Adaptive priority-based edge-centric resource management for the internet of vehicles

Vehicle Fog Computing (VFC) enables increased processing capacity and intelligent transportation support services. VFC has become increasingly important for delay-sensitive applications due to its low latency. Vehicles, on the other hand, face difficulties in combining essential services and executi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future generation computer systems Jg. 175; S. 108094
Hauptverfasser: Ehsan, Mohaimin, Lieira, Douglas D., Meneguette, Rodolfo I., De Grande, Robson E.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.02.2026
Schlagworte:
ISSN:0167-739X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Vehicle Fog Computing (VFC) enables increased processing capacity and intelligent transportation support services. VFC has become increasingly important for delay-sensitive applications due to its low latency. Vehicles, on the other hand, face difficulties in combining essential services and executing tasks appropriately. Many approaches to pooling idle vehicle resources have been proposed, but few prioritize requests. This proposed approach focuses on hierarchical resource allocation based on priorities, taking into account factors such as deadlines, distances, and mobility issues. Prioritization is achieved through the use of a priority queue, which distributes managed resources based on requests and availability. The hierarchy is implemented synchronously. An iterative ranking mechanism for vehicle resource requests is introduced based on fuzzy membership functions. A Q-learning-based method selects a fog, while the dynamic prioritization technique chooses the vehicle to be served. The technique seeks to reduce the time a service request remains in the system queue, while maintaining good throughput and meeting the criteria for service. QoS. Simulations were performed with realistic mobility models and real maps, including various densities and times, different maps, and varied parameters. In large-scale urban situations, simulated evaluations demonstrate improved response times and overall costs for service requests.
AbstractList Vehicle Fog Computing (VFC) enables increased processing capacity and intelligent transportation support services. VFC has become increasingly important for delay-sensitive applications due to its low latency. Vehicles, on the other hand, face difficulties in combining essential services and executing tasks appropriately. Many approaches to pooling idle vehicle resources have been proposed, but few prioritize requests. This proposed approach focuses on hierarchical resource allocation based on priorities, taking into account factors such as deadlines, distances, and mobility issues. Prioritization is achieved through the use of a priority queue, which distributes managed resources based on requests and availability. The hierarchy is implemented synchronously. An iterative ranking mechanism for vehicle resource requests is introduced based on fuzzy membership functions. A Q-learning-based method selects a fog, while the dynamic prioritization technique chooses the vehicle to be served. The technique seeks to reduce the time a service request remains in the system queue, while maintaining good throughput and meeting the criteria for service. QoS. Simulations were performed with realistic mobility models and real maps, including various densities and times, different maps, and varied parameters. In large-scale urban situations, simulated evaluations demonstrate improved response times and overall costs for service requests.
ArticleNumber 108094
Author Meneguette, Rodolfo I.
De Grande, Robson E.
Lieira, Douglas D.
Ehsan, Mohaimin
Author_xml – sequence: 1
  givenname: Mohaimin
  orcidid: 0000-0003-3726-0757
  surname: Ehsan
  fullname: Ehsan, Mohaimin
  email: mehsan@brocku.ca
  organization: Department of Computer Science, Brock University, Canada
– sequence: 2
  givenname: Douglas D.
  orcidid: 0000-0001-9622-1913
  surname: Lieira
  fullname: Lieira, Douglas D.
  email: ddlieira@ifsp.edu.br
  organization: Department of Computer Science, Sao Paulo State University, Brazil
– sequence: 3
  givenname: Rodolfo I.
  orcidid: 0000-0003-2982-4006
  surname: Meneguette
  fullname: Meneguette, Rodolfo I.
  email: meneguette@icmc.usp.br
  organization: Department of Computer Science, University of Sao Paulo, Brazil
– sequence: 4
  givenname: Robson E.
  orcidid: 0000-0001-9448-2036
  surname: De Grande
  fullname: De Grande, Robson E.
  email: rdegrande@broku.ca
  organization: Department of Computer Science, Brock University, Canada
BookMark eNp9kM1qAyEUhV2k0CTtG3ThC0yqzo_jphBC_yDQTQPdiaPXxCGjQU0gb98J03VXF87lHM75FmjmgweEnihZUUKb535lz_kcYcUIq0epJaKaofn44gUvxc89WqTUE0IoL-kc7dZGnbK7AD5FF6LL16JTCQwGs4dCg8_RaRwhhXPUgAfl1R6GUcY2RJwPgJ3PED1kHCy-wMHpI6QHdGfVMcHj312i3dvr9-aj2H69f27W20KzmueitJaSWtWCq4YwEJRRQXnVtKY0puyq1nBjTW1qptuWidaSTijSgeZUNYKKcomqKVfHkFIEK8cVg4pXSYm84ZC9nHDIGw454RhtL5MNxm4XB1Em7cBrMC6CztIE93_AL_sucBc
Cites_doi 10.1109/ACCESS.2019.2900530
10.1109/TVT.2019.2935450
10.1109/COMST.2017.2647981
10.1109/JIOT.2018.2872436
10.1109/TITS.2019.2939249
10.1109/ACCESS.2020.2965620
10.1007/s40815-016-0152-6
10.1109/TMC.2010.133
10.1109/ACCESS.2025.3526934
10.1016/j.pmcj.2018.12.007
10.1109/TVT.2019.2905432
10.1007/978-3-031-95133-6_22
10.1109/JSAC.2017.2760459
10.1007/s10586-024-04805-9
10.1109/TVT.2020.3041929
10.1109/JSAC.2021.3087244
10.1109/TVT.2018.2868013
10.1016/j.cosrev.2023.100616
10.1145/3485129
10.1109/TVT.2016.2532863
10.1109/MVT.2020.3019650
10.1109/JIOT.2020.3001603
10.1109/TVT.2017.2714704
10.1016/j.comcom.2025.108081
10.1109/MCOM.2014.6736756
10.1109/TVT.2019.2894851
10.1002/dac.5365
10.1109/TVT.2010.2094632
10.1109/TVT.2019.2897134
10.1109/JIOT.2019.2949602
10.1016/j.est.2024.112912
10.1109/JIOT.2020.2996213
10.1109/TVT.2020.3040596
10.1016/j.comnet.2017.03.015
10.1109/TVT.2022.3224614
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2025.108094
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_future_2025_108094
S0167739X25003887
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AFJKZ
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c257t-3ff105a597a602e9121917468d3dd3b48d7dfd5d52c88298f0b9a0bec71a69193
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001561599600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 07:02:40 EST 2025
Sat Nov 29 17:08:20 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Prioritization
Q-Learning
Fuzzy algorithm
Vehicular fog computing
Resource management
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-3ff105a597a602e9121917468d3dd3b48d7dfd5d52c88298f0b9a0bec71a69193
ORCID 0000-0003-3726-0757
0000-0001-9622-1913
0000-0003-2982-4006
0000-0001-9448-2036
ParticipantIDs crossref_primary_10_1016_j_future_2025_108094
elsevier_sciencedirect_doi_10_1016_j_future_2025_108094
PublicationCentury 2000
PublicationDate February 2026
2026-02-00
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: February 2026
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Meneguette, De Grande, Ueyama, Filho, Madeira (bib0013) 2021; 55
Mohtadi, Ouammou, Hanini, Haqiq (bib0005) 2025; 28
Coll-Perales, Lucas-EstaÃ, Shimizu, Gozalvez, Higuchi, Avedisov, Altintas, Sepulcre (bib0050) 2023; 72
Pu, Chen, Mao, Xie, Xu (bib0034) 2018; 6
Yang, Liu, Chen, Zhong, Xie (bib0040) 2019; 7
LiWang, Hosseinalipour, Gao, Tang, Huang, Dai (bib0033) 2019; 7
Ye, Li, Shen (bib0027) 2021; 20
Varga, Hornig (bib0061) 2008
Du, Gelenbe, Jiang, Zhang, Ren (bib0046) 2017; 35
Adnan, Haider Syed, Anjum, Rehman (bib0001) 2025; 13
Xue, Wang, Yu, Mao (bib0037) 2025
Luo, Zhang, Hu, Luan, Fan (bib0020) 2025
R. Zakerian, H. Gholami, SARS: A Resource Selection Algorithm for Autonomous Driving Tasks in Heterogeneous Mobile Edge Computing, arXiv preprint
Liu, Xu, Zhan, Liu, Guan, Zhang (bib0025) 2017; 129
Zhou, Feng, Chang, Shen (bib0029) 2019; 68
Bellman (bib0058) 1966; 153
Liu, Yu, Xie, Zhang (bib0038) 2019; 68
Noor-A-Rahim, Liu, Lee, Ali, Pesch, Xiao (bib0015) 2020
Lee, Lee (bib0018) 2020; 7
Hossain, de Grande (bib0019) 2022
Ahmed, Saeed, Mukherjee (bib0010) 2019
Shi, Du, Wang, Wang, Yuan (bib0035) 2020; 69
Yadav, Zhang, Kaiwartya, Song, Yu (bib0044) 2020; 69
Asghari, Sohrabi (bib0007) 2024; 51
Meneguette, Boukerche (bib0012) 2020; 21
Zhou, Liu, Feng, Zhang, Mumtaz, Rodriguez (bib0023) 2019; 68
Wang, Yang, Jiang (bib0036) 2025
Prasath, Selvi, Krishnan, Nithila, Malar, Sankar (bib0026) 2024
Dobbs, Manyika, Woetzel (bib0003) 2015
Luong, Wang, Niyato, Wen, Han (bib0024) 2017; 19
Lee, Lee, Gerla, Oh (bib0042) 2014; 52
Pereira, Lieira, da Silva, Pimenta, da Costa, Rosário, Meneguette (bib0022) 2019
Lopez, Behrisch, Bieker-Walz, Erdmann, Flötteröd, Hilbrich, Lücken, Rummel, Wagner, Wiessner (bib0060) 2018
Karedal, Czink, Paier, Tufvesson, Molisch (bib0048) 2011; 60
Zhang, Dou, Chong, Chan, Seet (bib0053) 2021; 39
Du, Jiang, Wang, Ren, Debbah (bib0004) 2020; 15
Kumar, Laghari, Karim, Shakir, Brohi (bib0014) 2019; 1
Shen, Hu, Xia (bib0041) 2025
(2024).
Zhang, Mao, Leng, Zhang, Zhang, Liu (bib0028) 2020; 69
Bellavista, Berrocal, Corradi, Das, Foschini, Zanni (bib0011) 2019; 52
Mishra, Sahoo, Bakshi, Rodrigues (bib0056) 2020; 7
Kim, Lee, Jung, Park (bib0047) 2010; 4
Ehsan, Meneguette, De Grande (bib0049) 2023
Sun, Gu, Zheng, Dong, Valera, Qin (bib0030) 2020; 8
Saaty (bib0054) 1994
Ogundoyin, Kamil (bib0055) 2020; 97
Mittal, Bali (bib0006) 2025; 38
Sun, Hou, Cheng, Wang, Zhou, Gui, Shen (bib0032) 2018; 67
Hou, Li, Chen, Wu, Jin, Chen (bib0043) 2016; 65
Raviglione, Malinverno, Feraco, Avino, Casetti, Chiasserini, Amati, Widmer (bib0051) 2021
Mansouri, Eskandari, Asadi, Savkin (bib0009) 2024; 97
Pereira, Gomides, Quessada, Meneguette, Lieira, Guidoni, Nakamura, Robson (bib0045) 2021
Alsadie (bib0008) 2024
Meneguette, Boukerche, Pimenta, Meneguette (bib0016) 2017
Gasmi, Aliouat (bib0002) 2019
Nazih, Benamar, Addaim (bib0017) 2020
Li, Zhang, Yu, Yang (bib0021) 2025
Ye, Li, Juang (bib0057) 2019; 68
Taki, Heshmati, Omid (bib0052) 2016; 18
Feng, Liu, Wu, Ji (bib0031) 2017; 66
Christoph Sommer. Reinhard, Falko (bib0059) 2011; 10
Luong (10.1016/j.future.2025.108094_bib0024) 2017; 19
Xue (10.1016/j.future.2025.108094_bib0037) 2025
Mansouri (10.1016/j.future.2025.108094_bib0009) 2024; 97
Ahmed (10.1016/j.future.2025.108094_bib0010) 2019
10.1016/j.future.2025.108094_bib0039
Varga (10.1016/j.future.2025.108094_bib0061) 2008
Feng (10.1016/j.future.2025.108094_bib0031) 2017; 66
Lee (10.1016/j.future.2025.108094_bib0042) 2014; 52
Du (10.1016/j.future.2025.108094_bib0004) 2020; 15
Hossain (10.1016/j.future.2025.108094_bib0019) 2022
Meneguette (10.1016/j.future.2025.108094_bib0012) 2020; 21
LiWang (10.1016/j.future.2025.108094_bib0033) 2019; 7
Saaty (10.1016/j.future.2025.108094_bib0054) 1994
Yang (10.1016/j.future.2025.108094_bib0040) 2019; 7
Alsadie (10.1016/j.future.2025.108094_bib0008) 2024
Pu (10.1016/j.future.2025.108094_bib0034) 2018; 6
Hou (10.1016/j.future.2025.108094_bib0043) 2016; 65
Zhou (10.1016/j.future.2025.108094_bib0023) 2019; 68
Shi (10.1016/j.future.2025.108094_bib0035) 2020; 69
Noor-A-Rahim (10.1016/j.future.2025.108094_bib0015) 2020
Du (10.1016/j.future.2025.108094_bib0046) 2017; 35
Coll-Perales (10.1016/j.future.2025.108094_bib0050) 2023; 72
Ye (10.1016/j.future.2025.108094_bib0057) 2019; 68
Ehsan (10.1016/j.future.2025.108094_bib0049) 2023
Sun (10.1016/j.future.2025.108094_bib0032) 2018; 67
Mittal (10.1016/j.future.2025.108094_bib0006) 2025; 38
Meneguette (10.1016/j.future.2025.108094_bib0016) 2017
Zhou (10.1016/j.future.2025.108094_bib0029) 2019; 68
Nazih (10.1016/j.future.2025.108094_bib0017) 2020
Taki (10.1016/j.future.2025.108094_bib0052) 2016; 18
Lopez (10.1016/j.future.2025.108094_bib0060) 2018
Adnan (10.1016/j.future.2025.108094_bib0001) 2025; 13
Wang (10.1016/j.future.2025.108094_bib0036) 2025
Zhang (10.1016/j.future.2025.108094_bib0053) 2021; 39
Sun (10.1016/j.future.2025.108094_bib0030) 2020; 8
Kim (10.1016/j.future.2025.108094_bib0047) 2010; 4
Kumar (10.1016/j.future.2025.108094_bib0014) 2019; 1
Ogundoyin (10.1016/j.future.2025.108094_bib0055) 2020; 97
Li (10.1016/j.future.2025.108094_bib0021) 2025
Pereira (10.1016/j.future.2025.108094_bib0022) 2019
Asghari (10.1016/j.future.2025.108094_bib0007) 2024; 51
Ye (10.1016/j.future.2025.108094_bib0027) 2021; 20
Mishra (10.1016/j.future.2025.108094_bib0056) 2020; 7
Gasmi (10.1016/j.future.2025.108094_bib0002) 2019
Pereira (10.1016/j.future.2025.108094_bib0045) 2021
Dobbs (10.1016/j.future.2025.108094_bib0003) 2015
Bellman (10.1016/j.future.2025.108094_bib0058) 1966; 153
Lee (10.1016/j.future.2025.108094_bib0018) 2020; 7
Raviglione (10.1016/j.future.2025.108094_bib0051) 2021
Zhang (10.1016/j.future.2025.108094_bib0028) 2020; 69
Prasath (10.1016/j.future.2025.108094_bib0026) 2024
Bellavista (10.1016/j.future.2025.108094_bib0011) 2019; 52
Liu (10.1016/j.future.2025.108094_bib0038) 2019; 68
Luo (10.1016/j.future.2025.108094_bib0020) 2025
Christoph Sommer. Reinhard (10.1016/j.future.2025.108094_bib0059) 2011; 10
Shen (10.1016/j.future.2025.108094_bib0041) 2025
Mohtadi (10.1016/j.future.2025.108094_bib0005) 2025; 28
Yadav (10.1016/j.future.2025.108094_bib0044) 2020; 69
Meneguette (10.1016/j.future.2025.108094_bib0013) 2021; 55
Liu (10.1016/j.future.2025.108094_bib0025) 2017; 129
Karedal (10.1016/j.future.2025.108094_bib0048) 2011; 60
References_xml – volume: 13
  start-page: 13507
  year: 2025
  end-page: 13521
  ident: bib0001
  article-title: A framework for privacy-preserving in IoV using federated learning with differential privacy
  publication-title: IEEE Access
– volume: 7
  start-page: 10450
  year: 2020
  end-page: 10464
  ident: bib0018
  article-title: Resource allocation for vehicular fog computing using reinforcement learning combined with heuristic information
  publication-title: IEEE Internet Things J.
– volume: 35
  start-page: 2457
  year: 2017
  end-page: 2467
  ident: bib0046
  article-title: Contract design for traffic offloading and resource allocation in heterogeneous ultra-dense networks
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 97
  year: 2024
  ident: bib0009
  article-title: A cloud-fog computing framework for real-time energy management in multi-microgrid system utilizing deep reinforcement learning
  publication-title: J. Energy Storage
– start-page: 1022
  year: 2024
  end-page: 1027
  ident: bib0026
  article-title: Combining fuzzy logic and reinforcement learning for resource management in edge computing
  publication-title: 2024 5th International Conference on Electronics and Sustainable Communication Systems (ICESC)
– volume: 19
  start-page: 954
  year: 2017
  end-page: 1001
  ident: bib0024
  article-title: Resource management in cloud networking using economic analysis and pricing models: a survey
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 6
  start-page: 84
  year: 2018
  end-page: 99
  ident: bib0034
  article-title: Chimera: an energy-efficient and deadline-aware hybrid edge computing framework for vehicular crowdsensing applications
  publication-title: IEEE Internet Things J.
– start-page: 1
  year: 2020
  end-page: 5
  ident: bib0017
  article-title: An incentive mechanism for computing resource allocation in vehicular fog computing environment
  publication-title: Proceedings of the IEEE International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT)
– year: 2015
  ident: bib0003
  article-title: The Internet of Things: Mapping the Value Beyond the Hype
– volume: 18
  start-page: 1131
  year: 2016
  end-page: 1140
  ident: bib0052
  article-title: Fuzzy-Based optimized QoS-constrained resource allocation in a heterogeneous wireless network
  publication-title: Int. J. Fuzzy Syst.
– volume: 60
  start-page: 323
  year: 2011
  end-page: 328
  ident: bib0048
  article-title: Path loss modeling for vehicle-to-vehicle communications
  publication-title: IEEE Trans. Veh. Technol.
– start-page: 2575
  year: 2018
  end-page: 2582
  ident: bib0060
  article-title: Microscopic traffic simulation using SUMO
  publication-title: Proceedings of the IEEE International Conference on Intelligent Transportation Systems (ITSC)
– start-page: 1
  year: 2025
  end-page: 15
  ident: bib0020
  article-title: Joint task migration and resource allocation in vehicular edge computing: a deep reinforcement learning-based approach
  publication-title: IEEE Trans. Veh. Technol.
– year: 2025
  ident: bib0021
  article-title: Efficient vehicle selection and resource allocation for knowledge distillation-based federated learning in UAV-Assisted VEC
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 1
  year: 2020
  end-page: 21
  ident: bib0015
  article-title: A survey on resource allocation in vehicular networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib0002
  article-title: Vehicular ad hoc NETworks versus internet of vehicles - a comparative view
  publication-title: Proceedings of the IEEE International Conference on Networking and Advanced Systems (ICNAS)
– volume: 55
  year: 2021
  ident: bib0013
  article-title: Vehicular edge computing: architecture, resource management, security, and challenges
  publication-title: ACM Comput. Surv.
– volume: 4
  start-page: 1250
  year: 2010
  end-page: 1254
  ident: bib0047
  article-title: Vehicle position estimation for driver assistance system
  publication-title: World Acad. Sci. Eng. Technol. Int. J. Transp. Vehicl. Eng.
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib0016
  article-title: A resource allocation scheme based on semi-Markov decision process for dynamic vehicular clouds
  publication-title: Proceedings of the IEEE International Conference on Communications (ICC)
– volume: 20
  start-page: 4370
  year: 2021
  end-page: 4384
  ident: bib0027
  article-title: A multi-Agent deep reinforcement learning-based resource allocation approach for V2V communications
  publication-title: IEEE Trans. Wireless Commun.
– volume: 68
  start-page: 3163
  year: 2019
  end-page: 3173
  ident: bib0057
  article-title: Deep reinforcement learning based resource allocation for V2V communications
  publication-title: IEEE Trans. Veh. Technol.
– volume: 68
  start-page: 3113
  year: 2019
  end-page: 3125
  ident: bib0023
  article-title: Computation resource allocation and task assignment optimization in vehicular fog computing: a contract-matching approach
  publication-title: IEEE Trans. Veh. Technol.
– start-page: 1
  year: 2022
  end-page: 6
  ident: bib0019
  article-title: Adaptive Q-leaming-supported resource allocation model in vehicular fogs
  publication-title: Proceedings of the IEEE Symposium on Computers and Communications (ISCC)
– start-page: 33
  year: 2021
  end-page: 40
  ident: bib0051
  article-title: Experimental assessment of IEEE 802.11based V2I communications
  publication-title: Proceedings of the 18th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks
– volume: 7
  start-page: 26652
  year: 2019
  end-page: 26664
  ident: bib0040
  article-title: Efficient mobility-aware task offloading for vehicular edge computing networks
  publication-title: IEEE Access
– volume: 69
  start-page: 4319
  year: 2020
  end-page: 4330
  ident: bib0028
  article-title: Efficient computation offloading in vehicular edge computing: a deep reinforcement learning approach
  publication-title: IEEE Trans. Veh. Technol.
– volume: 8
  start-page: 10466
  year: 2020
  end-page: 10477
  ident: bib0030
  article-title: Joint optimization of computation offloading and task scheduling in vehicular edge computing networks
  publication-title: IEEE Access
– volume: 1
  start-page: 31
  year: 2019
  end-page: 41
  ident: bib0014
  article-title: Comparison of fog computing & cloud computing
  publication-title: MECS Press Int. J. Math. Sci. Comput. (IJMSC)
– start-page: 1
  year: 2025
  ident: bib0036
  article-title: Delay- and energy-efficient task offloading in cell free massive MIMO-enabled vehicular fog computing
  publication-title: IEEE Trans. Wireless Commun.
– start-page: 60:1
  year: 2008
  end-page: 60:10
  ident: bib0061
  article-title: An overview of the omnet++ simulation environment
  publication-title: Proceedings of the IEEE International Conference on Simulation Tools and Techniques for Communications, Networks and Systems and Workshops (Simutools)
– volume: 52
  start-page: 148
  year: 2014
  end-page: 155
  ident: bib0042
  article-title: Vehicular cloud networking: architecture and design principles
  publication-title: IEEE Commun. Mag.
– volume: 97
  year: 2020
  ident: bib0055
  article-title: A fuzzy-AHP based prioritization of trust criteria in fog computing services
  publication-title: Elsev. Appl. Soft Comput.
– volume: 72
  start-page: 5094
  year: 2023
  end-page: 5109
  ident: bib0050
  article-title: End-to-end V2X latency modeling and analysis in 5G networks
  publication-title: IEEE Trans. Veh. Technol.
– volume: 129
  start-page: 399
  year: 2017
  end-page: 409
  ident: bib0025
  article-title: Incentive mechanism for computation offloading using edge computing: a stackelberg game approach
  publication-title: Elsev. Comput. Netw.
– volume: 38
  year: 2025
  ident: bib0006
  article-title: 6G-based resource utilization framework in software defined hybrid vehicular networks
  publication-title: Int. J. Commun. Syst.
– volume: 65
  start-page: 3860
  year: 2016
  end-page: 3873
  ident: bib0043
  article-title: Vehicular fog computing: a viewpoint of vehicles as the infrastructures
  publication-title: IEEE Trans. Veh. Technol.
– volume: 39
  start-page: 2501
  year: 2021
  end-page: 2513
  ident: bib0053
  article-title: Fuzzy logic-based resource allocation algorithm for V2X communications in 5G cellular networks
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 66
  start-page: 10660
  year: 2017
  end-page: 10675
  ident: bib0031
  article-title: AVE: Autonomous vehicular edge computing framework with ACO-based scheduling
  publication-title: IEEE Trans. Veh. Technol.
– volume: 153
  start-page: 34
  year: 1966
  end-page: 37
  ident: bib0058
  article-title: Dynamic programming
  publication-title: Am. Assoc. Advancem. Sci.
– start-page: 1
  year: 2025
  end-page: 15
  ident: bib0041
  article-title: Cuckoo search-Enabled task scheduling and cache updating in vehicular edge-Fog computing
  publication-title: IEEE Trans. Veh. Technol.
– volume: 7
  start-page: 8993
  year: 2020
  end-page: 9000
  ident: bib0056
  article-title: Dynamic resource allocation in fog-cloud hybrid systems using multicriteria AHP techniques
  publication-title: IEEE Internet Things J.
– volume: 52
  start-page: 71
  year: 2019
  end-page: 99
  ident: bib0011
  article-title: A survey on fog computing for the Internet of Things
  publication-title: Elsev. Pervas. Mobile Comput.
– year: 2024
  ident: bib0008
  article-title: A comprehensive review of AI techniques for resource management in fog computing: trends, challenges and future directions
  publication-title: IEEE Access
– start-page: 2168
  year: 2019
  end-page: 2185
  ident: bib0010
  article-title: Challenges and opportunities in vehicular cloud computing
  publication-title: IGI Glob. Cloud Secur.: Concept Methodol. Tools Applicat.
– volume: 69
  start-page: 16067
  year: 2020
  end-page: 16081
  ident: bib0035
  article-title: Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning
  publication-title: IEEE Trans. Veh. Technol.
– volume: 68
  start-page: 5087
  year: 2019
  end-page: 5099
  ident: bib0029
  article-title: Energy-efficient edge computing service provisioning for vehicular networks: a consensus ADMM approach
  publication-title: IEEE Trans. Veh. Technol.
– reference: (2024).
– volume: 10
  start-page: 3
  year: 2011
  end-page: 15
  ident: bib0059
  article-title: Bidirectionally coupled network and road traffic simulation for improved IVC analysis
  publication-title: IEEE Trans. Mob. Comput.
– reference: R. Zakerian, H. Gholami, SARS: A Resource Selection Algorithm for Autonomous Driving Tasks in Heterogeneous Mobile Edge Computing, arXiv preprint
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib0022
  article-title: A novel fog-based resource allocation policy for vehicular clouds in the highway environment
  publication-title: Proceedings of the IEEE Latin-American Conference on Communications (LATINCOM)
– year: 2025
  ident: bib0037
  article-title: Multi-agent deep reinforcement learning-based partial offloading and resource allocation in vehicular edge computing networks
  publication-title: Comput. Commun.
– volume: 7
  start-page: 311
  year: 2019
  end-page: 324
  ident: bib0033
  article-title: Allocation of computation-intensive graph jobs over vehicular clouds in IoV
  publication-title: IEEE Internet Things J.
– volume: 15
  start-page: 122
  year: 2020
  end-page: 134
  ident: bib0004
  article-title: Machine learning for 6G wireless networks: carrying forward enhanced bandwidth, massive access, and ultrareliable/low-latency service
  publication-title: IEEE Veh. Technol. Mag.
– volume: 28
  start-page: 108
  year: 2025
  ident: bib0005
  article-title: Resilient vehicular fog computing networks: an analytical approach to system reliability under breakdown and vacation interruptions
  publication-title: Cluster Comput.
– volume: 68
  start-page: 11158
  year: 2019
  end-page: 11168
  ident: bib0038
  article-title: Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks
  publication-title: IEEE Trans. Veh. Technol.
– start-page: 601
  year: 2023
  end-page: 608
  ident: bib0049
  article-title: Fuzzy-based dynamic priority-driven allocation for internet of vehicles
  publication-title: Proceedings of the IEEE International Conference on Distributed Computing in Smart Systems and the Internet of Things
– volume: 21
  start-page: 2640
  year: 2020
  end-page: 2647
  ident: bib0012
  article-title: Vehicular clouds leveraging mobile urban computing through resource discovery
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 67
  start-page: 11049
  year: 2018
  end-page: 11061
  ident: bib0032
  article-title: Cooperative task scheduling for computation offloading in vehicular cloud
  publication-title: IEEE Trans. Veh. Technol.
– volume: 51
  year: 2024
  ident: bib0007
  article-title: Server placement in mobile cloud computing: a comprehensive survey for edge computing, fog computing and cloudlet
  publication-title: Comput. Sci. Rev.
– volume: 69
  start-page: 14198
  year: 2020
  end-page: 14211
  ident: bib0044
  article-title: Energy-latency tradeoff for dynamic computation offloading in vehicular fog computing
  publication-title: IEEE Trans. Veh. Technol.
– year: 1994
  ident: bib0054
  article-title: Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process
– start-page: 212
  year: 2021
  end-page: 219
  ident: bib0045
  article-title: Fog-oriented hierarchical resource allocation policy in vehicular clouds
  publication-title: Proceedings of the IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS)
– volume: 7
  start-page: 26652
  year: 2019
  ident: 10.1016/j.future.2025.108094_bib0040
  article-title: Efficient mobility-aware task offloading for vehicular edge computing networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2900530
– start-page: 2168
  year: 2019
  ident: 10.1016/j.future.2025.108094_bib0010
  article-title: Challenges and opportunities in vehicular cloud computing
  publication-title: IGI Glob. Cloud Secur.: Concept Methodol. Tools Applicat.
– volume: 68
  start-page: 11158
  issue: 11
  year: 2019
  ident: 10.1016/j.future.2025.108094_bib0038
  article-title: Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2935450
– volume: 19
  start-page: 954
  issue: 2
  year: 2017
  ident: 10.1016/j.future.2025.108094_bib0024
  article-title: Resource management in cloud networking using economic analysis and pricing models: a survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2647981
– start-page: 1022
  year: 2024
  ident: 10.1016/j.future.2025.108094_bib0026
  article-title: Combining fuzzy logic and reinforcement learning for resource management in edge computing
– volume: 6
  start-page: 84
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2025.108094_bib0034
  article-title: Chimera: an energy-efficient and deadline-aware hybrid edge computing framework for vehicular crowdsensing applications
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2872436
– volume: 21
  start-page: 2640
  issue: 6
  year: 2020
  ident: 10.1016/j.future.2025.108094_bib0012
  article-title: Vehicular clouds leveraging mobile urban computing through resource discovery
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2939249
– volume: 153
  start-page: 34
  issue: 3731
  year: 1966
  ident: 10.1016/j.future.2025.108094_bib0058
  article-title: Dynamic programming
  publication-title: Am. Assoc. Advancem. Sci.
– start-page: 1
  year: 2025
  ident: 10.1016/j.future.2025.108094_bib0020
  article-title: Joint task migration and resource allocation in vehicular edge computing: a deep reinforcement learning-based approach
  publication-title: IEEE Trans. Veh. Technol.
– start-page: 1
  year: 2019
  ident: 10.1016/j.future.2025.108094_bib0022
  article-title: A novel fog-based resource allocation policy for vehicular clouds in the highway environment
– volume: 8
  start-page: 10466
  year: 2020
  ident: 10.1016/j.future.2025.108094_bib0030
  article-title: Joint optimization of computation offloading and task scheduling in vehicular edge computing networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2965620
– volume: 18
  start-page: 1131
  issue: 6
  year: 2016
  ident: 10.1016/j.future.2025.108094_bib0052
  article-title: Fuzzy-Based optimized QoS-constrained resource allocation in a heterogeneous wireless network
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-016-0152-6
– volume: 10
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.future.2025.108094_bib0059
  article-title: Bidirectionally coupled network and road traffic simulation for improved IVC analysis
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2010.133
– volume: 13
  start-page: 13507
  year: 2025
  ident: 10.1016/j.future.2025.108094_bib0001
  article-title: A framework for privacy-preserving in IoV using federated learning with differential privacy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3526934
– start-page: 1
  year: 2019
  ident: 10.1016/j.future.2025.108094_bib0002
  article-title: Vehicular ad hoc NETworks versus internet of vehicles - a comparative view
– volume: 52
  start-page: 71
  year: 2019
  ident: 10.1016/j.future.2025.108094_bib0011
  article-title: A survey on fog computing for the Internet of Things
  publication-title: Elsev. Pervas. Mobile Comput.
  doi: 10.1016/j.pmcj.2018.12.007
– start-page: 1
  year: 2020
  ident: 10.1016/j.future.2025.108094_bib0017
  article-title: An incentive mechanism for computing resource allocation in vehicular fog computing environment
– volume: 68
  start-page: 5087
  issue: 5
  year: 2019
  ident: 10.1016/j.future.2025.108094_bib0029
  article-title: Energy-efficient edge computing service provisioning for vehicular networks: a consensus ADMM approach
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2905432
– volume: 97
  year: 2020
  ident: 10.1016/j.future.2025.108094_bib0055
  article-title: A fuzzy-AHP based prioritization of trust criteria in fog computing services
  publication-title: Elsev. Appl. Soft Comput.
– volume: 20
  start-page: 4370
  issue: 7
  year: 2021
  ident: 10.1016/j.future.2025.108094_bib0027
  article-title: A multi-Agent deep reinforcement learning-based resource allocation approach for V2V communications
  publication-title: IEEE Trans. Wireless Commun.
– ident: 10.1016/j.future.2025.108094_bib0039
  doi: 10.1007/978-3-031-95133-6_22
– volume: 4
  start-page: 1250
  issue: 8
  year: 2010
  ident: 10.1016/j.future.2025.108094_bib0047
  article-title: Vehicle position estimation for driver assistance system
  publication-title: World Acad. Sci. Eng. Technol. Int. J. Transp. Vehicl. Eng.
– volume: 35
  start-page: 2457
  issue: 11
  year: 2017
  ident: 10.1016/j.future.2025.108094_bib0046
  article-title: Contract design for traffic offloading and resource allocation in heterogeneous ultra-dense networks
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2017.2760459
– volume: 28
  start-page: 108
  issue: 2
  year: 2025
  ident: 10.1016/j.future.2025.108094_bib0005
  article-title: Resilient vehicular fog computing networks: an analytical approach to system reliability under breakdown and vacation interruptions
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-024-04805-9
– volume: 69
  start-page: 16067
  issue: 12
  year: 2020
  ident: 10.1016/j.future.2025.108094_bib0035
  article-title: Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3041929
– volume: 39
  start-page: 2501
  issue: 8
  year: 2021
  ident: 10.1016/j.future.2025.108094_bib0053
  article-title: Fuzzy logic-based resource allocation algorithm for V2X communications in 5G cellular networks
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2021.3087244
– volume: 1
  start-page: 31
  year: 2019
  ident: 10.1016/j.future.2025.108094_bib0014
  article-title: Comparison of fog computing & cloud computing
  publication-title: MECS Press Int. J. Math. Sci. Comput. (IJMSC)
– volume: 67
  start-page: 11049
  issue: 11
  year: 2018
  ident: 10.1016/j.future.2025.108094_bib0032
  article-title: Cooperative task scheduling for computation offloading in vehicular cloud
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2868013
– volume: 51
  year: 2024
  ident: 10.1016/j.future.2025.108094_bib0007
  article-title: Server placement in mobile cloud computing: a comprehensive survey for edge computing, fog computing and cloudlet
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2023.100616
– start-page: 1
  year: 2022
  ident: 10.1016/j.future.2025.108094_bib0019
  article-title: Adaptive Q-leaming-supported resource allocation model in vehicular fogs
– year: 2024
  ident: 10.1016/j.future.2025.108094_bib0008
  article-title: A comprehensive review of AI techniques for resource management in fog computing: trends, challenges and future directions
  publication-title: IEEE Access
– volume: 55
  issue: 1
  year: 2021
  ident: 10.1016/j.future.2025.108094_bib0013
  article-title: Vehicular edge computing: architecture, resource management, security, and challenges
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3485129
– start-page: 2575
  year: 2018
  ident: 10.1016/j.future.2025.108094_bib0060
  article-title: Microscopic traffic simulation using SUMO
– year: 2015
  ident: 10.1016/j.future.2025.108094_bib0003
– year: 2025
  ident: 10.1016/j.future.2025.108094_bib0021
  article-title: Efficient vehicle selection and resource allocation for knowledge distillation-based federated learning in UAV-Assisted VEC
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 60:1
  year: 2008
  ident: 10.1016/j.future.2025.108094_bib0061
  article-title: An overview of the omnet++ simulation environment
– start-page: 1
  year: 2025
  ident: 10.1016/j.future.2025.108094_bib0036
  article-title: Delay- and energy-efficient task offloading in cell free massive MIMO-enabled vehicular fog computing
  publication-title: IEEE Trans. Wireless Commun.
– volume: 65
  start-page: 3860
  issue: 6
  year: 2016
  ident: 10.1016/j.future.2025.108094_bib0043
  article-title: Vehicular fog computing: a viewpoint of vehicles as the infrastructures
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2016.2532863
– volume: 15
  start-page: 122
  issue: 4
  year: 2020
  ident: 10.1016/j.future.2025.108094_bib0004
  article-title: Machine learning for 6G wireless networks: carrying forward enhanced bandwidth, massive access, and ultrareliable/low-latency service
  publication-title: IEEE Veh. Technol. Mag.
  doi: 10.1109/MVT.2020.3019650
– start-page: 212
  year: 2021
  ident: 10.1016/j.future.2025.108094_bib0045
  article-title: Fog-oriented hierarchical resource allocation policy in vehicular clouds
– volume: 7
  start-page: 8993
  issue: 9
  year: 2020
  ident: 10.1016/j.future.2025.108094_bib0056
  article-title: Dynamic resource allocation in fog-cloud hybrid systems using multicriteria AHP techniques
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.3001603
– volume: 66
  start-page: 10660
  issue: 12
  year: 2017
  ident: 10.1016/j.future.2025.108094_bib0031
  article-title: AVE: Autonomous vehicular edge computing framework with ACO-based scheduling
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2714704
– start-page: 33
  year: 2021
  ident: 10.1016/j.future.2025.108094_bib0051
  article-title: Experimental assessment of IEEE 802.11based V2I communications
– start-page: 1
  year: 2017
  ident: 10.1016/j.future.2025.108094_bib0016
  article-title: A resource allocation scheme based on semi-Markov decision process for dynamic vehicular clouds
– start-page: 601
  year: 2023
  ident: 10.1016/j.future.2025.108094_bib0049
  article-title: Fuzzy-based dynamic priority-driven allocation for internet of vehicles
– year: 2025
  ident: 10.1016/j.future.2025.108094_bib0037
  article-title: Multi-agent deep reinforcement learning-based partial offloading and resource allocation in vehicular edge computing networks
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2025.108081
– volume: 52
  start-page: 148
  issue: 2
  year: 2014
  ident: 10.1016/j.future.2025.108094_bib0042
  article-title: Vehicular cloud networking: architecture and design principles
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2014.6736756
– volume: 68
  start-page: 3113
  issue: 4
  year: 2019
  ident: 10.1016/j.future.2025.108094_bib0023
  article-title: Computation resource allocation and task assignment optimization in vehicular fog computing: a contract-matching approach
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2894851
– volume: 38
  issue: 1
  year: 2025
  ident: 10.1016/j.future.2025.108094_bib0006
  article-title: 6G-based resource utilization framework in software defined hybrid vehicular networks
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.5365
– volume: 60
  start-page: 323
  issue: 1
  year: 2011
  ident: 10.1016/j.future.2025.108094_bib0048
  article-title: Path loss modeling for vehicle-to-vehicle communications
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2010.2094632
– volume: 68
  start-page: 3163
  issue: 4
  year: 2019
  ident: 10.1016/j.future.2025.108094_bib0057
  article-title: Deep reinforcement learning based resource allocation for V2V communications
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2897134
– volume: 7
  start-page: 311
  issue: 1
  year: 2019
  ident: 10.1016/j.future.2025.108094_bib0033
  article-title: Allocation of computation-intensive graph jobs over vehicular clouds in IoV
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2949602
– year: 1994
  ident: 10.1016/j.future.2025.108094_bib0054
– volume: 97
  year: 2024
  ident: 10.1016/j.future.2025.108094_bib0009
  article-title: A cloud-fog computing framework for real-time energy management in multi-microgrid system utilizing deep reinforcement learning
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.112912
– volume: 7
  start-page: 10450
  issue: 10
  year: 2020
  ident: 10.1016/j.future.2025.108094_bib0018
  article-title: Resource allocation for vehicular fog computing using reinforcement learning combined with heuristic information
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2996213
– volume: 69
  start-page: 14198
  issue: 12
  year: 2020
  ident: 10.1016/j.future.2025.108094_bib0044
  article-title: Energy-latency tradeoff for dynamic computation offloading in vehicular fog computing
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3040596
– start-page: 1
  year: 2020
  ident: 10.1016/j.future.2025.108094_bib0015
  article-title: A survey on resource allocation in vehicular networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 129
  start-page: 399
  year: 2017
  ident: 10.1016/j.future.2025.108094_bib0025
  article-title: Incentive mechanism for computation offloading using edge computing: a stackelberg game approach
  publication-title: Elsev. Comput. Netw.
  doi: 10.1016/j.comnet.2017.03.015
– volume: 69
  start-page: 4319
  issue: 4
  year: 2020
  ident: 10.1016/j.future.2025.108094_bib0028
  article-title: Efficient computation offloading in vehicular edge computing: a deep reinforcement learning approach
  publication-title: IEEE Trans. Veh. Technol.
– start-page: 1
  year: 2025
  ident: 10.1016/j.future.2025.108094_bib0041
  article-title: Cuckoo search-Enabled task scheduling and cache updating in vehicular edge-Fog computing
  publication-title: IEEE Trans. Veh. Technol.
– volume: 72
  start-page: 5094
  issue: 4
  year: 2023
  ident: 10.1016/j.future.2025.108094_bib0050
  article-title: End-to-end V2X latency modeling and analysis in 5G networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2022.3224614
SSID ssj0001731
Score 2.4515114
Snippet Vehicle Fog Computing (VFC) enables increased processing capacity and intelligent transportation support services. VFC has become increasingly important for...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 108094
SubjectTerms Fuzzy algorithm
Prioritization
Q-Learning
Resource management
Vehicular fog computing
Title Adaptive priority-based edge-centric resource management for the internet of vehicles
URI https://dx.doi.org/10.1016/j.future.2025.108094
Volume 175
WOSCitedRecordID wos001561599600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001731
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF7cpIde-i5J-mAPvZk11nv3aBKHprSh0AR8E6t91ApBMopj_PM7-5LVupS20IswMhqJnU-jb4ZvZxB6zxIRiyinRKeqIinnilAORE5EMmM5rSrtPP2puLykiwX7Mhptw16YzW3RNHS7Zav_6mo4B842W2f_wt29UTgBv8HpcAS3w_GPHD-TfGX1QKuubs1oOmK-VHJsCmfEajFt12ZXtffqVasICILD2hYJlZUIbNTS6uaGHPbctiExs5eVh4_woyF8X-gdTV_eufrq53bJzfiwXv5Tq7rjAwI_Ppv0rge73-6NAskpv2V7q9vxRf__GeC6M6VvLww3IxTnk2H1Iu4Fz6GktretxlU5IXoXiZ2xuwvTbsLKXsh31YebievBAhl_nFnhpJud_FMz7a_GtLEMzM_0wSkeoMO4yBjEw8PZxXzxsf-KR4WfZekfJWy7tNrA_Xv9mtYMqMrVU_TY5xh45rDxDI1U8xw9CfM7sA_nL9B1gAr-ESp4CBUcoIJ3UMEAFQxQwQEquNU4QOUluj6fX51-IH7MBhEQr9ck0RpINofMkufTWLEoNjl8mlOZSJlUKZWF1DKTWSwgHWNUTyvGp_DuFxHPGSQAr9BB0zbqCGHgqpLRNKsypVPBYzoViRRgXnOwKdkxImGVypXrplIGmeFN6Va1NKtaulU9RkVYytIzQsf0SvD-b688-ecrX6NHO6C-QQfr7l69RQ_FZl3fde88TL4Dsy6MOQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+priority-based+edge-centric+resource+management+for+the+internet+of+vehicles&rft.jtitle=Future+generation+computer+systems&rft.au=Ehsan%2C+Mohaimin&rft.au=Lieira%2C+Douglas+D.&rft.au=Meneguette%2C+Rodolfo+I.&rft.au=De+Grande%2C+Robson+E.&rft.date=2026-02-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.volume=175&rft_id=info:doi/10.1016%2Fj.future.2025.108094&rft.externalDocID=S0167739X25003887
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon