On adaptive multichannel dereverberation based on dichotomous coordinate descent and data-reuse techniques
Multichannel linear prediction (MCLP) is widely used for speech dereverberation, with recursive least-squares (RLS)-like algorithms commonly applied to update the linear prediction coefficients. However, these algorithms tend to be computationally intensive, making it necessary in practical implemen...
Uloženo v:
| Vydáno v: | Signal processing Ročník 238; s. 110138 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.01.2026
|
| Témata: | |
| ISSN: | 0165-1684 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Multichannel linear prediction (MCLP) is widely used for speech dereverberation, with recursive least-squares (RLS)-like algorithms commonly applied to update the linear prediction coefficients. However, these algorithms tend to be computationally intensive, making it necessary in practical implementations to reduce complexity while improving numerical robustness for better dereverberation performance. In this paper, we introduce a more efficient MCLP-based adaptive dereverberation method that combines dichotomous coordinate descent (DCD) with a data-reuse (DR) technique. Compared to the traditional RLS-based approach, the proposed method offers two major benefits. First, it significantly lowers computational demands by replacing most multiplications with bitshifts during DCD iterations, making it more suitable for real-world applications. Second, by avoiding the propagation of the inverse covariance matrix via the Riccati equation, the method ensures numerical stability, making it more suitable for processing long-duration speech signals. Additionally, the DR technique improves dereverberation performance by more efficiently utilizing available observed data. Simulation results show that the proposed methods outperform the conventional RLS-based approach in terms of both numerical stability and computational efficiency, while delivering comparable dereverberation performance.
•Novel adaptive dereverberation method incorporating DCD and data reuse.•Efficient multichannel adaptive dereverberation matching RLS performance.•More stable multichannel adaptive dereverberation versus RLS. |
|---|---|
| AbstractList | Multichannel linear prediction (MCLP) is widely used for speech dereverberation, with recursive least-squares (RLS)-like algorithms commonly applied to update the linear prediction coefficients. However, these algorithms tend to be computationally intensive, making it necessary in practical implementations to reduce complexity while improving numerical robustness for better dereverberation performance. In this paper, we introduce a more efficient MCLP-based adaptive dereverberation method that combines dichotomous coordinate descent (DCD) with a data-reuse (DR) technique. Compared to the traditional RLS-based approach, the proposed method offers two major benefits. First, it significantly lowers computational demands by replacing most multiplications with bitshifts during DCD iterations, making it more suitable for real-world applications. Second, by avoiding the propagation of the inverse covariance matrix via the Riccati equation, the method ensures numerical stability, making it more suitable for processing long-duration speech signals. Additionally, the DR technique improves dereverberation performance by more efficiently utilizing available observed data. Simulation results show that the proposed methods outperform the conventional RLS-based approach in terms of both numerical stability and computational efficiency, while delivering comparable dereverberation performance.
•Novel adaptive dereverberation method incorporating DCD and data reuse.•Efficient multichannel adaptive dereverberation matching RLS performance.•More stable multichannel adaptive dereverberation versus RLS. |
| ArticleNumber | 110138 |
| Author | Yin, Kaili Yang, Wenxing Chen, Jingdong Benesty, Jacob Jin, Jilu |
| Author_xml | – sequence: 1 givenname: Wenxing orcidid: 0000-0003-0395-7003 surname: Yang fullname: Yang, Wenxing email: wenxingyang@usst.edu.cn organization: School of Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China – sequence: 2 givenname: Jilu orcidid: 0000-0003-2967-8379 surname: Jin fullname: Jin, Jilu email: jilu.jin@mail.nwpu.edu.cn organization: Center of Intelligent Acoustics and Immersive Communications, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072, Shaanxi, China – sequence: 3 givenname: Kaili orcidid: 0000-0002-9754-9651 surname: Yin fullname: Yin, Kaili email: kl_yin@hotmail.com organization: College of Automation and Electronic Engineering, Qingdao University of Science and Technology, 516 JungongRoad, Qingdao, 266520, Shandong, China – sequence: 4 givenname: Jingdong orcidid: 0000-0003-0083-9247 surname: Chen fullname: Chen, Jingdong email: jingdongchen@ieee.org organization: Center of Intelligent Acoustics and Immersive Communications, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072, Shaanxi, China – sequence: 5 givenname: Jacob orcidid: 0000-0002-0036-5865 surname: Benesty fullname: Benesty, Jacob email: jacob.benesty@inrs.ca organization: INRS-EMT, University of Quebec, 800 de la Gauchetiere Ouest, Montreal, QC H5A 1K6, Canada |
| BookMark | eNp9kM1qwzAQhHVIoUnaN-hBL2BXiizHvhRK6B8EcmnPQtauG5lESiU50LevgnvOaZfZmWH5FmTmvENCHjgrOeP141BG-30KvlyxlSx51kQzI_N8kgWvm-qWLGIcGMt6zeZk2DmqQZ-SPSM9jodkzV47hwcKGPCMocOgk_WOdjoi0LxAtvjkj36M1HgfwDqdMPujQZeodkBBJ10EHCPShGbv7M-I8Y7c9PoQ8f5_LsnX68vn5r3Y7t4-Ns_bwqzkOhWik7Wo16wzNXTYYt_LHqqsCg7IG84k55JhIyqGrGllJQGrhol1K7XoWxBLUk29JvgYA_bqFOxRh1_FmbowUoOaGKkLIzUxyrGnKYb5t7PFoKKx6AyCDWiSAm-vF_wBN4h39A |
| Cites_doi | 10.1109/ICASSP.2019.8683294 10.1109/TASLP.2020.3045561 10.1109/MSP.2012.2205029 10.1109/ICASSP48485.2024.10446330 10.1109/LSP.2021.3099715 10.1109/ICASSP39728.2021.9414736 10.1109/TASL.2007.911054 10.3390/app13042227 10.1109/78.91147 10.1109/TASL.2006.889720 10.1109/29.1509 10.1109/TSP.2008.917874 10.1121/1.1570439 10.1109/IWAENC.2014.6954309 10.1109/LSP.2022.3153207 10.1109/LSP.2016.2616888 10.1109/TSP.2020.2997201 10.1109/TASLP.2015.2469142 10.1109/LSP.2020.3044796 10.1109/ICC.2007.422 10.1109/ICASSP40776.2020.9054393 10.1109/TASL.2008.2008042 10.1121/1.5094338 10.21437/Interspeech.2017-733 10.1109/TASLP.2016.2518804 10.1109/ICASSP.2019.8682834 10.1109/TASLP.2018.2811184 10.1109/TASL.2010.2052251 10.1109/TASLP.2015.2418571 10.1109/LSP.2016.2640939 10.1109/TASL.2008.2004306 10.1109/ICASSP.2009.4960438 10.1109/TASLP.2020.2966869 10.1121/1.5051640 10.1121/1.382599 10.1109/TSP.2013.2258340 10.1109/LSP.2019.2911179 10.1109/IWAENC.2018.8521286 10.1109/ICASSP.2008.4517552 10.1109/TASLP.2018.2862826 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.sigpro.2025.110138 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_sigpro_2025_110138 S016516842500252X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- ~HD 9DU AAYXX CITATION |
| ID | FETCH-LOGICAL-c257t-3b563670bc6dbe9eff5fd43b531de181051150e8340e089545de4803795a3f9d3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001517657600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-1684 |
| IngestDate | Sat Nov 29 07:29:28 EST 2025 Sat Oct 25 16:40:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Adaptive dereverberation Multichannel linear prediction Recursive least-squares algorithm Data-reuse Dichotomous coordinate descent |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c257t-3b563670bc6dbe9eff5fd43b531de181051150e8340e089545de4803795a3f9d3 |
| ORCID | 0000-0003-0083-9247 0000-0002-9754-9651 0000-0003-0395-7003 0000-0003-2967-8379 0000-0002-0036-5865 |
| ParticipantIDs | crossref_primary_10_1016_j_sigpro_2025_110138 elsevier_sciencedirect_doi_10_1016_j_sigpro_2025_110138 |
| PublicationCentury | 2000 |
| PublicationDate | January 2026 2026-01-00 |
| PublicationDateYYYYMMDD | 2026-01-01 |
| PublicationDate_xml | – month: 01 year: 2026 text: January 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Signal processing |
| PublicationYear | 2026 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Naylor, Gaubitch (b2) 2010 J. Liu, B. Weaver, Y. Zakharov, G. White, An FPGA-based MVDR beamformer using dichotomous coordinate descent iterations, in: Proc. IEEE International Conference on Communications, 2007, pp. 2551–2556. Nakatani, Juang, Yoshioka, Kinoshita, Delcroix, Miyoshi (b11) 2008; 16 W. Yang, G. Huang, W. Zhang, J. Chen, J. Benesty, Dereverberation with differential microphone arrays and the weighted-prediction-error method, in: Proc IEEE International Workshop on Acoustic Signal Enchancement, IWAENC, 2018, pp. 376–380. Yoshioka (b28) 2010 Kinoshita, Delcroix, Gannot, Habets, Haeb-Umbach, Kellermann, Leutnant, Maas, Nakatani, Raj (b51) 2016; 2016 Bottomley, Alexander (b36) 1991; 39 Kressner, Westermann, Buchholz (b5) 2018; 144 Zakharov, Nascimento (b40) 2013; 61 C. Pan, L. Zhang, Y. Lu, J. Jin, L. Qiu, J. Chen, J. Benesty, An anchor-point based image-model for room impulse response simulation with directional source radiation and sensor directivity patterns. . Yoshioka, Sehr, Delcroix, Kinoshita, Maas, Nakatani, Kellermann (b4) 2012; 29 Jukić, Van Waterschoot, Doclo (b37) 2016; 24 Huang, Chen, Benesty (b8) 2018; 26 E. Hadad, F. Heese, P. Vary, S. Gannot, Multichannel audio database in various acoustic environments, in: Proc IEEE International Workshop on Acoustic Signal Enhancement, IWAENC, 2014, pp. 313–317. Kuttruff (b1) 2016 Schwarz, Kellermann (b22) 2015; 23 K. Tan, D. Wang, Complex spectral mapping with a convolutional recurrent network for monaural speech enhancement, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2019, pp. 6865–6869. Yang, Benesty, Huang, Chen (b10) 2020; 29 Yang, Huang, Chen, Benesty, Cohen, Kellermann (b16) 2020; 28 Ikeshita, Kinoshita, Kamo, Nakatani (b17) 2021; 28 Braun, Kuklasinski, Schwartz, Thiergart, Habets, Gannot, Doclo, Jensen (b23) 2018; 26 T. Yoshioka, H. Tachibana, T. Nakatani, M. Miyoshi, Adaptive dereverberation of speech signals with speaker-position change detection, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2009, pp. 3733–3736. Dietzen, Doclo, Moonen, Van Waterschoot (b33) 2020; 28 Braun, Habets (b32) 2018; 26 Haykin (b35) 2014 C. Boeddeker, T. Nakatani, K. Kinoshita, R. Haeb-Umbach, Jointly optimal dereverberation and beamforming, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2020, pp. 216–220. Fîciu, Stanciu, Paleologu, Benesty (b41) 2023; 13 Benesty, Chen, Huang (b7) 2008 Kodrasi, Doclo (b19) 2016; 24 Lebart, Boucher, Denbigh (b20) 2001; 87 Zakharov, White, Liu (b38) 2008; 56 Avargel, Cohen (b44) 2007; 15 Nakatani, Yoshioka, Kinoshita, Miyoshi, Juang (b12) 2010; 18 D. Baby, H. Bourlard, Speech dereverberation using variational autoencoders, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2021, pp. 5784–5788. Nakatani, Kinoshita (b14) 2019; 26 Wung, Jukić, Malik, Souden, Pichevar, Atkins, Naik, Acero (b34) 2020; 68 Kodrasi, Doclo (b21) 2018; 26 Allen, Berkley (b47) 1979; 65 Miyoshi, Kaneda (b18) 1988; 36 Xiang, Lu, Chen (b30) 2019; 145 T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, B.-H. Juang, Blind speech dereverberation with multi-channel linear prediction based on short-time Fourier transform representation, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2008, pp. 85–88. K. Kinoshita, M. Delcroix, H. Kwon, T. Mori, T. Nakatani, Neural network-based spectrum estimation for online WPE dereverberation, in: Proc. Interspeech, 2017, pp. 384–388. Yoshioka, Nakatani, Miyoshi (b46) 2009; 17 Bradley, Sato, Picard (b3) 2003; 113 W. Huang, C. Xue, J. Feng, W.B. Kleijn, A practical online multichannel dereverberation approach with data-reuse technique, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2024, pp. 501–505. J. Heymann, L. Drude, R. Haeb-Umbach, K. Kinoshita, T. Nakatani, Joint optimization of neural network-based WPE dereverberation and acoustic model for robust online ASR, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2019, pp. 6655–6659. Elko (b6) 2000 Pan, Chen, Benesty (b9) 2015; 23 Paleologu, Benesty, Ciochină (b42) 2022; 29 Braun, Habets (b31) 2016; 23 Hu, Loizou (b50) 2007; 16 Yoshioka (10.1016/j.sigpro.2025.110138_b4) 2012; 29 Yoshioka (10.1016/j.sigpro.2025.110138_b46) 2009; 17 Jukić (10.1016/j.sigpro.2025.110138_b37) 2016; 24 Yang (10.1016/j.sigpro.2025.110138_b10) 2020; 29 Braun (10.1016/j.sigpro.2025.110138_b31) 2016; 23 Bottomley (10.1016/j.sigpro.2025.110138_b36) 1991; 39 Paleologu (10.1016/j.sigpro.2025.110138_b42) 2022; 29 10.1016/j.sigpro.2025.110138_b15 10.1016/j.sigpro.2025.110138_b13 Kodrasi (10.1016/j.sigpro.2025.110138_b21) 2018; 26 Benesty (10.1016/j.sigpro.2025.110138_b7) 2008 Bradley (10.1016/j.sigpro.2025.110138_b3) 2003; 113 Nakatani (10.1016/j.sigpro.2025.110138_b14) 2019; 26 Xiang (10.1016/j.sigpro.2025.110138_b30) 2019; 145 10.1016/j.sigpro.2025.110138_b29 10.1016/j.sigpro.2025.110138_b26 10.1016/j.sigpro.2025.110138_b27 Nakatani (10.1016/j.sigpro.2025.110138_b11) 2008; 16 Ikeshita (10.1016/j.sigpro.2025.110138_b17) 2021; 28 10.1016/j.sigpro.2025.110138_b24 Yoshioka (10.1016/j.sigpro.2025.110138_b28) 2010 Kressner (10.1016/j.sigpro.2025.110138_b5) 2018; 144 10.1016/j.sigpro.2025.110138_b25 Braun (10.1016/j.sigpro.2025.110138_b32) 2018; 26 Nakatani (10.1016/j.sigpro.2025.110138_b12) 2010; 18 Zakharov (10.1016/j.sigpro.2025.110138_b38) 2008; 56 Pan (10.1016/j.sigpro.2025.110138_b9) 2015; 23 Schwarz (10.1016/j.sigpro.2025.110138_b22) 2015; 23 10.1016/j.sigpro.2025.110138_b39 Zakharov (10.1016/j.sigpro.2025.110138_b40) 2013; 61 Kodrasi (10.1016/j.sigpro.2025.110138_b19) 2016; 24 Naylor (10.1016/j.sigpro.2025.110138_b2) 2010 Avargel (10.1016/j.sigpro.2025.110138_b44) 2007; 15 Dietzen (10.1016/j.sigpro.2025.110138_b33) 2020; 28 Haykin (10.1016/j.sigpro.2025.110138_b35) 2014 Elko (10.1016/j.sigpro.2025.110138_b6) 2000 Miyoshi (10.1016/j.sigpro.2025.110138_b18) 1988; 36 Kuttruff (10.1016/j.sigpro.2025.110138_b1) 2016 Wung (10.1016/j.sigpro.2025.110138_b34) 2020; 68 Fîciu (10.1016/j.sigpro.2025.110138_b41) 2023; 13 Hu (10.1016/j.sigpro.2025.110138_b50) 2007; 16 Yang (10.1016/j.sigpro.2025.110138_b16) 2020; 28 Braun (10.1016/j.sigpro.2025.110138_b23) 2018; 26 10.1016/j.sigpro.2025.110138_b48 10.1016/j.sigpro.2025.110138_b49 Lebart (10.1016/j.sigpro.2025.110138_b20) 2001; 87 Kinoshita (10.1016/j.sigpro.2025.110138_b51) 2016; 2016 10.1016/j.sigpro.2025.110138_b43 Allen (10.1016/j.sigpro.2025.110138_b47) 1979; 65 Huang (10.1016/j.sigpro.2025.110138_b8) 2018; 26 10.1016/j.sigpro.2025.110138_b45 |
| References_xml | – volume: 2016 start-page: 1 year: 2016 end-page: 19 ident: b51 article-title: A summary of the reverb challenge: state-of-the-art and remaining challenges in reverberant speech processing research publication-title: EURASIP J. Adva. Signal Process. – volume: 23 start-page: 1006 year: 2015 end-page: 1018 ident: b22 article-title: Coherent-to-diffuse power ratio estimation for dereverberation publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. – volume: 36 start-page: 145 year: 1988 end-page: 152 ident: b18 article-title: Inverse filtering of room acoustics publication-title: IEEE Trans. Acoust. Speech Signal Process. – reference: K. Kinoshita, M. Delcroix, H. Kwon, T. Mori, T. Nakatani, Neural network-based spectrum estimation for online WPE dereverberation, in: Proc. Interspeech, 2017, pp. 384–388. – volume: 26 start-page: 2305 year: 2018 end-page: 2318 ident: b8 article-title: Insights into frequency-invariant beamforming with concentric circular microphone arrays publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. – volume: 29 start-page: 114 year: 2012 end-page: 126 ident: b4 article-title: Making machines understand us in reverberant rooms: Robustness against reverberation for automatic speech recognition publication-title: IEEE Signal Process. Mag. – reference: E. Hadad, F. Heese, P. Vary, S. Gannot, Multichannel audio database in various acoustic environments, in: Proc IEEE International Workshop on Acoustic Signal Enhancement, IWAENC, 2014, pp. 313–317. – volume: 26 start-page: 1115 year: 2018 end-page: 1125 ident: b32 article-title: Linear prediction-based online dereverberation and noise reduction using alternating Kalman filters publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. – volume: 28 start-page: 740 year: 2020 end-page: 754 ident: b33 article-title: Integrated sidelobe cancellation and linear prediction Kalman filter for joint multi-microphone speech dereverberation, interfering speech cancellation, and noise reduction publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. – year: 2016 ident: b1 article-title: Room Acoustics – volume: 61 start-page: 3198 year: 2013 end-page: 3213 ident: b40 article-title: DCD-RLS adaptive filters with penalties for sparse identification publication-title: IEEE Trans. Signal Process. – volume: 23 start-page: 1741 year: 2016 end-page: 1745 ident: b31 article-title: Online dereverberation for dynamic scenarios using a Kalman filter with an autoregressive model publication-title: IEEE Signal Process. Lett. – volume: 113 start-page: 3233 year: 2003 end-page: 3244 ident: b3 article-title: On the importance of early reflections for speech in rooms publication-title: J. Acoust. Soc. Am. – volume: 16 start-page: 229 year: 2007 end-page: 238 ident: b50 article-title: Evaluation of objective quality measures for speech enhancement publication-title: IEEE Trans. Audio Speech Lang. Process. – reference: K. Tan, D. Wang, Complex spectral mapping with a convolutional recurrent network for monaural speech enhancement, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2019, pp. 6865–6869. – reference: W. Yang, G. Huang, W. Zhang, J. Chen, J. Benesty, Dereverberation with differential microphone arrays and the weighted-prediction-error method, in: Proc IEEE International Workshop on Acoustic Signal Enchancement, IWAENC, 2018, pp. 376–380. – volume: 29 start-page: 594 year: 2020 end-page: 606 ident: b10 article-title: A new class of differential beamformers publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. – volume: 28 start-page: 1580 year: 2021 end-page: 1584 ident: b17 article-title: Online speech dereverberation using mixture of multichannel linear prediction models publication-title: IEEE Signal Process. Lett. – reference: C. Pan, L. Zhang, Y. Lu, J. Jin, L. Qiu, J. Chen, J. Benesty, An anchor-point based image-model for room impulse response simulation with directional source radiation and sensor directivity patterns. – reference: W. Huang, C. Xue, J. Feng, W.B. Kleijn, A practical online multichannel dereverberation approach with data-reuse technique, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2024, pp. 501–505. – volume: 16 start-page: 1512 year: 2008 end-page: 1527 ident: b11 article-title: Speech dereverberation based on maximum-likelihood estimation with time-varying Gaussian source model publication-title: IEEE Trans. Audio Speech Lang. Process. – reference: J. Heymann, L. Drude, R. Haeb-Umbach, K. Kinoshita, T. Nakatani, Joint optimization of neural network-based WPE dereverberation and acoustic model for robust online ASR, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2019, pp. 6655–6659. – reference: C. Boeddeker, T. Nakatani, K. Kinoshita, R. Haeb-Umbach, Jointly optimal dereverberation and beamforming, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2020, pp. 216–220. – year: 2010 ident: b2 article-title: Speech Dereverberation – volume: 26 start-page: 1052 year: 2018 end-page: 1067 ident: b23 article-title: Evaluation and comparison of late reverberation power spectral density estimators publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. – volume: 15 start-page: 1305 year: 2007 end-page: 1319 ident: b44 article-title: System identification in the short-time Fourier transform domain with crossband filtering publication-title: IEEE Trans. Audio Speech Lang. Process. – volume: 24 start-page: 101 year: 2016 end-page: 105 ident: b37 article-title: Adaptive speech dereverberation using constrained sparse multichannel linear prediction publication-title: IEEE Signal Process. Lett. – reference: T. Yoshioka, H. Tachibana, T. Nakatani, M. Miyoshi, Adaptive dereverberation of speech signals with speaker-position change detection, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2009, pp. 3733–3736. – volume: 29 start-page: 752 year: 2022 end-page: 756 ident: b42 article-title: Data-reuse recursive least-squares algorithms publication-title: IEEE Signal Process. Lett. – volume: 23 start-page: 2093 year: 2015 end-page: 2105 ident: b9 article-title: Theoretical analysis of differential microphone array beamforming and an improved solution publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. – volume: 65 start-page: 943 year: 1979 end-page: 950 ident: b47 article-title: Image method for efficiently simulating small-room acoustics publication-title: J. Acoust. Soc. Am. – volume: 13 start-page: 2227 year: 2023 ident: b41 article-title: Low-complexity data-reuse RLS algorithm for stereophonic acoustic echo cancellation publication-title: Appl. Sci. – year: 2010 ident: b28 article-title: Speech Enhancement in Reverberant Environments – volume: 17 start-page: 231 year: 2009 end-page: 246 ident: b46 article-title: Integrated speech enhancement method using noise suppression and dereverberation publication-title: IEEE Trans. Audio Speech Lang. Process. – year: 2008 ident: b7 article-title: Microphone Array Signal Processing – reference: T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, B.-H. Juang, Blind speech dereverberation with multi-channel linear prediction based on short-time Fourier transform representation, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2008, pp. 85–88. – volume: 26 start-page: 903 year: 2019 end-page: 907 ident: b14 article-title: A unified convolutional beamformer for simultaneous denoising and dereverberation publication-title: IEEE Signal Process. Lett. – volume: 87 start-page: 359 year: 2001 end-page: 366 ident: b20 article-title: A new method based on spectral subtraction for speech dereverberation publication-title: Acta Acust. United Acust. – start-page: 181 year: 2000 end-page: 237 ident: b6 article-title: Superdirectional microphone arrays publication-title: Acoustic Signal Processing for Telecommunication – reference: D. Baby, H. Bourlard, Speech dereverberation using variational autoencoders, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2021, pp. 5784–5788. – volume: 24 start-page: 680 year: 2016 end-page: 693 ident: b19 article-title: Joint dereverberation and noise reduction based on acoustic multi-channel equalization publication-title: IEEE Trans. Audio Speech Lang. Process. – volume: 56 start-page: 3150 year: 2008 end-page: 3161 ident: b38 article-title: Low-complexity RLS algorithms using dichotomous coordinate descent iterations publication-title: IEEE Trans. Signal Process. – volume: 68 start-page: 3559 year: 2020 end-page: 3574 ident: b34 article-title: Robust multichannel linear prediction for online speech dereverberation using weighted householder least squares lattice adaptive filter publication-title: IEEE Trans. Signal Process. – volume: 26 start-page: 1106 year: 2018 end-page: 1118 ident: b21 article-title: Analysis of eigenvalue decomposition-based late reverberation power spectral density estimation publication-title: IEEE Trans. Audio Speech Lang. Process. – volume: 145 start-page: EL250 year: 2019 end-page: EL256 ident: b30 article-title: Multi-channel adaptive dereverberation robust to abrupt change of target speaker position publication-title: J. Acoust. Soc. Am. – reference: . – volume: 39 start-page: 1770 year: 1991 end-page: 1779 ident: b36 article-title: A novel approach for stabilizing recursive least squares filters publication-title: IEEE Trans. Signal Process. – volume: 144 start-page: 1113 year: 2018 end-page: 1122 ident: b5 article-title: The impact of reverberation on speech intelligibility in cochlear implant recipients publication-title: J. Acoust. Soc. Am. – year: 2014 ident: b35 article-title: Adaptive Filter Theory – volume: 28 start-page: 101 year: 2020 end-page: 105 ident: b16 article-title: Robust dereverberation with kronecker product based multichannel linear prediction publication-title: IEEE Signal Process. Lett. – volume: 18 start-page: 1717 year: 2010 end-page: 1731 ident: b12 article-title: Speech dereverberation based on variance-normalized delayed linear prediction publication-title: IEEE Trans. Audio Speech Lang. Process. – reference: J. Liu, B. Weaver, Y. Zakharov, G. White, An FPGA-based MVDR beamformer using dichotomous coordinate descent iterations, in: Proc. IEEE International Conference on Communications, 2007, pp. 2551–2556. – ident: 10.1016/j.sigpro.2025.110138_b25 doi: 10.1109/ICASSP.2019.8683294 – volume: 29 start-page: 594 year: 2020 ident: 10.1016/j.sigpro.2025.110138_b10 article-title: A new class of differential beamformers publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2020.3045561 – volume: 26 start-page: 1115 issue: 6 year: 2018 ident: 10.1016/j.sigpro.2025.110138_b32 article-title: Linear prediction-based online dereverberation and noise reduction using alternating Kalman filters publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. – volume: 29 start-page: 114 issue: 6 year: 2012 ident: 10.1016/j.sigpro.2025.110138_b4 article-title: Making machines understand us in reverberant rooms: Robustness against reverberation for automatic speech recognition publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205029 – ident: 10.1016/j.sigpro.2025.110138_b43 doi: 10.1109/ICASSP48485.2024.10446330 – volume: 28 start-page: 1580 year: 2021 ident: 10.1016/j.sigpro.2025.110138_b17 article-title: Online speech dereverberation using mixture of multichannel linear prediction models publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2021.3099715 – ident: 10.1016/j.sigpro.2025.110138_b27 doi: 10.1109/ICASSP39728.2021.9414736 – ident: 10.1016/j.sigpro.2025.110138_b48 – volume: 26 start-page: 1052 issue: 6 year: 2018 ident: 10.1016/j.sigpro.2025.110138_b23 article-title: Evaluation and comparison of late reverberation power spectral density estimators publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. – volume: 16 start-page: 229 issue: 1 year: 2007 ident: 10.1016/j.sigpro.2025.110138_b50 article-title: Evaluation of objective quality measures for speech enhancement publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2007.911054 – volume: 13 start-page: 2227 issue: 4 year: 2023 ident: 10.1016/j.sigpro.2025.110138_b41 article-title: Low-complexity data-reuse RLS algorithm for stereophonic acoustic echo cancellation publication-title: Appl. Sci. doi: 10.3390/app13042227 – volume: 39 start-page: 1770 issue: 8 year: 1991 ident: 10.1016/j.sigpro.2025.110138_b36 article-title: A novel approach for stabilizing recursive least squares filters publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.91147 – volume: 15 start-page: 1305 issue: 4 year: 2007 ident: 10.1016/j.sigpro.2025.110138_b44 article-title: System identification in the short-time Fourier transform domain with crossband filtering publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2006.889720 – volume: 36 start-page: 145 issue: 2 year: 1988 ident: 10.1016/j.sigpro.2025.110138_b18 article-title: Inverse filtering of room acoustics publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/29.1509 – volume: 56 start-page: 3150 issue: 7 year: 2008 ident: 10.1016/j.sigpro.2025.110138_b38 article-title: Low-complexity RLS algorithms using dichotomous coordinate descent iterations publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.917874 – volume: 113 start-page: 3233 issue: 6 year: 2003 ident: 10.1016/j.sigpro.2025.110138_b3 article-title: On the importance of early reflections for speech in rooms publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1570439 – ident: 10.1016/j.sigpro.2025.110138_b49 doi: 10.1109/IWAENC.2014.6954309 – volume: 29 start-page: 752 year: 2022 ident: 10.1016/j.sigpro.2025.110138_b42 article-title: Data-reuse recursive least-squares algorithms publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2022.3153207 – volume: 23 start-page: 1741 issue: 12 year: 2016 ident: 10.1016/j.sigpro.2025.110138_b31 article-title: Online dereverberation for dynamic scenarios using a Kalman filter with an autoregressive model publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2616888 – volume: 68 start-page: 3559 year: 2020 ident: 10.1016/j.sigpro.2025.110138_b34 article-title: Robust multichannel linear prediction for online speech dereverberation using weighted householder least squares lattice adaptive filter publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.2997201 – volume: 23 start-page: 2093 issue: 11 year: 2015 ident: 10.1016/j.sigpro.2025.110138_b9 article-title: Theoretical analysis of differential microphone array beamforming and an improved solution publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2015.2469142 – year: 2010 ident: 10.1016/j.sigpro.2025.110138_b28 – volume: 28 start-page: 101 year: 2020 ident: 10.1016/j.sigpro.2025.110138_b16 article-title: Robust dereverberation with kronecker product based multichannel linear prediction publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2020.3044796 – ident: 10.1016/j.sigpro.2025.110138_b39 doi: 10.1109/ICC.2007.422 – ident: 10.1016/j.sigpro.2025.110138_b15 doi: 10.1109/ICASSP40776.2020.9054393 – volume: 17 start-page: 231 issue: 2 year: 2009 ident: 10.1016/j.sigpro.2025.110138_b46 article-title: Integrated speech enhancement method using noise suppression and dereverberation publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2008.2008042 – volume: 145 start-page: EL250 issue: 3 year: 2019 ident: 10.1016/j.sigpro.2025.110138_b30 article-title: Multi-channel adaptive dereverberation robust to abrupt change of target speaker position publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5094338 – year: 2010 ident: 10.1016/j.sigpro.2025.110138_b2 – ident: 10.1016/j.sigpro.2025.110138_b24 doi: 10.21437/Interspeech.2017-733 – volume: 2016 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.sigpro.2025.110138_b51 article-title: A summary of the reverb challenge: state-of-the-art and remaining challenges in reverberant speech processing research publication-title: EURASIP J. Adva. Signal Process. – volume: 24 start-page: 680 issue: 4 year: 2016 ident: 10.1016/j.sigpro.2025.110138_b19 article-title: Joint dereverberation and noise reduction based on acoustic multi-channel equalization publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2016.2518804 – ident: 10.1016/j.sigpro.2025.110138_b26 doi: 10.1109/ICASSP.2019.8682834 – year: 2008 ident: 10.1016/j.sigpro.2025.110138_b7 – volume: 26 start-page: 1106 issue: 6 year: 2018 ident: 10.1016/j.sigpro.2025.110138_b21 article-title: Analysis of eigenvalue decomposition-based late reverberation power spectral density estimation publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2018.2811184 – volume: 18 start-page: 1717 issue: 7 year: 2010 ident: 10.1016/j.sigpro.2025.110138_b12 article-title: Speech dereverberation based on variance-normalized delayed linear prediction publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2010.2052251 – volume: 87 start-page: 359 issue: 3 year: 2001 ident: 10.1016/j.sigpro.2025.110138_b20 article-title: A new method based on spectral subtraction for speech dereverberation publication-title: Acta Acust. United Acust. – volume: 23 start-page: 1006 issue: 6 year: 2015 ident: 10.1016/j.sigpro.2025.110138_b22 article-title: Coherent-to-diffuse power ratio estimation for dereverberation publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2015.2418571 – volume: 24 start-page: 101 issue: 1 year: 2016 ident: 10.1016/j.sigpro.2025.110138_b37 article-title: Adaptive speech dereverberation using constrained sparse multichannel linear prediction publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2640939 – year: 2016 ident: 10.1016/j.sigpro.2025.110138_b1 – volume: 16 start-page: 1512 issue: 8 year: 2008 ident: 10.1016/j.sigpro.2025.110138_b11 article-title: Speech dereverberation based on maximum-likelihood estimation with time-varying Gaussian source model publication-title: IEEE Trans. Audio Speech Lang. Process. doi: 10.1109/TASL.2008.2004306 – ident: 10.1016/j.sigpro.2025.110138_b29 doi: 10.1109/ICASSP.2009.4960438 – volume: 28 start-page: 740 year: 2020 ident: 10.1016/j.sigpro.2025.110138_b33 article-title: Integrated sidelobe cancellation and linear prediction Kalman filter for joint multi-microphone speech dereverberation, interfering speech cancellation, and noise reduction publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2020.2966869 – volume: 144 start-page: 1113 issue: 2 year: 2018 ident: 10.1016/j.sigpro.2025.110138_b5 article-title: The impact of reverberation on speech intelligibility in cochlear implant recipients publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.5051640 – volume: 65 start-page: 943 issue: 4 year: 1979 ident: 10.1016/j.sigpro.2025.110138_b47 article-title: Image method for efficiently simulating small-room acoustics publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.382599 – volume: 61 start-page: 3198 issue: 12 year: 2013 ident: 10.1016/j.sigpro.2025.110138_b40 article-title: DCD-RLS adaptive filters with penalties for sparse identification publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2258340 – volume: 26 start-page: 903 issue: 6 year: 2019 ident: 10.1016/j.sigpro.2025.110138_b14 article-title: A unified convolutional beamformer for simultaneous denoising and dereverberation publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2019.2911179 – ident: 10.1016/j.sigpro.2025.110138_b13 doi: 10.1109/IWAENC.2018.8521286 – ident: 10.1016/j.sigpro.2025.110138_b45 doi: 10.1109/ICASSP.2008.4517552 – volume: 26 start-page: 2305 issue: 12 year: 2018 ident: 10.1016/j.sigpro.2025.110138_b8 article-title: Insights into frequency-invariant beamforming with concentric circular microphone arrays publication-title: IEEE/ ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2018.2862826 – year: 2014 ident: 10.1016/j.sigpro.2025.110138_b35 – start-page: 181 year: 2000 ident: 10.1016/j.sigpro.2025.110138_b6 article-title: Superdirectional microphone arrays |
| SSID | ssj0001360 |
| Score | 2.4660742 |
| Snippet | Multichannel linear prediction (MCLP) is widely used for speech dereverberation, with recursive least-squares (RLS)-like algorithms commonly applied to update... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 110138 |
| SubjectTerms | Adaptive dereverberation Data-reuse Dichotomous coordinate descent Multichannel linear prediction Recursive least-squares algorithm |
| Title | On adaptive multichannel dereverberation based on dichotomous coordinate descent and data-reuse techniques |
| URI | https://dx.doi.org/10.1016/j.sigpro.2025.110138 |
| Volume | 238 |
| WOSCitedRecordID | wos001517657600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0165-1684 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001360 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYW6IEeKkpBhRbkA7eV0eblxEeEqFqooBKg7i1K4jHKauVd7QPthf_OOHYeBYTKgUsUjRxvkvl2_M1kZkzIkSxMHzSTURNlAQsjiFjGg5h5quChjIWSququ_zu-vEyGQ_Gn13uoa2Hux7HWyWolpu-qapShsk3p7BvU3UyKAjxHpeMR1Y7H_1L8le5nMptWKUFVuqCp7dUw7pttOfFpcnBKNwuYNB8LZGkKsSYmCNAvJuiNlhoZKI6vOj1VnxdMIimbwXIO_abr67xLbK_LO8Nrp7buoF4PjTlxAem_oFcd8bnbBawcL5uRVnSRleOyzTpwxSN4qZy4y12Qwu8GKVzckkfM43Y3uNrw-ravizOdyEM8K3hm1W2AYXQ8L-_wMdCp96Pjdvi_TbSfLG5NymGdzTZK7SypmSW1s6yRDT-OBBrFjZNfZ8PzZin3gqrMvLn7uvayShB8fjcvc5sOX7nZIp-co0FPLEA-kx7obfKx037yCxldaVpDhXahQp9AhVZQoXjSgQptoUIdVChChbZQoS1Udsjtj7Ob05_M7b3BCjTiCxbkETe9_fKCyxwEKBUpGaI08CQgK0Rbjq4EJEE4gEEikIdLCJNBEAv8zyshg12yricavhLqc5Vkqsi5b3zX3HQ7UrnvAboWwAXP9gir31o6tS1W0te0tUfi-tWmjiZa-pciXl69cv-Nv_SNbLZg_k7WF7MlHJAPxf2inM8OHVgeAa5Mjt8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+adaptive+multichannel+dereverberation+based+on+dichotomous+coordinate+descent+and+data-reuse+techniques&rft.jtitle=Signal+processing&rft.au=Yang%2C+Wenxing&rft.au=Jin%2C+Jilu&rft.au=Yin%2C+Kaili&rft.au=Chen%2C+Jingdong&rft.date=2026-01-01&rft.issn=0165-1684&rft.volume=238&rft.spage=110138&rft_id=info:doi/10.1016%2Fj.sigpro.2025.110138&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2025_110138 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |