On adaptive multichannel dereverberation based on dichotomous coordinate descent and data-reuse techniques

Multichannel linear prediction (MCLP) is widely used for speech dereverberation, with recursive least-squares (RLS)-like algorithms commonly applied to update the linear prediction coefficients. However, these algorithms tend to be computationally intensive, making it necessary in practical implemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing Jg. 238; S. 110138
Hauptverfasser: Yang, Wenxing, Jin, Jilu, Yin, Kaili, Chen, Jingdong, Benesty, Jacob
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.01.2026
Schlagworte:
ISSN:0165-1684
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multichannel linear prediction (MCLP) is widely used for speech dereverberation, with recursive least-squares (RLS)-like algorithms commonly applied to update the linear prediction coefficients. However, these algorithms tend to be computationally intensive, making it necessary in practical implementations to reduce complexity while improving numerical robustness for better dereverberation performance. In this paper, we introduce a more efficient MCLP-based adaptive dereverberation method that combines dichotomous coordinate descent (DCD) with a data-reuse (DR) technique. Compared to the traditional RLS-based approach, the proposed method offers two major benefits. First, it significantly lowers computational demands by replacing most multiplications with bitshifts during DCD iterations, making it more suitable for real-world applications. Second, by avoiding the propagation of the inverse covariance matrix via the Riccati equation, the method ensures numerical stability, making it more suitable for processing long-duration speech signals. Additionally, the DR technique improves dereverberation performance by more efficiently utilizing available observed data. Simulation results show that the proposed methods outperform the conventional RLS-based approach in terms of both numerical stability and computational efficiency, while delivering comparable dereverberation performance. •Novel adaptive dereverberation method incorporating DCD and data reuse.•Efficient multichannel adaptive dereverberation matching RLS performance.•More stable multichannel adaptive dereverberation versus RLS.
AbstractList Multichannel linear prediction (MCLP) is widely used for speech dereverberation, with recursive least-squares (RLS)-like algorithms commonly applied to update the linear prediction coefficients. However, these algorithms tend to be computationally intensive, making it necessary in practical implementations to reduce complexity while improving numerical robustness for better dereverberation performance. In this paper, we introduce a more efficient MCLP-based adaptive dereverberation method that combines dichotomous coordinate descent (DCD) with a data-reuse (DR) technique. Compared to the traditional RLS-based approach, the proposed method offers two major benefits. First, it significantly lowers computational demands by replacing most multiplications with bitshifts during DCD iterations, making it more suitable for real-world applications. Second, by avoiding the propagation of the inverse covariance matrix via the Riccati equation, the method ensures numerical stability, making it more suitable for processing long-duration speech signals. Additionally, the DR technique improves dereverberation performance by more efficiently utilizing available observed data. Simulation results show that the proposed methods outperform the conventional RLS-based approach in terms of both numerical stability and computational efficiency, while delivering comparable dereverberation performance. •Novel adaptive dereverberation method incorporating DCD and data reuse.•Efficient multichannel adaptive dereverberation matching RLS performance.•More stable multichannel adaptive dereverberation versus RLS.
ArticleNumber 110138
Author Yin, Kaili
Yang, Wenxing
Chen, Jingdong
Benesty, Jacob
Jin, Jilu
Author_xml – sequence: 1
  givenname: Wenxing
  orcidid: 0000-0003-0395-7003
  surname: Yang
  fullname: Yang, Wenxing
  email: wenxingyang@usst.edu.cn
  organization: School of Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
– sequence: 2
  givenname: Jilu
  orcidid: 0000-0003-2967-8379
  surname: Jin
  fullname: Jin, Jilu
  email: jilu.jin@mail.nwpu.edu.cn
  organization: Center of Intelligent Acoustics and Immersive Communications, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072, Shaanxi, China
– sequence: 3
  givenname: Kaili
  orcidid: 0000-0002-9754-9651
  surname: Yin
  fullname: Yin, Kaili
  email: kl_yin@hotmail.com
  organization: College of Automation and Electronic Engineering, Qingdao University of Science and Technology, 516 JungongRoad, Qingdao, 266520, Shandong, China
– sequence: 4
  givenname: Jingdong
  orcidid: 0000-0003-0083-9247
  surname: Chen
  fullname: Chen, Jingdong
  email: jingdongchen@ieee.org
  organization: Center of Intelligent Acoustics and Immersive Communications, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072, Shaanxi, China
– sequence: 5
  givenname: Jacob
  orcidid: 0000-0002-0036-5865
  surname: Benesty
  fullname: Benesty, Jacob
  email: jacob.benesty@inrs.ca
  organization: INRS-EMT, University of Quebec, 800 de la Gauchetiere Ouest, Montreal, QC H5A 1K6, Canada
BookMark eNp9kM1qwzAQhHVIoUnaN-hBL2BXiizHvhRK6B8EcmnPQtauG5lESiU50LevgnvOaZfZmWH5FmTmvENCHjgrOeP141BG-30KvlyxlSx51kQzI_N8kgWvm-qWLGIcGMt6zeZk2DmqQZ-SPSM9jodkzV47hwcKGPCMocOgk_WOdjoi0LxAtvjkj36M1HgfwDqdMPujQZeodkBBJ10EHCPShGbv7M-I8Y7c9PoQ8f5_LsnX68vn5r3Y7t4-Ns_bwqzkOhWik7Wo16wzNXTYYt_LHqqsCg7IG84k55JhIyqGrGllJQGrhol1K7XoWxBLUk29JvgYA_bqFOxRh1_FmbowUoOaGKkLIzUxyrGnKYb5t7PFoKKx6AyCDWiSAm-vF_wBN4h39A
Cites_doi 10.1109/ICASSP.2019.8683294
10.1109/TASLP.2020.3045561
10.1109/MSP.2012.2205029
10.1109/ICASSP48485.2024.10446330
10.1109/LSP.2021.3099715
10.1109/ICASSP39728.2021.9414736
10.1109/TASL.2007.911054
10.3390/app13042227
10.1109/78.91147
10.1109/TASL.2006.889720
10.1109/29.1509
10.1109/TSP.2008.917874
10.1121/1.1570439
10.1109/IWAENC.2014.6954309
10.1109/LSP.2022.3153207
10.1109/LSP.2016.2616888
10.1109/TSP.2020.2997201
10.1109/TASLP.2015.2469142
10.1109/LSP.2020.3044796
10.1109/ICC.2007.422
10.1109/ICASSP40776.2020.9054393
10.1109/TASL.2008.2008042
10.1121/1.5094338
10.21437/Interspeech.2017-733
10.1109/TASLP.2016.2518804
10.1109/ICASSP.2019.8682834
10.1109/TASLP.2018.2811184
10.1109/TASL.2010.2052251
10.1109/TASLP.2015.2418571
10.1109/LSP.2016.2640939
10.1109/TASL.2008.2004306
10.1109/ICASSP.2009.4960438
10.1109/TASLP.2020.2966869
10.1121/1.5051640
10.1121/1.382599
10.1109/TSP.2013.2258340
10.1109/LSP.2019.2911179
10.1109/IWAENC.2018.8521286
10.1109/ICASSP.2008.4517552
10.1109/TASLP.2018.2862826
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2025.110138
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_sigpro_2025_110138
S016516842500252X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c257t-3b563670bc6dbe9eff5fd43b531de181051150e8340e089545de4803795a3f9d3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001517657600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Sat Nov 29 07:29:28 EST 2025
Sat Oct 25 16:40:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Adaptive dereverberation
Multichannel linear prediction
Recursive least-squares algorithm
Data-reuse
Dichotomous coordinate descent
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-3b563670bc6dbe9eff5fd43b531de181051150e8340e089545de4803795a3f9d3
ORCID 0000-0003-0083-9247
0000-0002-9754-9651
0000-0003-0395-7003
0000-0003-2967-8379
0000-0002-0036-5865
ParticipantIDs crossref_primary_10_1016_j_sigpro_2025_110138
elsevier_sciencedirect_doi_10_1016_j_sigpro_2025_110138
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Naylor, Gaubitch (b2) 2010
J. Liu, B. Weaver, Y. Zakharov, G. White, An FPGA-based MVDR beamformer using dichotomous coordinate descent iterations, in: Proc. IEEE International Conference on Communications, 2007, pp. 2551–2556.
Nakatani, Juang, Yoshioka, Kinoshita, Delcroix, Miyoshi (b11) 2008; 16
W. Yang, G. Huang, W. Zhang, J. Chen, J. Benesty, Dereverberation with differential microphone arrays and the weighted-prediction-error method, in: Proc IEEE International Workshop on Acoustic Signal Enchancement, IWAENC, 2018, pp. 376–380.
Yoshioka (b28) 2010
Kinoshita, Delcroix, Gannot, Habets, Haeb-Umbach, Kellermann, Leutnant, Maas, Nakatani, Raj (b51) 2016; 2016
Bottomley, Alexander (b36) 1991; 39
Kressner, Westermann, Buchholz (b5) 2018; 144
Zakharov, Nascimento (b40) 2013; 61
C. Pan, L. Zhang, Y. Lu, J. Jin, L. Qiu, J. Chen, J. Benesty, An anchor-point based image-model for room impulse response simulation with directional source radiation and sensor directivity patterns.
.
Yoshioka, Sehr, Delcroix, Kinoshita, Maas, Nakatani, Kellermann (b4) 2012; 29
Jukić, Van Waterschoot, Doclo (b37) 2016; 24
Huang, Chen, Benesty (b8) 2018; 26
E. Hadad, F. Heese, P. Vary, S. Gannot, Multichannel audio database in various acoustic environments, in: Proc IEEE International Workshop on Acoustic Signal Enhancement, IWAENC, 2014, pp. 313–317.
Kuttruff (b1) 2016
Schwarz, Kellermann (b22) 2015; 23
K. Tan, D. Wang, Complex spectral mapping with a convolutional recurrent network for monaural speech enhancement, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2019, pp. 6865–6869.
Yang, Benesty, Huang, Chen (b10) 2020; 29
Yang, Huang, Chen, Benesty, Cohen, Kellermann (b16) 2020; 28
Ikeshita, Kinoshita, Kamo, Nakatani (b17) 2021; 28
Braun, Kuklasinski, Schwartz, Thiergart, Habets, Gannot, Doclo, Jensen (b23) 2018; 26
T. Yoshioka, H. Tachibana, T. Nakatani, M. Miyoshi, Adaptive dereverberation of speech signals with speaker-position change detection, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2009, pp. 3733–3736.
Dietzen, Doclo, Moonen, Van Waterschoot (b33) 2020; 28
Braun, Habets (b32) 2018; 26
Haykin (b35) 2014
C. Boeddeker, T. Nakatani, K. Kinoshita, R. Haeb-Umbach, Jointly optimal dereverberation and beamforming, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2020, pp. 216–220.
Fîciu, Stanciu, Paleologu, Benesty (b41) 2023; 13
Benesty, Chen, Huang (b7) 2008
Kodrasi, Doclo (b19) 2016; 24
Lebart, Boucher, Denbigh (b20) 2001; 87
Zakharov, White, Liu (b38) 2008; 56
Avargel, Cohen (b44) 2007; 15
Nakatani, Yoshioka, Kinoshita, Miyoshi, Juang (b12) 2010; 18
D. Baby, H. Bourlard, Speech dereverberation using variational autoencoders, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2021, pp. 5784–5788.
Nakatani, Kinoshita (b14) 2019; 26
Wung, Jukić, Malik, Souden, Pichevar, Atkins, Naik, Acero (b34) 2020; 68
Kodrasi, Doclo (b21) 2018; 26
Allen, Berkley (b47) 1979; 65
Miyoshi, Kaneda (b18) 1988; 36
Xiang, Lu, Chen (b30) 2019; 145
T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, B.-H. Juang, Blind speech dereverberation with multi-channel linear prediction based on short-time Fourier transform representation, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2008, pp. 85–88.
K. Kinoshita, M. Delcroix, H. Kwon, T. Mori, T. Nakatani, Neural network-based spectrum estimation for online WPE dereverberation, in: Proc. Interspeech, 2017, pp. 384–388.
Yoshioka, Nakatani, Miyoshi (b46) 2009; 17
Bradley, Sato, Picard (b3) 2003; 113
W. Huang, C. Xue, J. Feng, W.B. Kleijn, A practical online multichannel dereverberation approach with data-reuse technique, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2024, pp. 501–505.
J. Heymann, L. Drude, R. Haeb-Umbach, K. Kinoshita, T. Nakatani, Joint optimization of neural network-based WPE dereverberation and acoustic model for robust online ASR, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2019, pp. 6655–6659.
Elko (b6) 2000
Pan, Chen, Benesty (b9) 2015; 23
Paleologu, Benesty, Ciochină (b42) 2022; 29
Braun, Habets (b31) 2016; 23
Hu, Loizou (b50) 2007; 16
Yoshioka (10.1016/j.sigpro.2025.110138_b4) 2012; 29
Yoshioka (10.1016/j.sigpro.2025.110138_b46) 2009; 17
Jukić (10.1016/j.sigpro.2025.110138_b37) 2016; 24
Yang (10.1016/j.sigpro.2025.110138_b10) 2020; 29
Braun (10.1016/j.sigpro.2025.110138_b31) 2016; 23
Bottomley (10.1016/j.sigpro.2025.110138_b36) 1991; 39
Paleologu (10.1016/j.sigpro.2025.110138_b42) 2022; 29
10.1016/j.sigpro.2025.110138_b15
10.1016/j.sigpro.2025.110138_b13
Kodrasi (10.1016/j.sigpro.2025.110138_b21) 2018; 26
Benesty (10.1016/j.sigpro.2025.110138_b7) 2008
Bradley (10.1016/j.sigpro.2025.110138_b3) 2003; 113
Nakatani (10.1016/j.sigpro.2025.110138_b14) 2019; 26
Xiang (10.1016/j.sigpro.2025.110138_b30) 2019; 145
10.1016/j.sigpro.2025.110138_b29
10.1016/j.sigpro.2025.110138_b26
10.1016/j.sigpro.2025.110138_b27
Nakatani (10.1016/j.sigpro.2025.110138_b11) 2008; 16
Ikeshita (10.1016/j.sigpro.2025.110138_b17) 2021; 28
10.1016/j.sigpro.2025.110138_b24
Yoshioka (10.1016/j.sigpro.2025.110138_b28) 2010
Kressner (10.1016/j.sigpro.2025.110138_b5) 2018; 144
10.1016/j.sigpro.2025.110138_b25
Braun (10.1016/j.sigpro.2025.110138_b32) 2018; 26
Nakatani (10.1016/j.sigpro.2025.110138_b12) 2010; 18
Zakharov (10.1016/j.sigpro.2025.110138_b38) 2008; 56
Pan (10.1016/j.sigpro.2025.110138_b9) 2015; 23
Schwarz (10.1016/j.sigpro.2025.110138_b22) 2015; 23
10.1016/j.sigpro.2025.110138_b39
Zakharov (10.1016/j.sigpro.2025.110138_b40) 2013; 61
Kodrasi (10.1016/j.sigpro.2025.110138_b19) 2016; 24
Naylor (10.1016/j.sigpro.2025.110138_b2) 2010
Avargel (10.1016/j.sigpro.2025.110138_b44) 2007; 15
Dietzen (10.1016/j.sigpro.2025.110138_b33) 2020; 28
Haykin (10.1016/j.sigpro.2025.110138_b35) 2014
Elko (10.1016/j.sigpro.2025.110138_b6) 2000
Miyoshi (10.1016/j.sigpro.2025.110138_b18) 1988; 36
Kuttruff (10.1016/j.sigpro.2025.110138_b1) 2016
Wung (10.1016/j.sigpro.2025.110138_b34) 2020; 68
Fîciu (10.1016/j.sigpro.2025.110138_b41) 2023; 13
Hu (10.1016/j.sigpro.2025.110138_b50) 2007; 16
Yang (10.1016/j.sigpro.2025.110138_b16) 2020; 28
Braun (10.1016/j.sigpro.2025.110138_b23) 2018; 26
10.1016/j.sigpro.2025.110138_b48
10.1016/j.sigpro.2025.110138_b49
Lebart (10.1016/j.sigpro.2025.110138_b20) 2001; 87
Kinoshita (10.1016/j.sigpro.2025.110138_b51) 2016; 2016
10.1016/j.sigpro.2025.110138_b43
Allen (10.1016/j.sigpro.2025.110138_b47) 1979; 65
Huang (10.1016/j.sigpro.2025.110138_b8) 2018; 26
10.1016/j.sigpro.2025.110138_b45
References_xml – volume: 2016
  start-page: 1
  year: 2016
  end-page: 19
  ident: b51
  article-title: A summary of the reverb challenge: state-of-the-art and remaining challenges in reverberant speech processing research
  publication-title: EURASIP J. Adva. Signal Process.
– volume: 23
  start-page: 1006
  year: 2015
  end-page: 1018
  ident: b22
  article-title: Coherent-to-diffuse power ratio estimation for dereverberation
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
– volume: 36
  start-page: 145
  year: 1988
  end-page: 152
  ident: b18
  article-title: Inverse filtering of room acoustics
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– reference: K. Kinoshita, M. Delcroix, H. Kwon, T. Mori, T. Nakatani, Neural network-based spectrum estimation for online WPE dereverberation, in: Proc. Interspeech, 2017, pp. 384–388.
– volume: 26
  start-page: 2305
  year: 2018
  end-page: 2318
  ident: b8
  article-title: Insights into frequency-invariant beamforming with concentric circular microphone arrays
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
– volume: 29
  start-page: 114
  year: 2012
  end-page: 126
  ident: b4
  article-title: Making machines understand us in reverberant rooms: Robustness against reverberation for automatic speech recognition
  publication-title: IEEE Signal Process. Mag.
– reference: E. Hadad, F. Heese, P. Vary, S. Gannot, Multichannel audio database in various acoustic environments, in: Proc IEEE International Workshop on Acoustic Signal Enhancement, IWAENC, 2014, pp. 313–317.
– volume: 26
  start-page: 1115
  year: 2018
  end-page: 1125
  ident: b32
  article-title: Linear prediction-based online dereverberation and noise reduction using alternating Kalman filters
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
– volume: 28
  start-page: 740
  year: 2020
  end-page: 754
  ident: b33
  article-title: Integrated sidelobe cancellation and linear prediction Kalman filter for joint multi-microphone speech dereverberation, interfering speech cancellation, and noise reduction
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
– year: 2016
  ident: b1
  article-title: Room Acoustics
– volume: 61
  start-page: 3198
  year: 2013
  end-page: 3213
  ident: b40
  article-title: DCD-RLS adaptive filters with penalties for sparse identification
  publication-title: IEEE Trans. Signal Process.
– volume: 23
  start-page: 1741
  year: 2016
  end-page: 1745
  ident: b31
  article-title: Online dereverberation for dynamic scenarios using a Kalman filter with an autoregressive model
  publication-title: IEEE Signal Process. Lett.
– volume: 113
  start-page: 3233
  year: 2003
  end-page: 3244
  ident: b3
  article-title: On the importance of early reflections for speech in rooms
  publication-title: J. Acoust. Soc. Am.
– volume: 16
  start-page: 229
  year: 2007
  end-page: 238
  ident: b50
  article-title: Evaluation of objective quality measures for speech enhancement
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– reference: K. Tan, D. Wang, Complex spectral mapping with a convolutional recurrent network for monaural speech enhancement, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2019, pp. 6865–6869.
– reference: W. Yang, G. Huang, W. Zhang, J. Chen, J. Benesty, Dereverberation with differential microphone arrays and the weighted-prediction-error method, in: Proc IEEE International Workshop on Acoustic Signal Enchancement, IWAENC, 2018, pp. 376–380.
– volume: 29
  start-page: 594
  year: 2020
  end-page: 606
  ident: b10
  article-title: A new class of differential beamformers
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
– volume: 28
  start-page: 1580
  year: 2021
  end-page: 1584
  ident: b17
  article-title: Online speech dereverberation using mixture of multichannel linear prediction models
  publication-title: IEEE Signal Process. Lett.
– reference: C. Pan, L. Zhang, Y. Lu, J. Jin, L. Qiu, J. Chen, J. Benesty, An anchor-point based image-model for room impulse response simulation with directional source radiation and sensor directivity patterns.
– reference: W. Huang, C. Xue, J. Feng, W.B. Kleijn, A practical online multichannel dereverberation approach with data-reuse technique, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2024, pp. 501–505.
– volume: 16
  start-page: 1512
  year: 2008
  end-page: 1527
  ident: b11
  article-title: Speech dereverberation based on maximum-likelihood estimation with time-varying Gaussian source model
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– reference: J. Heymann, L. Drude, R. Haeb-Umbach, K. Kinoshita, T. Nakatani, Joint optimization of neural network-based WPE dereverberation and acoustic model for robust online ASR, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2019, pp. 6655–6659.
– reference: C. Boeddeker, T. Nakatani, K. Kinoshita, R. Haeb-Umbach, Jointly optimal dereverberation and beamforming, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2020, pp. 216–220.
– year: 2010
  ident: b2
  article-title: Speech Dereverberation
– volume: 26
  start-page: 1052
  year: 2018
  end-page: 1067
  ident: b23
  article-title: Evaluation and comparison of late reverberation power spectral density estimators
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
– volume: 15
  start-page: 1305
  year: 2007
  end-page: 1319
  ident: b44
  article-title: System identification in the short-time Fourier transform domain with crossband filtering
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– volume: 24
  start-page: 101
  year: 2016
  end-page: 105
  ident: b37
  article-title: Adaptive speech dereverberation using constrained sparse multichannel linear prediction
  publication-title: IEEE Signal Process. Lett.
– reference: T. Yoshioka, H. Tachibana, T. Nakatani, M. Miyoshi, Adaptive dereverberation of speech signals with speaker-position change detection, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2009, pp. 3733–3736.
– volume: 29
  start-page: 752
  year: 2022
  end-page: 756
  ident: b42
  article-title: Data-reuse recursive least-squares algorithms
  publication-title: IEEE Signal Process. Lett.
– volume: 23
  start-page: 2093
  year: 2015
  end-page: 2105
  ident: b9
  article-title: Theoretical analysis of differential microphone array beamforming and an improved solution
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
– volume: 65
  start-page: 943
  year: 1979
  end-page: 950
  ident: b47
  article-title: Image method for efficiently simulating small-room acoustics
  publication-title: J. Acoust. Soc. Am.
– volume: 13
  start-page: 2227
  year: 2023
  ident: b41
  article-title: Low-complexity data-reuse RLS algorithm for stereophonic acoustic echo cancellation
  publication-title: Appl. Sci.
– year: 2010
  ident: b28
  article-title: Speech Enhancement in Reverberant Environments
– volume: 17
  start-page: 231
  year: 2009
  end-page: 246
  ident: b46
  article-title: Integrated speech enhancement method using noise suppression and dereverberation
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– year: 2008
  ident: b7
  article-title: Microphone Array Signal Processing
– reference: T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, B.-H. Juang, Blind speech dereverberation with multi-channel linear prediction based on short-time Fourier transform representation, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2008, pp. 85–88.
– volume: 26
  start-page: 903
  year: 2019
  end-page: 907
  ident: b14
  article-title: A unified convolutional beamformer for simultaneous denoising and dereverberation
  publication-title: IEEE Signal Process. Lett.
– volume: 87
  start-page: 359
  year: 2001
  end-page: 366
  ident: b20
  article-title: A new method based on spectral subtraction for speech dereverberation
  publication-title: Acta Acust. United Acust.
– start-page: 181
  year: 2000
  end-page: 237
  ident: b6
  article-title: Superdirectional microphone arrays
  publication-title: Acoustic Signal Processing for Telecommunication
– reference: D. Baby, H. Bourlard, Speech dereverberation using variational autoencoders, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2021, pp. 5784–5788.
– volume: 24
  start-page: 680
  year: 2016
  end-page: 693
  ident: b19
  article-title: Joint dereverberation and noise reduction based on acoustic multi-channel equalization
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– volume: 56
  start-page: 3150
  year: 2008
  end-page: 3161
  ident: b38
  article-title: Low-complexity RLS algorithms using dichotomous coordinate descent iterations
  publication-title: IEEE Trans. Signal Process.
– volume: 68
  start-page: 3559
  year: 2020
  end-page: 3574
  ident: b34
  article-title: Robust multichannel linear prediction for online speech dereverberation using weighted householder least squares lattice adaptive filter
  publication-title: IEEE Trans. Signal Process.
– volume: 26
  start-page: 1106
  year: 2018
  end-page: 1118
  ident: b21
  article-title: Analysis of eigenvalue decomposition-based late reverberation power spectral density estimation
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– volume: 145
  start-page: EL250
  year: 2019
  end-page: EL256
  ident: b30
  article-title: Multi-channel adaptive dereverberation robust to abrupt change of target speaker position
  publication-title: J. Acoust. Soc. Am.
– reference: .
– volume: 39
  start-page: 1770
  year: 1991
  end-page: 1779
  ident: b36
  article-title: A novel approach for stabilizing recursive least squares filters
  publication-title: IEEE Trans. Signal Process.
– volume: 144
  start-page: 1113
  year: 2018
  end-page: 1122
  ident: b5
  article-title: The impact of reverberation on speech intelligibility in cochlear implant recipients
  publication-title: J. Acoust. Soc. Am.
– year: 2014
  ident: b35
  article-title: Adaptive Filter Theory
– volume: 28
  start-page: 101
  year: 2020
  end-page: 105
  ident: b16
  article-title: Robust dereverberation with kronecker product based multichannel linear prediction
  publication-title: IEEE Signal Process. Lett.
– volume: 18
  start-page: 1717
  year: 2010
  end-page: 1731
  ident: b12
  article-title: Speech dereverberation based on variance-normalized delayed linear prediction
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– reference: J. Liu, B. Weaver, Y. Zakharov, G. White, An FPGA-based MVDR beamformer using dichotomous coordinate descent iterations, in: Proc. IEEE International Conference on Communications, 2007, pp. 2551–2556.
– ident: 10.1016/j.sigpro.2025.110138_b25
  doi: 10.1109/ICASSP.2019.8683294
– volume: 29
  start-page: 594
  year: 2020
  ident: 10.1016/j.sigpro.2025.110138_b10
  article-title: A new class of differential beamformers
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2020.3045561
– volume: 26
  start-page: 1115
  issue: 6
  year: 2018
  ident: 10.1016/j.sigpro.2025.110138_b32
  article-title: Linear prediction-based online dereverberation and noise reduction using alternating Kalman filters
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
– volume: 29
  start-page: 114
  issue: 6
  year: 2012
  ident: 10.1016/j.sigpro.2025.110138_b4
  article-title: Making machines understand us in reverberant rooms: Robustness against reverberation for automatic speech recognition
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205029
– ident: 10.1016/j.sigpro.2025.110138_b43
  doi: 10.1109/ICASSP48485.2024.10446330
– volume: 28
  start-page: 1580
  year: 2021
  ident: 10.1016/j.sigpro.2025.110138_b17
  article-title: Online speech dereverberation using mixture of multichannel linear prediction models
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2021.3099715
– ident: 10.1016/j.sigpro.2025.110138_b27
  doi: 10.1109/ICASSP39728.2021.9414736
– ident: 10.1016/j.sigpro.2025.110138_b48
– volume: 26
  start-page: 1052
  issue: 6
  year: 2018
  ident: 10.1016/j.sigpro.2025.110138_b23
  article-title: Evaluation and comparison of late reverberation power spectral density estimators
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
– volume: 16
  start-page: 229
  issue: 1
  year: 2007
  ident: 10.1016/j.sigpro.2025.110138_b50
  article-title: Evaluation of objective quality measures for speech enhancement
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2007.911054
– volume: 13
  start-page: 2227
  issue: 4
  year: 2023
  ident: 10.1016/j.sigpro.2025.110138_b41
  article-title: Low-complexity data-reuse RLS algorithm for stereophonic acoustic echo cancellation
  publication-title: Appl. Sci.
  doi: 10.3390/app13042227
– volume: 39
  start-page: 1770
  issue: 8
  year: 1991
  ident: 10.1016/j.sigpro.2025.110138_b36
  article-title: A novel approach for stabilizing recursive least squares filters
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.91147
– volume: 15
  start-page: 1305
  issue: 4
  year: 2007
  ident: 10.1016/j.sigpro.2025.110138_b44
  article-title: System identification in the short-time Fourier transform domain with crossband filtering
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2006.889720
– volume: 36
  start-page: 145
  issue: 2
  year: 1988
  ident: 10.1016/j.sigpro.2025.110138_b18
  article-title: Inverse filtering of room acoustics
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.1509
– volume: 56
  start-page: 3150
  issue: 7
  year: 2008
  ident: 10.1016/j.sigpro.2025.110138_b38
  article-title: Low-complexity RLS algorithms using dichotomous coordinate descent iterations
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.917874
– volume: 113
  start-page: 3233
  issue: 6
  year: 2003
  ident: 10.1016/j.sigpro.2025.110138_b3
  article-title: On the importance of early reflections for speech in rooms
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1570439
– ident: 10.1016/j.sigpro.2025.110138_b49
  doi: 10.1109/IWAENC.2014.6954309
– volume: 29
  start-page: 752
  year: 2022
  ident: 10.1016/j.sigpro.2025.110138_b42
  article-title: Data-reuse recursive least-squares algorithms
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2022.3153207
– volume: 23
  start-page: 1741
  issue: 12
  year: 2016
  ident: 10.1016/j.sigpro.2025.110138_b31
  article-title: Online dereverberation for dynamic scenarios using a Kalman filter with an autoregressive model
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2616888
– volume: 68
  start-page: 3559
  year: 2020
  ident: 10.1016/j.sigpro.2025.110138_b34
  article-title: Robust multichannel linear prediction for online speech dereverberation using weighted householder least squares lattice adaptive filter
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2997201
– volume: 23
  start-page: 2093
  issue: 11
  year: 2015
  ident: 10.1016/j.sigpro.2025.110138_b9
  article-title: Theoretical analysis of differential microphone array beamforming and an improved solution
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2015.2469142
– year: 2010
  ident: 10.1016/j.sigpro.2025.110138_b28
– volume: 28
  start-page: 101
  year: 2020
  ident: 10.1016/j.sigpro.2025.110138_b16
  article-title: Robust dereverberation with kronecker product based multichannel linear prediction
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2020.3044796
– ident: 10.1016/j.sigpro.2025.110138_b39
  doi: 10.1109/ICC.2007.422
– ident: 10.1016/j.sigpro.2025.110138_b15
  doi: 10.1109/ICASSP40776.2020.9054393
– volume: 17
  start-page: 231
  issue: 2
  year: 2009
  ident: 10.1016/j.sigpro.2025.110138_b46
  article-title: Integrated speech enhancement method using noise suppression and dereverberation
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2008.2008042
– volume: 145
  start-page: EL250
  issue: 3
  year: 2019
  ident: 10.1016/j.sigpro.2025.110138_b30
  article-title: Multi-channel adaptive dereverberation robust to abrupt change of target speaker position
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5094338
– year: 2010
  ident: 10.1016/j.sigpro.2025.110138_b2
– ident: 10.1016/j.sigpro.2025.110138_b24
  doi: 10.21437/Interspeech.2017-733
– volume: 2016
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.sigpro.2025.110138_b51
  article-title: A summary of the reverb challenge: state-of-the-art and remaining challenges in reverberant speech processing research
  publication-title: EURASIP J. Adva. Signal Process.
– volume: 24
  start-page: 680
  issue: 4
  year: 2016
  ident: 10.1016/j.sigpro.2025.110138_b19
  article-title: Joint dereverberation and noise reduction based on acoustic multi-channel equalization
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2016.2518804
– ident: 10.1016/j.sigpro.2025.110138_b26
  doi: 10.1109/ICASSP.2019.8682834
– year: 2008
  ident: 10.1016/j.sigpro.2025.110138_b7
– volume: 26
  start-page: 1106
  issue: 6
  year: 2018
  ident: 10.1016/j.sigpro.2025.110138_b21
  article-title: Analysis of eigenvalue decomposition-based late reverberation power spectral density estimation
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2018.2811184
– volume: 18
  start-page: 1717
  issue: 7
  year: 2010
  ident: 10.1016/j.sigpro.2025.110138_b12
  article-title: Speech dereverberation based on variance-normalized delayed linear prediction
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2010.2052251
– volume: 87
  start-page: 359
  issue: 3
  year: 2001
  ident: 10.1016/j.sigpro.2025.110138_b20
  article-title: A new method based on spectral subtraction for speech dereverberation
  publication-title: Acta Acust. United Acust.
– volume: 23
  start-page: 1006
  issue: 6
  year: 2015
  ident: 10.1016/j.sigpro.2025.110138_b22
  article-title: Coherent-to-diffuse power ratio estimation for dereverberation
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2015.2418571
– volume: 24
  start-page: 101
  issue: 1
  year: 2016
  ident: 10.1016/j.sigpro.2025.110138_b37
  article-title: Adaptive speech dereverberation using constrained sparse multichannel linear prediction
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2640939
– year: 2016
  ident: 10.1016/j.sigpro.2025.110138_b1
– volume: 16
  start-page: 1512
  issue: 8
  year: 2008
  ident: 10.1016/j.sigpro.2025.110138_b11
  article-title: Speech dereverberation based on maximum-likelihood estimation with time-varying Gaussian source model
  publication-title: IEEE Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASL.2008.2004306
– ident: 10.1016/j.sigpro.2025.110138_b29
  doi: 10.1109/ICASSP.2009.4960438
– volume: 28
  start-page: 740
  year: 2020
  ident: 10.1016/j.sigpro.2025.110138_b33
  article-title: Integrated sidelobe cancellation and linear prediction Kalman filter for joint multi-microphone speech dereverberation, interfering speech cancellation, and noise reduction
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2020.2966869
– volume: 144
  start-page: 1113
  issue: 2
  year: 2018
  ident: 10.1016/j.sigpro.2025.110138_b5
  article-title: The impact of reverberation on speech intelligibility in cochlear implant recipients
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5051640
– volume: 65
  start-page: 943
  issue: 4
  year: 1979
  ident: 10.1016/j.sigpro.2025.110138_b47
  article-title: Image method for efficiently simulating small-room acoustics
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.382599
– volume: 61
  start-page: 3198
  issue: 12
  year: 2013
  ident: 10.1016/j.sigpro.2025.110138_b40
  article-title: DCD-RLS adaptive filters with penalties for sparse identification
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2258340
– volume: 26
  start-page: 903
  issue: 6
  year: 2019
  ident: 10.1016/j.sigpro.2025.110138_b14
  article-title: A unified convolutional beamformer for simultaneous denoising and dereverberation
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2019.2911179
– ident: 10.1016/j.sigpro.2025.110138_b13
  doi: 10.1109/IWAENC.2018.8521286
– ident: 10.1016/j.sigpro.2025.110138_b45
  doi: 10.1109/ICASSP.2008.4517552
– volume: 26
  start-page: 2305
  issue: 12
  year: 2018
  ident: 10.1016/j.sigpro.2025.110138_b8
  article-title: Insights into frequency-invariant beamforming with concentric circular microphone arrays
  publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2018.2862826
– year: 2014
  ident: 10.1016/j.sigpro.2025.110138_b35
– start-page: 181
  year: 2000
  ident: 10.1016/j.sigpro.2025.110138_b6
  article-title: Superdirectional microphone arrays
SSID ssj0001360
Score 2.4660742
Snippet Multichannel linear prediction (MCLP) is widely used for speech dereverberation, with recursive least-squares (RLS)-like algorithms commonly applied to update...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110138
SubjectTerms Adaptive dereverberation
Data-reuse
Dichotomous coordinate descent
Multichannel linear prediction
Recursive least-squares algorithm
Title On adaptive multichannel dereverberation based on dichotomous coordinate descent and data-reuse techniques
URI https://dx.doi.org/10.1016/j.sigpro.2025.110138
Volume 238
WOSCitedRecordID wos001517657600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001360
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBbtbg_tofRJd_tAh96CSmzZlnRcli3tFnYLu6W5GduSF4eghDgp-fmdkeQHSSltoRdjhOTYM19GM6N5EPKe64oLqRWrRFGxpJaaFVGNURYyM1MzhS2zcM0mxNWVnM3U15Bd0rp2AsJaudup1X9lNYwBszF19i_Y3T8UBuAemA5XYDtc_4jx13ZS6GLlQoJcuCDm9lqzmGBbTvia0gSm4wam8bBAN5iItUQnwKRagjXaWNBAYb6r9OSOFzCQlK3NtjWTvuprO1Zsb5o71GtXPu-g2w9RnASH9Hdjd6Phy9AFrFls-5l-6EvRLJoh6iAkj8BSvQzLg5Mi3ndSHGbPeGdmlrIo8y3iOmkc-2IvB5LdOxnmH9rmDj4FDPs4xRSGyE_fq5l9g4-O3BEjKnXx7D45jkWqQOwdn32-mF32m3XEXSJ5_ypddqULATz8rV9rLyON5PYJeRxMCXrmIfCU3DP2GXk0KjD5nMyvLe3AQMdgoHtgoA4MFG5GYKADGGgAAwUw0AEMdADDC_Lt48Xt-ScWumuwCsT0hvEyzbB6X1llujTK1HVa6wRGeaQN6H0grcFYMJIn8JeVCjRtbRI55UKlBa-V5i_JkV1a84rQDIxUoLXhKkGFPC5rLgTsJXWmIl1JfkJYR7V85Yuo5F104Tz3VM6Ryrmn8gkRHWnzoAh6BS8HNPx25ek_r3xNHg7AfUOONuuteUseVD82Tbt-F2DzE4ZciEo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+adaptive+multichannel+dereverberation+based+on+dichotomous+coordinate+descent+and+data-reuse+techniques&rft.jtitle=Signal+processing&rft.au=Yang%2C+Wenxing&rft.au=Jin%2C+Jilu&rft.au=Yin%2C+Kaili&rft.au=Chen%2C+Jingdong&rft.date=2026-01-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.volume=238&rft_id=info:doi/10.1016%2Fj.sigpro.2025.110138&rft.externalDocID=S016516842500252X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon