtBBzZdoQun9wmu_-4UvTysnpfravv0uFkutpVhtchVLcTcdZILKS0RzGru-Nx0pnOW24a3oHkrtRTAgDUN0yCZNMIQx6XlvO74FM2HXhP7lCI49RnL2PitKFFnHmqnBh7qzEMNPErsfohB2XbyEFUyHoIB6yOYrGzv_y_4AYzGcNM
Cites_doi 10.1109/MWC.006.2200407
10.1109/MIC.2019.2958545
10.1109/JIOT.2022.3147897
10.1016/j.comnet.2023.110054
10.1007/s10618-020-00710-y
10.1109/ACCESS.2023.3264592
10.1109/TNSM.2022.3197789
10.1016/j.comnet.2023.110085
10.1109/MWC.001.2100338
10.1016/j.compeleceng.2023.108852
10.1109/ACCESS.2023.3267985
10.1007/s10922-021-09636-2
10.1016/j.neucom.2020.07.061
10.1016/j.future.2024.03.001
10.1038/sdata.2015.55
10.1007/s10922-022-09693-1
10.1016/j.dsm.2023.06.001
10.1007/s10586-022-03960-1
10.1109/MWC.023.2200557
10.1109/MNET.003.2200641
10.1007/s11277-020-07818-w
10.1109/ACCESS.2023.3292788
10.3390/info11020108
10.1016/j.isprsjprs.2020.06.006
10.1016/j.comcom.2021.07.028
10.1007/s11042-022-13427-5
10.1145/3292500.3330701
10.1016/j.comcom.2023.02.009
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2025.107971
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_future_2025_107971
S0167739X25002663
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AFJKZ
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c257t-5774fb83788d072da3f34cbcbfd3d639ea398a87e2e2662ae828c7c0f38d335b3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001566290700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 07:26:39 EST 2025
Sat Oct 25 16:46:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Network slicing
Service-level agreement
Deep Neural Networks
Distributed database
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-5774fb83788d072da3f34cbcbfd3d639ea398a87e2e2662ae828c7c0f38d335b3
ORCID 0000-0002-0821-0614
0000-0002-8781-3914
0000-0002-9328-8618
0000-0003-1310-9366
ParticipantIDs crossref_primary_10_1016_j_future_2025_107971
elsevier_sciencedirect_doi_10_1016_j_future_2025_107971
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Howard, Gugger (b42) 2020; 11
Tran, Delgado, Jaumard, Bishay (b28) 2023
Ge, Hou, Nayak (b22) 2023
Laiche, Ben Letaifa, Elloumi, Aguili (b24) 2021; 116
Thantharate, Beard (b27) 2022; 31
Mesh (b45) 2024
S., Mishra, Hota (b6) 2023; 202
Cui, Huang, He, Wu, Wang (b20) 2022; 9
Ahmed, Mahmood, Matin (b8) 2023; 34
Nougnanke, Labit, Bruyere, Aïvodji, Ferlin (b21) 2023; 20
Wu, Zhou, Li, Wu, Zhou, Zhang, Shen, Zhuang (b10) 2022; 29
Li, Wu, Huang, Huang, Huang, Shen (b3) 2023; 37
Yu, Ming, Wang, Taleb (b29) 2023
Baktır, Özgövde, Ersoy (b32) 2024; 157
Ismail Fawaz, Lucas, Forestier, Pelletier, Schmidt, Weber, Webb, Idoumghar, Muller, Petitjean (b40) 2020; 34
Rußwurm, Körner (b41) 2020; 169
James, Witten, Hastie, Tibshirani (b36) 2013
Singh (b11) 2023; 6
Khan, Khan, Ali, Khalid, Ullah, Mumtaz (b26) 2022; 30
Baldin, Nikolich, Griffioen, Monga, Wang, Lehman, Ruth (b15) 2019; 23
Bergstra, Yamins, Cox (b35) 2013; vol. 28
Yang, Shami (b44) 2020; 415
Wang, Yan, Oates (b37) 2017
Donatti, Correa, Martins, Abelem, Both, Silva, Suruagy, Pasquini, Moreira, Cardoso, Carvalho (b18) 2023
Moreira, Rosa, Aguiar, Silva (b5) 2021; 179
Moreira, Carvalho, Silva (b17) 2023
T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A next-generation hyperparameter optimization framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 2623–2631.
Cassandra (b34) 2023
Haque, Tariq, Khandaker, Wong, Zhang (b9) 2023; 11
Martins, Carvalho, Moreira, Both, Donatti, Corrêa, Suruagy, Corrêa, Abelem, Ribeiro, Nogueira, Magalhães, Wickboldt, Ferreto, Mello, Pasquini, Schwarz, Sampaio, Macedo, De Rezende, Cardoso, De Oliveira Silva (b13) 2023; 11
Bai, Kolter, Koltun (b39) 2018
Moreira, Rodrigues Moreira, de Oliveira Silva (b7) 2023; 110
Ge, Hou, Nayak (b23) 2022
Chiariotti, Drago, Testolina, Lecci, Zanella, Zorzi (b30) 2023
Oguiza (b38) 2023
Barlacchi, De Nadai, Larcher, Casella, Chitic, Torrisi, Antonelli, Vespignani, Pentland, Lepri (b33) 2015; 2
Salmito, Ciuffo, Machado, Salvador, Stanton, Rodriguez, Abelem, Bergesio, Sallent, Baron (b14) 2014
Gomez, Kfoury, Crichigno, Srivastava (b12) 2023; 237
Pasquini, Stadler (b19) 2017
Jawad, Maaloul, Chaari (b4) 2023; 237
Phyu, Naboulsi, Stanica (b16) 2023; 11
Dangi, Lalwani (b31) 2024; 27
Zhang, Shen, Ma, Liu (b2) 2023; 30
Abdelwahed, Letaifa, Asmi (b25) 2023; 82
Liu, Deng, Nallanathan, Yuan (b1) 2023; 30
Abdelwahed (10.1016/j.future.2025.107971_b25) 2023; 82
Jawad (10.1016/j.future.2025.107971_b4) 2023; 237
Ahmed (10.1016/j.future.2025.107971_b8) 2023; 34
Thantharate (10.1016/j.future.2025.107971_b27) 2022; 31
Rußwurm (10.1016/j.future.2025.107971_b41) 2020; 169
Yu (10.1016/j.future.2025.107971_b29) 2023
Cui (10.1016/j.future.2025.107971_b20) 2022; 9
Chiariotti (10.1016/j.future.2025.107971_b30) 2023
Gomez (10.1016/j.future.2025.107971_b12) 2023; 237
Mesh (10.1016/j.future.2025.107971_b45) 2024
Moreira (10.1016/j.future.2025.107971_b7) 2023; 110
Ismail Fawaz (10.1016/j.future.2025.107971_b40) 2020; 34
Salmito (10.1016/j.future.2025.107971_b14) 2014
Baldin (10.1016/j.future.2025.107971_b15) 2019; 23
Pasquini (10.1016/j.future.2025.107971_b19) 2017
Laiche (10.1016/j.future.2025.107971_b24) 2021; 116
10.1016/j.future.2025.107971_b43
Oguiza (10.1016/j.future.2025.107971_b38) 2023
Moreira (10.1016/j.future.2025.107971_b17) 2023
Moreira (10.1016/j.future.2025.107971_b5) 2021; 179
Martins (10.1016/j.future.2025.107971_b13) 2023; 11
Bai (10.1016/j.future.2025.107971_b39) 2018
Khan (10.1016/j.future.2025.107971_b26) 2022; 30
Wang (10.1016/j.future.2025.107971_b37) 2017
Baktır (10.1016/j.future.2025.107971_b32) 2024; 157
Phyu (10.1016/j.future.2025.107971_b16) 2023; 11
Ge (10.1016/j.future.2025.107971_b22) 2023
Howard (10.1016/j.future.2025.107971_b42) 2020; 11
S. (10.1016/j.future.2025.107971_b6) 2023; 202
Barlacchi (10.1016/j.future.2025.107971_b33) 2015; 2
Singh (10.1016/j.future.2025.107971_b11) 2023; 6
Tran (10.1016/j.future.2025.107971_b28) 2023
Li (10.1016/j.future.2025.107971_b3) 2023; 37
Donatti (10.1016/j.future.2025.107971_b18) 2023
Nougnanke (10.1016/j.future.2025.107971_b21) 2023; 20
Cassandra (10.1016/j.future.2025.107971_b34) 2023
Liu (10.1016/j.future.2025.107971_b1) 2023; 30
Bergstra (10.1016/j.future.2025.107971_b35) 2013; vol. 28
Zhang (10.1016/j.future.2025.107971_b2) 2023; 30
Haque (10.1016/j.future.2025.107971_b9) 2023; 11
Wu (10.1016/j.future.2025.107971_b10) 2022; 29
James (10.1016/j.future.2025.107971_b36) 2013
Yang (10.1016/j.future.2025.107971_b44) 2020; 415
Dangi (10.1016/j.future.2025.107971_b31) 2024; 27
Ge (10.1016/j.future.2025.107971_b23) 2022
References_xml – volume: 116
  start-page: 2723
  year: 2021
  end-page: 2741
  ident: b24
  article-title: When machine learning algorithms meet user engagement parameters to predict video QoE
  publication-title: Wirel. Pers. Commun.
– start-page: 1
  year: 2023
  end-page: 18
  ident: b30
  article-title: Temporal characterization and prediction of VR traffic: A network slicing use case
  publication-title: IEEE Trans. Mob. Comput.
– reference: T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A next-generation hyperparameter optimization framework, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 2623–2631.
– volume: 2
  year: 2015
  ident: b33
  article-title: A multi-source dataset of urban life in the city of Milan and the Province of Trentino
  publication-title: Sci. Data
– volume: 110
  year: 2023
  ident: b7
  article-title: An intelligent network monitoring approach for online classification of Darknet Traffic
  publication-title: Comput. Electr. Eng.
– volume: 29
  start-page: 96
  year: 2022
  end-page: 103
  ident: b10
  article-title: AI-native network slicing for 6G networks
  publication-title: IEEE Wirel. Commun.
– start-page: 1
  year: 2023
  end-page: 6
  ident: b17
  article-title: Designing and evaluating a high-reliable and security-aware Identity and access management for slicing architectures
  publication-title: Anais do XIV Workshop de Pesquisa Experimental da Internet do Futuro
– start-page: 4905
  year: 2023
  end-page: 4911
  ident: b29
  article-title: Network slice mobility for 6G networks by exploiting user and network prediction
  publication-title: ICC 2023 - IEEE International Conference on Communications
– year: 2018
  ident: b39
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– start-page: 293
  year: 2023
  end-page: 298
  ident: b22
  article-title: Forecasting SDN End-to-End latency using graph neural network
  publication-title: 2023 International Conference on Information Networking (ICOIN)
– volume: 9
  start-page: 15215
  year: 2022
  end-page: 15227
  ident: b20
  article-title: Qos guaranteed network slicing orchestration for Internet of Vehicles
  publication-title: IEEE Internet Things J.
– volume: 30
  start-page: 29
  year: 2022
  ident: b26
  article-title: Highly accurate and reliable wireless network slicing in 5th generation networks: A hybrid deep learning approach
  publication-title: J. Netw. Syst. Manage.
– volume: 179
  start-page: 131
  year: 2021
  end-page: 144
  ident: b5
  article-title: NASOR: A network slicing approach for multiple autonomous systems
  publication-title: Comput. Commun.
– volume: 30
  start-page: 132
  year: 2023
  end-page: 138
  ident: b2
  article-title: Toward 6G-Enabled mobile vision analytics for immersive extended reality
  publication-title: IEEE Wirel. Commun.
– volume: 11
  start-page: 108
  year: 2020
  ident: b42
  article-title: Fastai: A layered API for deep learning
  publication-title: Information
– volume: 34
  year: 2023
  ident: b8
  article-title: Challenges in meeting QoS requirements toward 6G wireless networks: A state of the art survey
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: vol. 28
  start-page: 115
  year: 2013
  end-page: 123
  ident: b35
  article-title: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
  publication-title: Proceedings of the 30th International Conference on Machine Learning
– volume: 202
  start-page: 110
  year: 2023
  end-page: 123
  ident: b6
  article-title: Joint QoS and energy-efficient resource allocation and scheduling in 5G network slicing
  publication-title: Comput. Commun.
– volume: 237
  year: 2023
  ident: b12
  article-title: A survey on network simulators, emulators, and testbeds used for research and education
  publication-title: Comput. Netw.
– start-page: 372
  year: 2022
  end-page: 378
  ident: b23
  article-title: GNN-based End-to-end delay prediction in software defined networking
  publication-title: 2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)
– start-page: 502
  year: 2023
  end-page: 507
  ident: b28
  article-title: ML KPI prediction in 5G and B5G networks
  publication-title: 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit)
– start-page: 1
  year: 2023
  ident: b18
  article-title: Survey on machine learning-enabled network slicing: Covering the entire life cycle
  publication-title: IEEE Trans. Netw. Serv. Manag.
– start-page: 1
  year: 2017
  end-page: 9
  ident: b19
  article-title: Learning end-to-end application QoS from openflow switch statistics
  publication-title: 2017 IEEE Conference on Network Softwarization (NetSoft)
– year: 2024
  ident: b45
  article-title: Chaos mesh: Cloud-Native chaos engineering platform
– volume: 31
  start-page: 9
  year: 2022
  ident: b27
  article-title: ADAPTIVE6G: Adaptive resource management for network slicing architectures in current 5G and future 6G systems
  publication-title: J. Netw. Syst. Manage.
– start-page: 1578
  year: 2017
  end-page: 1585
  ident: b37
  article-title: Time series classification from scratch with deep neural networks: A strong baseline
  publication-title: 2017 International Joint Conference on Neural Networks
– volume: 11
  start-page: 69144
  year: 2023
  end-page: 69163
  ident: b13
  article-title: Enhancing network slicing architectures with machine learning, security, sustainability and experimental networks integration
  publication-title: IEEE Access
– volume: 415
  start-page: 295
  year: 2020
  end-page: 316
  ident: b44
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
– start-page: p
  year: 2014
  end-page: 969
  ident: b14
  article-title: Fibre-an international testbed for future internet experimentation
  publication-title: Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuí dos-SBRC 2014
– volume: 20
  start-page: 815
  year: 2023
  end-page: 829
  ident: b21
  article-title: ML-Based performance modeling in SDN-enabled data center networks
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: 37
  start-page: 104
  year: 2023
  end-page: 111
  ident: b3
  article-title: Toward Reinforcement-Learning-Based intelligent network control in 6G networks
  publication-title: IEEE Netw.
– volume: 27
  start-page: 395
  year: 2024
  end-page: 409
  ident: b31
  article-title: Harris hawks optimization based hybrid deep learning model for efficient network slicing in 5G network
  publication-title: Clust. Comput.
– volume: 11
  start-page: 39123
  year: 2023
  end-page: 39153
  ident: b16
  article-title: Machine learning in network slicing—A survey
  publication-title: IEEE Access
– volume: 169
  start-page: 421
  year: 2020
  end-page: 435
  ident: b41
  article-title: Self-attention for raw optical satellite time series classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 30
  start-page: 48
  year: 2023
  end-page: 54
  ident: b1
  article-title: Machine learning for 6G enhanced ultra-reliable and low-latency services
  publication-title: IEEE Wirel. Commun.
– volume: 11
  start-page: 34372
  year: 2023
  end-page: 34396
  ident: b9
  article-title: A survey of scheduling in 5G URLLC and outlook for emerging 6G systems
  publication-title: IEEE Access
– year: 2013
  ident: b36
  publication-title: An Introduction to Statistical Learning
– year: 2023
  ident: b38
  article-title: Tsai - A state-of-the-art deep learning library for time series and sequential data
– volume: 34
  start-page: 1936
  year: 2020
  end-page: 1962
  ident: b40
  article-title: InceptionTime: Finding AlexNet for time series classification
  publication-title: Data Min. Knowl. Discov.
– volume: 237
  year: 2023
  ident: b4
  article-title: A comprehensive survey on 6G and beyond: Enabling technologies, opportunities of machine learning and challenges
  publication-title: Comput. Netw.
– volume: 6
  start-page: 144
  year: 2023
  end-page: 157
  ident: b11
  article-title: Systematic review of data-centric approaches in artificial intelligence and machine learning
  publication-title: Data Sci. Manag.
– volume: 82
  start-page: 6243
  year: 2023
  end-page: 6269
  ident: b25
  article-title: Monitoring web QoE based on analysis of client-side measures and user behavior
  publication-title: Multimedia Tools Appl.
– volume: 157
  start-page: 516
  year: 2024
  end-page: 528
  ident: b32
  article-title: End-to-end network slicing for edge computing optimization
  publication-title: Future Gener. Comput. Syst.
– volume: 23
  start-page: 38
  year: 2019
  end-page: 47
  ident: b15
  article-title: FABRIC: A national-scale programmable experimental network infrastructure
  publication-title: IEEE Internet Comput.
– year: 2023
  ident: b34
  article-title: Cassandra stress — apache cassandra documentation
– volume: 30
  start-page: 48
  issue: 2
  year: 2023
  ident: 10.1016/j.future.2025.107971_b1
  article-title: Machine learning for 6G enhanced ultra-reliable and low-latency services
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.006.2200407
– volume: 34
  issue: 2
  year: 2023
  ident: 10.1016/j.future.2025.107971_b8
  article-title: Challenges in meeting QoS requirements toward 6G wireless networks: A state of the art survey
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: 23
  start-page: 38
  issue: 6
  year: 2019
  ident: 10.1016/j.future.2025.107971_b15
  article-title: FABRIC: A national-scale programmable experimental network infrastructure
  publication-title: IEEE Internet Comput.
  doi: 10.1109/MIC.2019.2958545
– start-page: 1
  year: 2017
  ident: 10.1016/j.future.2025.107971_b19
  article-title: Learning end-to-end application QoS from openflow switch statistics
– year: 2018
  ident: 10.1016/j.future.2025.107971_b39
– start-page: 502
  year: 2023
  ident: 10.1016/j.future.2025.107971_b28
  article-title: ML KPI prediction in 5G and B5G networks
– start-page: 1578
  year: 2017
  ident: 10.1016/j.future.2025.107971_b37
  article-title: Time series classification from scratch with deep neural networks: A strong baseline
– volume: 9
  start-page: 15215
  issue: 16
  year: 2022
  ident: 10.1016/j.future.2025.107971_b20
  article-title: Qos guaranteed network slicing orchestration for Internet of Vehicles
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2022.3147897
– volume: 237
  year: 2023
  ident: 10.1016/j.future.2025.107971_b12
  article-title: A survey on network simulators, emulators, and testbeds used for research and education
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2023.110054
– volume: 34
  start-page: 1936
  issue: 6
  year: 2020
  ident: 10.1016/j.future.2025.107971_b40
  article-title: InceptionTime: Finding AlexNet for time series classification
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-020-00710-y
– year: 2013
  ident: 10.1016/j.future.2025.107971_b36
– volume: 11
  start-page: 34372
  year: 2023
  ident: 10.1016/j.future.2025.107971_b9
  article-title: A survey of scheduling in 5G URLLC and outlook for emerging 6G systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3264592
– volume: 20
  start-page: 815
  issue: 1
  year: 2023
  ident: 10.1016/j.future.2025.107971_b21
  article-title: ML-Based performance modeling in SDN-enabled data center networks
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2022.3197789
– volume: 237
  year: 2023
  ident: 10.1016/j.future.2025.107971_b4
  article-title: A comprehensive survey on 6G and beyond: Enabling technologies, opportunities of machine learning and challenges
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2023.110085
– volume: 29
  start-page: 96
  issue: 1
  year: 2022
  ident: 10.1016/j.future.2025.107971_b10
  article-title: AI-native network slicing for 6G networks
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.001.2100338
– volume: 110
  year: 2023
  ident: 10.1016/j.future.2025.107971_b7
  article-title: An intelligent network monitoring approach for online classification of Darknet Traffic
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2023.108852
– year: 2023
  ident: 10.1016/j.future.2025.107971_b38
– volume: 11
  start-page: 39123
  year: 2023
  ident: 10.1016/j.future.2025.107971_b16
  article-title: Machine learning in network slicing—A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3267985
– volume: 30
  start-page: 29
  issue: 2
  year: 2022
  ident: 10.1016/j.future.2025.107971_b26
  article-title: Highly accurate and reliable wireless network slicing in 5th generation networks: A hybrid deep learning approach
  publication-title: J. Netw. Syst. Manage.
  doi: 10.1007/s10922-021-09636-2
– volume: 415
  start-page: 295
  year: 2020
  ident: 10.1016/j.future.2025.107971_b44
  article-title: On hyperparameter optimization of machine learning algorithms: Theory and practice
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– volume: 157
  start-page: 516
  year: 2024
  ident: 10.1016/j.future.2025.107971_b32
  article-title: End-to-end network slicing for edge computing optimization
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2024.03.001
– volume: 2
  issue: 1
  year: 2015
  ident: 10.1016/j.future.2025.107971_b33
  article-title: A multi-source dataset of urban life in the city of Milan and the Province of Trentino
  publication-title: Sci. Data
  doi: 10.1038/sdata.2015.55
– year: 2024
  ident: 10.1016/j.future.2025.107971_b45
– start-page: 372
  year: 2022
  ident: 10.1016/j.future.2025.107971_b23
  article-title: GNN-based End-to-end delay prediction in software defined networking
– volume: 31
  start-page: 9
  issue: 1
  year: 2022
  ident: 10.1016/j.future.2025.107971_b27
  article-title: ADAPTIVE6G: Adaptive resource management for network slicing architectures in current 5G and future 6G systems
  publication-title: J. Netw. Syst. Manage.
  doi: 10.1007/s10922-022-09693-1
– start-page: 1
  year: 2023
  ident: 10.1016/j.future.2025.107971_b17
  article-title: Designing and evaluating a high-reliable and security-aware Identity and access management for slicing architectures
– volume: 6
  start-page: 144
  issue: 3
  year: 2023
  ident: 10.1016/j.future.2025.107971_b11
  article-title: Systematic review of data-centric approaches in artificial intelligence and machine learning
  publication-title: Data Sci. Manag.
  doi: 10.1016/j.dsm.2023.06.001
– volume: 27
  start-page: 395
  issue: 1
  year: 2024
  ident: 10.1016/j.future.2025.107971_b31
  article-title: Harris hawks optimization based hybrid deep learning model for efficient network slicing in 5G network
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-022-03960-1
– volume: vol. 28
  start-page: 115
  year: 2013
  ident: 10.1016/j.future.2025.107971_b35
  article-title: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
– start-page: 4905
  year: 2023
  ident: 10.1016/j.future.2025.107971_b29
  article-title: Network slice mobility for 6G networks by exploiting user and network prediction
– volume: 30
  start-page: 132
  issue: 3
  year: 2023
  ident: 10.1016/j.future.2025.107971_b2
  article-title: Toward 6G-Enabled mobile vision analytics for immersive extended reality
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.023.2200557
– volume: 37
  start-page: 104
  issue: 4
  year: 2023
  ident: 10.1016/j.future.2025.107971_b3
  article-title: Toward Reinforcement-Learning-Based intelligent network control in 6G networks
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.003.2200641
– volume: 116
  start-page: 2723
  issue: 3
  year: 2021
  ident: 10.1016/j.future.2025.107971_b24
  article-title: When machine learning algorithms meet user engagement parameters to predict video QoE
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-020-07818-w
– volume: 11
  start-page: 69144
  year: 2023
  ident: 10.1016/j.future.2025.107971_b13
  article-title: Enhancing network slicing architectures with machine learning, security, sustainability and experimental networks integration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3292788
– start-page: 1
  year: 2023
  ident: 10.1016/j.future.2025.107971_b18
  article-title: Survey on machine learning-enabled network slicing: Covering the entire life cycle
  publication-title: IEEE Trans. Netw. Serv. Manag.
– volume: 11
  start-page: 108
  issue: 2
  year: 2020
  ident: 10.1016/j.future.2025.107971_b42
  article-title: Fastai: A layered API for deep learning
  publication-title: Information
  doi: 10.3390/info11020108
– volume: 169
  start-page: 421
  year: 2020
  ident: 10.1016/j.future.2025.107971_b41
  article-title: Self-attention for raw optical satellite time series classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.06.006
– volume: 179
  start-page: 131
  year: 2021
  ident: 10.1016/j.future.2025.107971_b5
  article-title: NASOR: A network slicing approach for multiple autonomous systems
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.07.028
– start-page: 293
  year: 2023
  ident: 10.1016/j.future.2025.107971_b22
  article-title: Forecasting SDN End-to-End latency using graph neural network
– year: 2023
  ident: 10.1016/j.future.2025.107971_b34
– volume: 82
  start-page: 6243
  issue: 4
  year: 2023
  ident: 10.1016/j.future.2025.107971_b25
  article-title: Monitoring web QoE based on analysis of client-side measures and user behavior
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-022-13427-5
– ident: 10.1016/j.future.2025.107971_b43
  doi: 10.1145/3292500.3330701
– start-page: 1
  year: 2023
  ident: 10.1016/j.future.2025.107971_b30
  article-title: Temporal characterization and prediction of VR traffic: A network slicing use case
  publication-title: IEEE Trans. Mob. Comput.
– volume: 202
  start-page: 110
  year: 2023
  ident: 10.1016/j.future.2025.107971_b6
  article-title: Joint QoS and energy-efficient resource allocation and scheduling in 5G network slicing
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2023.02.009
– start-page: p
  year: 2014
  ident: 10.1016/j.future.2025.107971_b14
  article-title: Fibre-an international testbed for future internet experimentation
SSID ssj0001731
Score 2.4491248
Snippet Network Slicing (NS) realization requires AI-native orchestration architectures to efficiently and intelligently handle heterogeneous user requirements. To...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 107971
SubjectTerms Deep Neural Networks
Distributed database
Machine learning
Network slicing
Service-level agreement
Title AI-driven orchestration at scale: Estimating service metrics on national-wide testbeds
URI https://dx.doi.org/10.1016/j.future.2025.107971
Volume 174
WOSCitedRecordID wos001566290700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001731
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3oiWh_bAzdoo9dpdm1uogigSFaIB5Wbtk6ZCdnHcNuLXM_uy2wYhQOJiWSt7s5qZjL-ZnZ0PoVcZeEVAEZLsGQkBitKG2M8CUYAdSlaalCnhyCbY0VGxWJQfR6N1PAtz8Y3VdbFel2f_VdUwBsq2R2f_Qt39pDAA96B0uILa4fpHip8eEtVaH5Y0rWPDCjrmXbKStnqYTpMZ_LEtVLW5BO8sLJV0azs2w5MxQUgul0ongEU7of154J7Q03UisfTLOswuAztEaA3dI_UPlvqz9Qi1gXV9bYZNq9X386VjlEo-cRNr9_vWBmGDwhZ-N8nx-M142C5pQV4nLsc7163-wZOD8dXsRXoze7F5rMZnOcF7M-o4dgc37dl8Nly-zz6cjn0PFoj40xwGWemZXW400z62U9uZAfnBavbpLbSdsrwEf7g9PZwt3vdf8T0WuCzDUuKxS1cbuPlbv4Y1V6DK_D66G2IMPPW28QCNdP0Q3Yv8HTi480foS28q-JqpYN5hZyqv8WAoOBgKDoaC4blrhoKjoTxGn9_O5gfvSODZIBIcdkdyCAGMcMwCasJSxamhmRRSGEUVIFjNaVnwgulUg8hSriFKl0xODC0UpbmgT9BW3dT6KcI020-NhhBE6DIzIDeVc1tJPNFCplRkO4hEMVVnvp1KFesMTysv1sqKtfJi3UEsyrIKkNBDvQrU_9s3d__5zWfozmCpz9FW157rF-i2vOiWq_ZlsJOfnL2L3g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-driven+orchestration+at+scale%3A+Estimating+service+metrics+on+national-wide+testbeds&rft.jtitle=Future+generation+computer+systems&rft.au=Moreira%2C+Rodrigo&rft.au=Pasquini%2C+Rafael&rft.au=Martins%2C+Joberto+S.B.&rft.au=Carvalho%2C+Tereza+C.&rft.date=2026-01-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.volume=174&rft_id=info:doi/10.1016%2Fj.future.2025.107971&rft.externalDocID=S0167739X25002663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon