Adaptive priority-based edge-centric resource management for the internet of vehicles
Vehicle Fog Computing (VFC) enables increased processing capacity and intelligent transportation support services. VFC has become increasingly important for delay-sensitive applications due to its low latency. Vehicles, on the other hand, face difficulties in combining essential services and executi...
Gespeichert in:
| Veröffentlicht in: | Future generation computer systems Jg. 175; S. 108094 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.02.2026
|
| Schlagworte: | |
| ISSN: | 0167-739X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Vehicle Fog Computing (VFC) enables increased processing capacity and intelligent transportation support services. VFC has become increasingly important for delay-sensitive applications due to its low latency. Vehicles, on the other hand, face difficulties in combining essential services and executing tasks appropriately. Many approaches to pooling idle vehicle resources have been proposed, but few prioritize requests. This proposed approach focuses on hierarchical resource allocation based on priorities, taking into account factors such as deadlines, distances, and mobility issues. Prioritization is achieved through the use of a priority queue, which distributes managed resources based on requests and availability. The hierarchy is implemented synchronously. An iterative ranking mechanism for vehicle resource requests is introduced based on fuzzy membership functions. A Q-learning-based method selects a fog, while the dynamic prioritization technique chooses the vehicle to be served. The technique seeks to reduce the time a service request remains in the system queue, while maintaining good throughput and meeting the criteria for service. QoS. Simulations were performed with realistic mobility models and real maps, including various densities and times, different maps, and varied parameters. In large-scale urban situations, simulated evaluations demonstrate improved response times and overall costs for service requests. |
|---|---|
| AbstractList | Vehicle Fog Computing (VFC) enables increased processing capacity and intelligent transportation support services. VFC has become increasingly important for delay-sensitive applications due to its low latency. Vehicles, on the other hand, face difficulties in combining essential services and executing tasks appropriately. Many approaches to pooling idle vehicle resources have been proposed, but few prioritize requests. This proposed approach focuses on hierarchical resource allocation based on priorities, taking into account factors such as deadlines, distances, and mobility issues. Prioritization is achieved through the use of a priority queue, which distributes managed resources based on requests and availability. The hierarchy is implemented synchronously. An iterative ranking mechanism for vehicle resource requests is introduced based on fuzzy membership functions. A Q-learning-based method selects a fog, while the dynamic prioritization technique chooses the vehicle to be served. The technique seeks to reduce the time a service request remains in the system queue, while maintaining good throughput and meeting the criteria for service. QoS. Simulations were performed with realistic mobility models and real maps, including various densities and times, different maps, and varied parameters. In large-scale urban situations, simulated evaluations demonstrate improved response times and overall costs for service requests. |
| ArticleNumber | 108094 |
| Author | Meneguette, Rodolfo I. De Grande, Robson E. Lieira, Douglas D. Ehsan, Mohaimin |
| Author_xml | – sequence: 1 givenname: Mohaimin orcidid: 0000-0003-3726-0757 surname: Ehsan fullname: Ehsan, Mohaimin email: mehsan@brocku.ca organization: Department of Computer Science, Brock University, Canada – sequence: 2 givenname: Douglas D. orcidid: 0000-0001-9622-1913 surname: Lieira fullname: Lieira, Douglas D. email: ddlieira@ifsp.edu.br organization: Department of Computer Science, Sao Paulo State University, Brazil – sequence: 3 givenname: Rodolfo I. orcidid: 0000-0003-2982-4006 surname: Meneguette fullname: Meneguette, Rodolfo I. email: meneguette@icmc.usp.br organization: Department of Computer Science, University of Sao Paulo, Brazil – sequence: 4 givenname: Robson E. orcidid: 0000-0001-9448-2036 surname: De Grande fullname: De Grande, Robson E. email: rdegrande@broku.ca organization: Department of Computer Science, Brock University, Canada |
| BookMark | eNp9kM1qAyEUhV2k0CTtG3ThC0yqzo_jphBC_yDQTQPdiaPXxCGjQU0gb98J03VXF87lHM75FmjmgweEnihZUUKb535lz_kcYcUIq0epJaKaofn44gUvxc89WqTUE0IoL-kc7dZGnbK7AD5FF6LL16JTCQwGs4dCg8_RaRwhhXPUgAfl1R6GUcY2RJwPgJ3PED1kHCy-wMHpI6QHdGfVMcHj312i3dvr9-aj2H69f27W20KzmueitJaSWtWCq4YwEJRRQXnVtKY0puyq1nBjTW1qptuWidaSTijSgeZUNYKKcomqKVfHkFIEK8cVg4pXSYm84ZC9nHDIGw454RhtL5MNxm4XB1Em7cBrMC6CztIE93_AL_sucBc |
| Cites_doi | 10.1109/ACCESS.2019.2900530 10.1109/TVT.2019.2935450 10.1109/COMST.2017.2647981 10.1109/JIOT.2018.2872436 10.1109/TITS.2019.2939249 10.1109/ACCESS.2020.2965620 10.1007/s40815-016-0152-6 10.1109/TMC.2010.133 10.1109/ACCESS.2025.3526934 10.1016/j.pmcj.2018.12.007 10.1109/TVT.2019.2905432 10.1007/978-3-031-95133-6_22 10.1109/JSAC.2017.2760459 10.1007/s10586-024-04805-9 10.1109/TVT.2020.3041929 10.1109/JSAC.2021.3087244 10.1109/TVT.2018.2868013 10.1016/j.cosrev.2023.100616 10.1145/3485129 10.1109/TVT.2016.2532863 10.1109/MVT.2020.3019650 10.1109/JIOT.2020.3001603 10.1109/TVT.2017.2714704 10.1016/j.comcom.2025.108081 10.1109/MCOM.2014.6736756 10.1109/TVT.2019.2894851 10.1002/dac.5365 10.1109/TVT.2010.2094632 10.1109/TVT.2019.2897134 10.1109/JIOT.2019.2949602 10.1016/j.est.2024.112912 10.1109/JIOT.2020.2996213 10.1109/TVT.2020.3040596 10.1016/j.comnet.2017.03.015 10.1109/TVT.2022.3224614 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.future.2025.108094 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_future_2025_108094 S0167739X25003887 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AFJKZ AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c257t-3ff105a597a602e9121917468d3dd3b48d7dfd5d52c88298f0b9a0bec71a69193 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001561599600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-739X |
| IngestDate | Sat Nov 29 07:02:40 EST 2025 Sat Nov 29 17:08:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Prioritization Q-Learning Fuzzy algorithm Vehicular fog computing Resource management |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c257t-3ff105a597a602e9121917468d3dd3b48d7dfd5d52c88298f0b9a0bec71a69193 |
| ORCID | 0000-0003-3726-0757 0000-0001-9622-1913 0000-0003-2982-4006 0000-0001-9448-2036 |
| ParticipantIDs | crossref_primary_10_1016_j_future_2025_108094 elsevier_sciencedirect_doi_10_1016_j_future_2025_108094 |
| PublicationCentury | 2000 |
| PublicationDate | February 2026 2026-02-00 |
| PublicationDateYYYYMMDD | 2026-02-01 |
| PublicationDate_xml | – month: 02 year: 2026 text: February 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2026 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Meneguette, De Grande, Ueyama, Filho, Madeira (bib0013) 2021; 55 Mohtadi, Ouammou, Hanini, Haqiq (bib0005) 2025; 28 Coll-Perales, Lucas-EstaÃ, Shimizu, Gozalvez, Higuchi, Avedisov, Altintas, Sepulcre (bib0050) 2023; 72 Pu, Chen, Mao, Xie, Xu (bib0034) 2018; 6 Yang, Liu, Chen, Zhong, Xie (bib0040) 2019; 7 LiWang, Hosseinalipour, Gao, Tang, Huang, Dai (bib0033) 2019; 7 Ye, Li, Shen (bib0027) 2021; 20 Varga, Hornig (bib0061) 2008 Du, Gelenbe, Jiang, Zhang, Ren (bib0046) 2017; 35 Adnan, Haider Syed, Anjum, Rehman (bib0001) 2025; 13 Xue, Wang, Yu, Mao (bib0037) 2025 Luo, Zhang, Hu, Luan, Fan (bib0020) 2025 R. Zakerian, H. Gholami, SARS: A Resource Selection Algorithm for Autonomous Driving Tasks in Heterogeneous Mobile Edge Computing, arXiv preprint Liu, Xu, Zhan, Liu, Guan, Zhang (bib0025) 2017; 129 Zhou, Feng, Chang, Shen (bib0029) 2019; 68 Bellman (bib0058) 1966; 153 Liu, Yu, Xie, Zhang (bib0038) 2019; 68 Noor-A-Rahim, Liu, Lee, Ali, Pesch, Xiao (bib0015) 2020 Lee, Lee (bib0018) 2020; 7 Hossain, de Grande (bib0019) 2022 Ahmed, Saeed, Mukherjee (bib0010) 2019 Shi, Du, Wang, Wang, Yuan (bib0035) 2020; 69 Yadav, Zhang, Kaiwartya, Song, Yu (bib0044) 2020; 69 Asghari, Sohrabi (bib0007) 2024; 51 Meneguette, Boukerche (bib0012) 2020; 21 Zhou, Liu, Feng, Zhang, Mumtaz, Rodriguez (bib0023) 2019; 68 Wang, Yang, Jiang (bib0036) 2025 Prasath, Selvi, Krishnan, Nithila, Malar, Sankar (bib0026) 2024 Dobbs, Manyika, Woetzel (bib0003) 2015 Luong, Wang, Niyato, Wen, Han (bib0024) 2017; 19 Lee, Lee, Gerla, Oh (bib0042) 2014; 52 Pereira, Lieira, da Silva, Pimenta, da Costa, Rosário, Meneguette (bib0022) 2019 Lopez, Behrisch, Bieker-Walz, Erdmann, Flötteröd, Hilbrich, Lücken, Rummel, Wagner, Wiessner (bib0060) 2018 Karedal, Czink, Paier, Tufvesson, Molisch (bib0048) 2011; 60 Zhang, Dou, Chong, Chan, Seet (bib0053) 2021; 39 Du, Jiang, Wang, Ren, Debbah (bib0004) 2020; 15 Kumar, Laghari, Karim, Shakir, Brohi (bib0014) 2019; 1 Shen, Hu, Xia (bib0041) 2025 (2024). Zhang, Mao, Leng, Zhang, Zhang, Liu (bib0028) 2020; 69 Bellavista, Berrocal, Corradi, Das, Foschini, Zanni (bib0011) 2019; 52 Mishra, Sahoo, Bakshi, Rodrigues (bib0056) 2020; 7 Kim, Lee, Jung, Park (bib0047) 2010; 4 Ehsan, Meneguette, De Grande (bib0049) 2023 Sun, Gu, Zheng, Dong, Valera, Qin (bib0030) 2020; 8 Saaty (bib0054) 1994 Ogundoyin, Kamil (bib0055) 2020; 97 Mittal, Bali (bib0006) 2025; 38 Sun, Hou, Cheng, Wang, Zhou, Gui, Shen (bib0032) 2018; 67 Hou, Li, Chen, Wu, Jin, Chen (bib0043) 2016; 65 Raviglione, Malinverno, Feraco, Avino, Casetti, Chiasserini, Amati, Widmer (bib0051) 2021 Mansouri, Eskandari, Asadi, Savkin (bib0009) 2024; 97 Pereira, Gomides, Quessada, Meneguette, Lieira, Guidoni, Nakamura, Robson (bib0045) 2021 Alsadie (bib0008) 2024 Meneguette, Boukerche, Pimenta, Meneguette (bib0016) 2017 Gasmi, Aliouat (bib0002) 2019 Nazih, Benamar, Addaim (bib0017) 2020 Li, Zhang, Yu, Yang (bib0021) 2025 Ye, Li, Juang (bib0057) 2019; 68 Taki, Heshmati, Omid (bib0052) 2016; 18 Feng, Liu, Wu, Ji (bib0031) 2017; 66 Christoph Sommer. Reinhard, Falko (bib0059) 2011; 10 Luong (10.1016/j.future.2025.108094_bib0024) 2017; 19 Xue (10.1016/j.future.2025.108094_bib0037) 2025 Mansouri (10.1016/j.future.2025.108094_bib0009) 2024; 97 Ahmed (10.1016/j.future.2025.108094_bib0010) 2019 10.1016/j.future.2025.108094_bib0039 Varga (10.1016/j.future.2025.108094_bib0061) 2008 Feng (10.1016/j.future.2025.108094_bib0031) 2017; 66 Lee (10.1016/j.future.2025.108094_bib0042) 2014; 52 Du (10.1016/j.future.2025.108094_bib0004) 2020; 15 Hossain (10.1016/j.future.2025.108094_bib0019) 2022 Meneguette (10.1016/j.future.2025.108094_bib0012) 2020; 21 LiWang (10.1016/j.future.2025.108094_bib0033) 2019; 7 Saaty (10.1016/j.future.2025.108094_bib0054) 1994 Yang (10.1016/j.future.2025.108094_bib0040) 2019; 7 Alsadie (10.1016/j.future.2025.108094_bib0008) 2024 Pu (10.1016/j.future.2025.108094_bib0034) 2018; 6 Hou (10.1016/j.future.2025.108094_bib0043) 2016; 65 Zhou (10.1016/j.future.2025.108094_bib0023) 2019; 68 Shi (10.1016/j.future.2025.108094_bib0035) 2020; 69 Noor-A-Rahim (10.1016/j.future.2025.108094_bib0015) 2020 Du (10.1016/j.future.2025.108094_bib0046) 2017; 35 Coll-Perales (10.1016/j.future.2025.108094_bib0050) 2023; 72 Ye (10.1016/j.future.2025.108094_bib0057) 2019; 68 Ehsan (10.1016/j.future.2025.108094_bib0049) 2023 Sun (10.1016/j.future.2025.108094_bib0032) 2018; 67 Mittal (10.1016/j.future.2025.108094_bib0006) 2025; 38 Meneguette (10.1016/j.future.2025.108094_bib0016) 2017 Zhou (10.1016/j.future.2025.108094_bib0029) 2019; 68 Nazih (10.1016/j.future.2025.108094_bib0017) 2020 Taki (10.1016/j.future.2025.108094_bib0052) 2016; 18 Lopez (10.1016/j.future.2025.108094_bib0060) 2018 Adnan (10.1016/j.future.2025.108094_bib0001) 2025; 13 Wang (10.1016/j.future.2025.108094_bib0036) 2025 Zhang (10.1016/j.future.2025.108094_bib0053) 2021; 39 Sun (10.1016/j.future.2025.108094_bib0030) 2020; 8 Kim (10.1016/j.future.2025.108094_bib0047) 2010; 4 Kumar (10.1016/j.future.2025.108094_bib0014) 2019; 1 Ogundoyin (10.1016/j.future.2025.108094_bib0055) 2020; 97 Li (10.1016/j.future.2025.108094_bib0021) 2025 Pereira (10.1016/j.future.2025.108094_bib0022) 2019 Asghari (10.1016/j.future.2025.108094_bib0007) 2024; 51 Ye (10.1016/j.future.2025.108094_bib0027) 2021; 20 Mishra (10.1016/j.future.2025.108094_bib0056) 2020; 7 Gasmi (10.1016/j.future.2025.108094_bib0002) 2019 Pereira (10.1016/j.future.2025.108094_bib0045) 2021 Dobbs (10.1016/j.future.2025.108094_bib0003) 2015 Bellman (10.1016/j.future.2025.108094_bib0058) 1966; 153 Lee (10.1016/j.future.2025.108094_bib0018) 2020; 7 Raviglione (10.1016/j.future.2025.108094_bib0051) 2021 Zhang (10.1016/j.future.2025.108094_bib0028) 2020; 69 Prasath (10.1016/j.future.2025.108094_bib0026) 2024 Bellavista (10.1016/j.future.2025.108094_bib0011) 2019; 52 Liu (10.1016/j.future.2025.108094_bib0038) 2019; 68 Luo (10.1016/j.future.2025.108094_bib0020) 2025 Christoph Sommer. Reinhard (10.1016/j.future.2025.108094_bib0059) 2011; 10 Shen (10.1016/j.future.2025.108094_bib0041) 2025 Mohtadi (10.1016/j.future.2025.108094_bib0005) 2025; 28 Yadav (10.1016/j.future.2025.108094_bib0044) 2020; 69 Meneguette (10.1016/j.future.2025.108094_bib0013) 2021; 55 Liu (10.1016/j.future.2025.108094_bib0025) 2017; 129 Karedal (10.1016/j.future.2025.108094_bib0048) 2011; 60 |
| References_xml | – volume: 13 start-page: 13507 year: 2025 end-page: 13521 ident: bib0001 article-title: A framework for privacy-preserving in IoV using federated learning with differential privacy publication-title: IEEE Access – volume: 7 start-page: 10450 year: 2020 end-page: 10464 ident: bib0018 article-title: Resource allocation for vehicular fog computing using reinforcement learning combined with heuristic information publication-title: IEEE Internet Things J. – volume: 35 start-page: 2457 year: 2017 end-page: 2467 ident: bib0046 article-title: Contract design for traffic offloading and resource allocation in heterogeneous ultra-dense networks publication-title: IEEE J. Sel. Areas Commun. – volume: 97 year: 2024 ident: bib0009 article-title: A cloud-fog computing framework for real-time energy management in multi-microgrid system utilizing deep reinforcement learning publication-title: J. Energy Storage – start-page: 1022 year: 2024 end-page: 1027 ident: bib0026 article-title: Combining fuzzy logic and reinforcement learning for resource management in edge computing publication-title: 2024 5th International Conference on Electronics and Sustainable Communication Systems (ICESC) – volume: 19 start-page: 954 year: 2017 end-page: 1001 ident: bib0024 article-title: Resource management in cloud networking using economic analysis and pricing models: a survey publication-title: IEEE Commun. Surv. Tutor. – volume: 6 start-page: 84 year: 2018 end-page: 99 ident: bib0034 article-title: Chimera: an energy-efficient and deadline-aware hybrid edge computing framework for vehicular crowdsensing applications publication-title: IEEE Internet Things J. – start-page: 1 year: 2020 end-page: 5 ident: bib0017 article-title: An incentive mechanism for computing resource allocation in vehicular fog computing environment publication-title: Proceedings of the IEEE International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT) – year: 2015 ident: bib0003 article-title: The Internet of Things: Mapping the Value Beyond the Hype – volume: 18 start-page: 1131 year: 2016 end-page: 1140 ident: bib0052 article-title: Fuzzy-Based optimized QoS-constrained resource allocation in a heterogeneous wireless network publication-title: Int. J. Fuzzy Syst. – volume: 60 start-page: 323 year: 2011 end-page: 328 ident: bib0048 article-title: Path loss modeling for vehicle-to-vehicle communications publication-title: IEEE Trans. Veh. Technol. – start-page: 2575 year: 2018 end-page: 2582 ident: bib0060 article-title: Microscopic traffic simulation using SUMO publication-title: Proceedings of the IEEE International Conference on Intelligent Transportation Systems (ITSC) – start-page: 1 year: 2025 end-page: 15 ident: bib0020 article-title: Joint task migration and resource allocation in vehicular edge computing: a deep reinforcement learning-based approach publication-title: IEEE Trans. Veh. Technol. – year: 2025 ident: bib0021 article-title: Efficient vehicle selection and resource allocation for knowledge distillation-based federated learning in UAV-Assisted VEC publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 1 year: 2020 end-page: 21 ident: bib0015 article-title: A survey on resource allocation in vehicular networks publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 1 year: 2019 end-page: 6 ident: bib0002 article-title: Vehicular ad hoc NETworks versus internet of vehicles - a comparative view publication-title: Proceedings of the IEEE International Conference on Networking and Advanced Systems (ICNAS) – volume: 55 year: 2021 ident: bib0013 article-title: Vehicular edge computing: architecture, resource management, security, and challenges publication-title: ACM Comput. Surv. – volume: 4 start-page: 1250 year: 2010 end-page: 1254 ident: bib0047 article-title: Vehicle position estimation for driver assistance system publication-title: World Acad. Sci. Eng. Technol. Int. J. Transp. Vehicl. Eng. – start-page: 1 year: 2017 end-page: 6 ident: bib0016 article-title: A resource allocation scheme based on semi-Markov decision process for dynamic vehicular clouds publication-title: Proceedings of the IEEE International Conference on Communications (ICC) – volume: 20 start-page: 4370 year: 2021 end-page: 4384 ident: bib0027 article-title: A multi-Agent deep reinforcement learning-based resource allocation approach for V2V communications publication-title: IEEE Trans. Wireless Commun. – volume: 68 start-page: 3163 year: 2019 end-page: 3173 ident: bib0057 article-title: Deep reinforcement learning based resource allocation for V2V communications publication-title: IEEE Trans. Veh. Technol. – volume: 68 start-page: 3113 year: 2019 end-page: 3125 ident: bib0023 article-title: Computation resource allocation and task assignment optimization in vehicular fog computing: a contract-matching approach publication-title: IEEE Trans. Veh. Technol. – start-page: 1 year: 2022 end-page: 6 ident: bib0019 article-title: Adaptive Q-leaming-supported resource allocation model in vehicular fogs publication-title: Proceedings of the IEEE Symposium on Computers and Communications (ISCC) – start-page: 33 year: 2021 end-page: 40 ident: bib0051 article-title: Experimental assessment of IEEE 802.11based V2I communications publication-title: Proceedings of the 18th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks – volume: 7 start-page: 26652 year: 2019 end-page: 26664 ident: bib0040 article-title: Efficient mobility-aware task offloading for vehicular edge computing networks publication-title: IEEE Access – volume: 69 start-page: 4319 year: 2020 end-page: 4330 ident: bib0028 article-title: Efficient computation offloading in vehicular edge computing: a deep reinforcement learning approach publication-title: IEEE Trans. Veh. Technol. – volume: 8 start-page: 10466 year: 2020 end-page: 10477 ident: bib0030 article-title: Joint optimization of computation offloading and task scheduling in vehicular edge computing networks publication-title: IEEE Access – volume: 1 start-page: 31 year: 2019 end-page: 41 ident: bib0014 article-title: Comparison of fog computing & cloud computing publication-title: MECS Press Int. J. Math. Sci. Comput. (IJMSC) – start-page: 1 year: 2025 ident: bib0036 article-title: Delay- and energy-efficient task offloading in cell free massive MIMO-enabled vehicular fog computing publication-title: IEEE Trans. Wireless Commun. – start-page: 60:1 year: 2008 end-page: 60:10 ident: bib0061 article-title: An overview of the omnet++ simulation environment publication-title: Proceedings of the IEEE International Conference on Simulation Tools and Techniques for Communications, Networks and Systems and Workshops (Simutools) – volume: 52 start-page: 148 year: 2014 end-page: 155 ident: bib0042 article-title: Vehicular cloud networking: architecture and design principles publication-title: IEEE Commun. Mag. – volume: 97 year: 2020 ident: bib0055 article-title: A fuzzy-AHP based prioritization of trust criteria in fog computing services publication-title: Elsev. Appl. Soft Comput. – volume: 72 start-page: 5094 year: 2023 end-page: 5109 ident: bib0050 article-title: End-to-end V2X latency modeling and analysis in 5G networks publication-title: IEEE Trans. Veh. Technol. – volume: 129 start-page: 399 year: 2017 end-page: 409 ident: bib0025 article-title: Incentive mechanism for computation offloading using edge computing: a stackelberg game approach publication-title: Elsev. Comput. Netw. – volume: 38 year: 2025 ident: bib0006 article-title: 6G-based resource utilization framework in software defined hybrid vehicular networks publication-title: Int. J. Commun. Syst. – volume: 65 start-page: 3860 year: 2016 end-page: 3873 ident: bib0043 article-title: Vehicular fog computing: a viewpoint of vehicles as the infrastructures publication-title: IEEE Trans. Veh. Technol. – volume: 39 start-page: 2501 year: 2021 end-page: 2513 ident: bib0053 article-title: Fuzzy logic-based resource allocation algorithm for V2X communications in 5G cellular networks publication-title: IEEE J. Sel. Areas Commun. – volume: 66 start-page: 10660 year: 2017 end-page: 10675 ident: bib0031 article-title: AVE: Autonomous vehicular edge computing framework with ACO-based scheduling publication-title: IEEE Trans. Veh. Technol. – volume: 153 start-page: 34 year: 1966 end-page: 37 ident: bib0058 article-title: Dynamic programming publication-title: Am. Assoc. Advancem. Sci. – start-page: 1 year: 2025 end-page: 15 ident: bib0041 article-title: Cuckoo search-Enabled task scheduling and cache updating in vehicular edge-Fog computing publication-title: IEEE Trans. Veh. Technol. – volume: 7 start-page: 8993 year: 2020 end-page: 9000 ident: bib0056 article-title: Dynamic resource allocation in fog-cloud hybrid systems using multicriteria AHP techniques publication-title: IEEE Internet Things J. – volume: 52 start-page: 71 year: 2019 end-page: 99 ident: bib0011 article-title: A survey on fog computing for the Internet of Things publication-title: Elsev. Pervas. Mobile Comput. – year: 2024 ident: bib0008 article-title: A comprehensive review of AI techniques for resource management in fog computing: trends, challenges and future directions publication-title: IEEE Access – start-page: 2168 year: 2019 end-page: 2185 ident: bib0010 article-title: Challenges and opportunities in vehicular cloud computing publication-title: IGI Glob. Cloud Secur.: Concept Methodol. Tools Applicat. – volume: 69 start-page: 16067 year: 2020 end-page: 16081 ident: bib0035 article-title: Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning publication-title: IEEE Trans. Veh. Technol. – volume: 68 start-page: 5087 year: 2019 end-page: 5099 ident: bib0029 article-title: Energy-efficient edge computing service provisioning for vehicular networks: a consensus ADMM approach publication-title: IEEE Trans. Veh. Technol. – reference: (2024). – volume: 10 start-page: 3 year: 2011 end-page: 15 ident: bib0059 article-title: Bidirectionally coupled network and road traffic simulation for improved IVC analysis publication-title: IEEE Trans. Mob. Comput. – reference: R. Zakerian, H. Gholami, SARS: A Resource Selection Algorithm for Autonomous Driving Tasks in Heterogeneous Mobile Edge Computing, arXiv preprint – start-page: 1 year: 2019 end-page: 6 ident: bib0022 article-title: A novel fog-based resource allocation policy for vehicular clouds in the highway environment publication-title: Proceedings of the IEEE Latin-American Conference on Communications (LATINCOM) – year: 2025 ident: bib0037 article-title: Multi-agent deep reinforcement learning-based partial offloading and resource allocation in vehicular edge computing networks publication-title: Comput. Commun. – volume: 7 start-page: 311 year: 2019 end-page: 324 ident: bib0033 article-title: Allocation of computation-intensive graph jobs over vehicular clouds in IoV publication-title: IEEE Internet Things J. – volume: 15 start-page: 122 year: 2020 end-page: 134 ident: bib0004 article-title: Machine learning for 6G wireless networks: carrying forward enhanced bandwidth, massive access, and ultrareliable/low-latency service publication-title: IEEE Veh. Technol. Mag. – volume: 28 start-page: 108 year: 2025 ident: bib0005 article-title: Resilient vehicular fog computing networks: an analytical approach to system reliability under breakdown and vacation interruptions publication-title: Cluster Comput. – volume: 68 start-page: 11158 year: 2019 end-page: 11168 ident: bib0038 article-title: Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks publication-title: IEEE Trans. Veh. Technol. – start-page: 601 year: 2023 end-page: 608 ident: bib0049 article-title: Fuzzy-based dynamic priority-driven allocation for internet of vehicles publication-title: Proceedings of the IEEE International Conference on Distributed Computing in Smart Systems and the Internet of Things – volume: 21 start-page: 2640 year: 2020 end-page: 2647 ident: bib0012 article-title: Vehicular clouds leveraging mobile urban computing through resource discovery publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 67 start-page: 11049 year: 2018 end-page: 11061 ident: bib0032 article-title: Cooperative task scheduling for computation offloading in vehicular cloud publication-title: IEEE Trans. Veh. Technol. – volume: 51 year: 2024 ident: bib0007 article-title: Server placement in mobile cloud computing: a comprehensive survey for edge computing, fog computing and cloudlet publication-title: Comput. Sci. Rev. – volume: 69 start-page: 14198 year: 2020 end-page: 14211 ident: bib0044 article-title: Energy-latency tradeoff for dynamic computation offloading in vehicular fog computing publication-title: IEEE Trans. Veh. Technol. – year: 1994 ident: bib0054 article-title: Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process – start-page: 212 year: 2021 end-page: 219 ident: bib0045 article-title: Fog-oriented hierarchical resource allocation policy in vehicular clouds publication-title: Proceedings of the IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS) – volume: 7 start-page: 26652 year: 2019 ident: 10.1016/j.future.2025.108094_bib0040 article-title: Efficient mobility-aware task offloading for vehicular edge computing networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2900530 – start-page: 2168 year: 2019 ident: 10.1016/j.future.2025.108094_bib0010 article-title: Challenges and opportunities in vehicular cloud computing publication-title: IGI Glob. Cloud Secur.: Concept Methodol. Tools Applicat. – volume: 68 start-page: 11158 issue: 11 year: 2019 ident: 10.1016/j.future.2025.108094_bib0038 article-title: Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2935450 – volume: 19 start-page: 954 issue: 2 year: 2017 ident: 10.1016/j.future.2025.108094_bib0024 article-title: Resource management in cloud networking using economic analysis and pricing models: a survey publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2647981 – start-page: 1022 year: 2024 ident: 10.1016/j.future.2025.108094_bib0026 article-title: Combining fuzzy logic and reinforcement learning for resource management in edge computing – volume: 6 start-page: 84 issue: 1 year: 2018 ident: 10.1016/j.future.2025.108094_bib0034 article-title: Chimera: an energy-efficient and deadline-aware hybrid edge computing framework for vehicular crowdsensing applications publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2872436 – volume: 21 start-page: 2640 issue: 6 year: 2020 ident: 10.1016/j.future.2025.108094_bib0012 article-title: Vehicular clouds leveraging mobile urban computing through resource discovery publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2939249 – volume: 153 start-page: 34 issue: 3731 year: 1966 ident: 10.1016/j.future.2025.108094_bib0058 article-title: Dynamic programming publication-title: Am. Assoc. Advancem. Sci. – start-page: 1 year: 2025 ident: 10.1016/j.future.2025.108094_bib0020 article-title: Joint task migration and resource allocation in vehicular edge computing: a deep reinforcement learning-based approach publication-title: IEEE Trans. Veh. Technol. – start-page: 1 year: 2019 ident: 10.1016/j.future.2025.108094_bib0022 article-title: A novel fog-based resource allocation policy for vehicular clouds in the highway environment – volume: 8 start-page: 10466 year: 2020 ident: 10.1016/j.future.2025.108094_bib0030 article-title: Joint optimization of computation offloading and task scheduling in vehicular edge computing networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2965620 – volume: 18 start-page: 1131 issue: 6 year: 2016 ident: 10.1016/j.future.2025.108094_bib0052 article-title: Fuzzy-Based optimized QoS-constrained resource allocation in a heterogeneous wireless network publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-016-0152-6 – volume: 10 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.future.2025.108094_bib0059 article-title: Bidirectionally coupled network and road traffic simulation for improved IVC analysis publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2010.133 – volume: 13 start-page: 13507 year: 2025 ident: 10.1016/j.future.2025.108094_bib0001 article-title: A framework for privacy-preserving in IoV using federated learning with differential privacy publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3526934 – start-page: 1 year: 2019 ident: 10.1016/j.future.2025.108094_bib0002 article-title: Vehicular ad hoc NETworks versus internet of vehicles - a comparative view – volume: 52 start-page: 71 year: 2019 ident: 10.1016/j.future.2025.108094_bib0011 article-title: A survey on fog computing for the Internet of Things publication-title: Elsev. Pervas. Mobile Comput. doi: 10.1016/j.pmcj.2018.12.007 – start-page: 1 year: 2020 ident: 10.1016/j.future.2025.108094_bib0017 article-title: An incentive mechanism for computing resource allocation in vehicular fog computing environment – volume: 68 start-page: 5087 issue: 5 year: 2019 ident: 10.1016/j.future.2025.108094_bib0029 article-title: Energy-efficient edge computing service provisioning for vehicular networks: a consensus ADMM approach publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2905432 – volume: 97 year: 2020 ident: 10.1016/j.future.2025.108094_bib0055 article-title: A fuzzy-AHP based prioritization of trust criteria in fog computing services publication-title: Elsev. Appl. Soft Comput. – volume: 20 start-page: 4370 issue: 7 year: 2021 ident: 10.1016/j.future.2025.108094_bib0027 article-title: A multi-Agent deep reinforcement learning-based resource allocation approach for V2V communications publication-title: IEEE Trans. Wireless Commun. – ident: 10.1016/j.future.2025.108094_bib0039 doi: 10.1007/978-3-031-95133-6_22 – volume: 4 start-page: 1250 issue: 8 year: 2010 ident: 10.1016/j.future.2025.108094_bib0047 article-title: Vehicle position estimation for driver assistance system publication-title: World Acad. Sci. Eng. Technol. Int. J. Transp. Vehicl. Eng. – volume: 35 start-page: 2457 issue: 11 year: 2017 ident: 10.1016/j.future.2025.108094_bib0046 article-title: Contract design for traffic offloading and resource allocation in heterogeneous ultra-dense networks publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2017.2760459 – volume: 28 start-page: 108 issue: 2 year: 2025 ident: 10.1016/j.future.2025.108094_bib0005 article-title: Resilient vehicular fog computing networks: an analytical approach to system reliability under breakdown and vacation interruptions publication-title: Cluster Comput. doi: 10.1007/s10586-024-04805-9 – volume: 69 start-page: 16067 issue: 12 year: 2020 ident: 10.1016/j.future.2025.108094_bib0035 article-title: Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3041929 – volume: 39 start-page: 2501 issue: 8 year: 2021 ident: 10.1016/j.future.2025.108094_bib0053 article-title: Fuzzy logic-based resource allocation algorithm for V2X communications in 5G cellular networks publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2021.3087244 – volume: 1 start-page: 31 year: 2019 ident: 10.1016/j.future.2025.108094_bib0014 article-title: Comparison of fog computing & cloud computing publication-title: MECS Press Int. J. Math. Sci. Comput. (IJMSC) – volume: 67 start-page: 11049 issue: 11 year: 2018 ident: 10.1016/j.future.2025.108094_bib0032 article-title: Cooperative task scheduling for computation offloading in vehicular cloud publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2868013 – volume: 51 year: 2024 ident: 10.1016/j.future.2025.108094_bib0007 article-title: Server placement in mobile cloud computing: a comprehensive survey for edge computing, fog computing and cloudlet publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2023.100616 – start-page: 1 year: 2022 ident: 10.1016/j.future.2025.108094_bib0019 article-title: Adaptive Q-leaming-supported resource allocation model in vehicular fogs – year: 2024 ident: 10.1016/j.future.2025.108094_bib0008 article-title: A comprehensive review of AI techniques for resource management in fog computing: trends, challenges and future directions publication-title: IEEE Access – volume: 55 issue: 1 year: 2021 ident: 10.1016/j.future.2025.108094_bib0013 article-title: Vehicular edge computing: architecture, resource management, security, and challenges publication-title: ACM Comput. Surv. doi: 10.1145/3485129 – start-page: 2575 year: 2018 ident: 10.1016/j.future.2025.108094_bib0060 article-title: Microscopic traffic simulation using SUMO – year: 2015 ident: 10.1016/j.future.2025.108094_bib0003 – year: 2025 ident: 10.1016/j.future.2025.108094_bib0021 article-title: Efficient vehicle selection and resource allocation for knowledge distillation-based federated learning in UAV-Assisted VEC publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 60:1 year: 2008 ident: 10.1016/j.future.2025.108094_bib0061 article-title: An overview of the omnet++ simulation environment – start-page: 1 year: 2025 ident: 10.1016/j.future.2025.108094_bib0036 article-title: Delay- and energy-efficient task offloading in cell free massive MIMO-enabled vehicular fog computing publication-title: IEEE Trans. Wireless Commun. – volume: 65 start-page: 3860 issue: 6 year: 2016 ident: 10.1016/j.future.2025.108094_bib0043 article-title: Vehicular fog computing: a viewpoint of vehicles as the infrastructures publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2016.2532863 – volume: 15 start-page: 122 issue: 4 year: 2020 ident: 10.1016/j.future.2025.108094_bib0004 article-title: Machine learning for 6G wireless networks: carrying forward enhanced bandwidth, massive access, and ultrareliable/low-latency service publication-title: IEEE Veh. Technol. Mag. doi: 10.1109/MVT.2020.3019650 – start-page: 212 year: 2021 ident: 10.1016/j.future.2025.108094_bib0045 article-title: Fog-oriented hierarchical resource allocation policy in vehicular clouds – volume: 7 start-page: 8993 issue: 9 year: 2020 ident: 10.1016/j.future.2025.108094_bib0056 article-title: Dynamic resource allocation in fog-cloud hybrid systems using multicriteria AHP techniques publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3001603 – volume: 66 start-page: 10660 issue: 12 year: 2017 ident: 10.1016/j.future.2025.108094_bib0031 article-title: AVE: Autonomous vehicular edge computing framework with ACO-based scheduling publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2714704 – start-page: 33 year: 2021 ident: 10.1016/j.future.2025.108094_bib0051 article-title: Experimental assessment of IEEE 802.11based V2I communications – start-page: 1 year: 2017 ident: 10.1016/j.future.2025.108094_bib0016 article-title: A resource allocation scheme based on semi-Markov decision process for dynamic vehicular clouds – start-page: 601 year: 2023 ident: 10.1016/j.future.2025.108094_bib0049 article-title: Fuzzy-based dynamic priority-driven allocation for internet of vehicles – year: 2025 ident: 10.1016/j.future.2025.108094_bib0037 article-title: Multi-agent deep reinforcement learning-based partial offloading and resource allocation in vehicular edge computing networks publication-title: Comput. Commun. doi: 10.1016/j.comcom.2025.108081 – volume: 52 start-page: 148 issue: 2 year: 2014 ident: 10.1016/j.future.2025.108094_bib0042 article-title: Vehicular cloud networking: architecture and design principles publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2014.6736756 – volume: 68 start-page: 3113 issue: 4 year: 2019 ident: 10.1016/j.future.2025.108094_bib0023 article-title: Computation resource allocation and task assignment optimization in vehicular fog computing: a contract-matching approach publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2894851 – volume: 38 issue: 1 year: 2025 ident: 10.1016/j.future.2025.108094_bib0006 article-title: 6G-based resource utilization framework in software defined hybrid vehicular networks publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.5365 – volume: 60 start-page: 323 issue: 1 year: 2011 ident: 10.1016/j.future.2025.108094_bib0048 article-title: Path loss modeling for vehicle-to-vehicle communications publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2010.2094632 – volume: 68 start-page: 3163 issue: 4 year: 2019 ident: 10.1016/j.future.2025.108094_bib0057 article-title: Deep reinforcement learning based resource allocation for V2V communications publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2897134 – volume: 7 start-page: 311 issue: 1 year: 2019 ident: 10.1016/j.future.2025.108094_bib0033 article-title: Allocation of computation-intensive graph jobs over vehicular clouds in IoV publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2949602 – year: 1994 ident: 10.1016/j.future.2025.108094_bib0054 – volume: 97 year: 2024 ident: 10.1016/j.future.2025.108094_bib0009 article-title: A cloud-fog computing framework for real-time energy management in multi-microgrid system utilizing deep reinforcement learning publication-title: J. Energy Storage doi: 10.1016/j.est.2024.112912 – volume: 7 start-page: 10450 issue: 10 year: 2020 ident: 10.1016/j.future.2025.108094_bib0018 article-title: Resource allocation for vehicular fog computing using reinforcement learning combined with heuristic information publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2996213 – volume: 69 start-page: 14198 issue: 12 year: 2020 ident: 10.1016/j.future.2025.108094_bib0044 article-title: Energy-latency tradeoff for dynamic computation offloading in vehicular fog computing publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3040596 – start-page: 1 year: 2020 ident: 10.1016/j.future.2025.108094_bib0015 article-title: A survey on resource allocation in vehicular networks publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 129 start-page: 399 year: 2017 ident: 10.1016/j.future.2025.108094_bib0025 article-title: Incentive mechanism for computation offloading using edge computing: a stackelberg game approach publication-title: Elsev. Comput. Netw. doi: 10.1016/j.comnet.2017.03.015 – volume: 69 start-page: 4319 issue: 4 year: 2020 ident: 10.1016/j.future.2025.108094_bib0028 article-title: Efficient computation offloading in vehicular edge computing: a deep reinforcement learning approach publication-title: IEEE Trans. Veh. Technol. – start-page: 1 year: 2025 ident: 10.1016/j.future.2025.108094_bib0041 article-title: Cuckoo search-Enabled task scheduling and cache updating in vehicular edge-Fog computing publication-title: IEEE Trans. Veh. Technol. – volume: 72 start-page: 5094 issue: 4 year: 2023 ident: 10.1016/j.future.2025.108094_bib0050 article-title: End-to-end V2X latency modeling and analysis in 5G networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3224614 |
| SSID | ssj0001731 |
| Score | 2.4515114 |
| Snippet | Vehicle Fog Computing (VFC) enables increased processing capacity and intelligent transportation support services. VFC has become increasingly important for... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 108094 |
| SubjectTerms | Fuzzy algorithm Prioritization Q-Learning Resource management Vehicular fog computing |
| Title | Adaptive priority-based edge-centric resource management for the internet of vehicles |
| URI | https://dx.doi.org/10.1016/j.future.2025.108094 |
| Volume | 175 |
| WOSCitedRecordID | wos001561599600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect issn: 0167-739X databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001731 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF7cpIde-i5J-mAPvZk11nv3aBKHprSh0AR8E6t91ApBMopj_PM7-5LVupS20IswMhqJnU-jb4ZvZxB6zxIRiyinRKeqIinnilAORE5EMmM5rSrtPP2puLykiwX7Mhptw16YzW3RNHS7Zav_6mo4B842W2f_wt29UTgBv8HpcAS3w_GPHD-TfGX1QKuubs1oOmK-VHJsCmfEajFt12ZXtffqVasICILD2hYJlZUIbNTS6uaGHPbctiExs5eVh4_woyF8X-gdTV_eufrq53bJzfiwXv5Tq7rjAwI_Ppv0rge73-6NAskpv2V7q9vxRf__GeC6M6VvLww3IxTnk2H1Iu4Fz6GktretxlU5IXoXiZ2xuwvTbsLKXsh31YebievBAhl_nFnhpJud_FMz7a_GtLEMzM_0wSkeoMO4yBjEw8PZxXzxsf-KR4WfZekfJWy7tNrA_Xv9mtYMqMrVU_TY5xh45rDxDI1U8xw9CfM7sA_nL9B1gAr-ESp4CBUcoIJ3UMEAFQxQwQEquNU4QOUluj6fX51-IH7MBhEQr9ck0RpINofMkufTWLEoNjl8mlOZSJlUKZWF1DKTWSwgHWNUTyvGp_DuFxHPGSQAr9BB0zbqCGHgqpLRNKsypVPBYzoViRRgXnOwKdkxImGVypXrplIGmeFN6Va1NKtaulU9RkVYytIzQsf0SvD-b688-ecrX6NHO6C-QQfr7l69RQ_FZl3fde88TL4Dsy6MOQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+priority-based+edge-centric+resource+management+for+the+internet+of+vehicles&rft.jtitle=Future+generation+computer+systems&rft.au=Ehsan%2C+Mohaimin&rft.au=Lieira%2C+Douglas+D.&rft.au=Meneguette%2C+Rodolfo+I.&rft.au=De+Grande%2C+Robson+E.&rft.date=2026-02-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.volume=175&rft_id=info:doi/10.1016%2Fj.future.2025.108094&rft.externalDocID=S0167739X25003887 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |