SVDTI: Stacked variational autoencoder with SMILES-based drug representations for identifying drug-target interaction

The rapid identification of novel drug–target interactions (DTIs) remains a critical challenge in drug development, as traditional experimental methods are both resource-intensive and time-consuming. Motivated by the need to accelerate drug discovery and reduce experimental costs, computational stra...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 661; p. 131837
Main Author: Ha, Jihwan
Format: Journal Article
Language:English
Published: Elsevier B.V 14.01.2026
Subjects:
ISSN:0925-2312
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The rapid identification of novel drug–target interactions (DTIs) remains a critical challenge in drug development, as traditional experimental methods are both resource-intensive and time-consuming. Motivated by the need to accelerate drug discovery and reduce experimental costs, computational strategies have emerged as powerful alternatives, leveraging advanced algorithms and data-driven approaches to predict potential DTIs efficiently. In this paper, we introduce a novel method, which employs a stacked variational autoencoder (SVAE) to efficiently predict drug–target interactions, with the goal of enhancing the understanding and identification of these crucial relationships in drug discovery. This model leverages protein sequences and drug chemical properties as input features. It employs a stacked variational autoencoder (SVAE) with Long Short-Term Memory (LSTM) networks to map high-dimensional data into compact, informative low-dimensional vectors. The LSTM architecture captures temporal dependencies in protein sequences, thereby enhancing the model's ability to encode complex patterns. Next, the feature representation is fed into a neural collaborative filtering (NCF) model. This model combines the linear characteristics of matrix factorization with the nonlinear representation power of a multi-layer perceptron (MLP) to generate the final prediction, thereby improving the accuracy of DTI prediction. As a result, in comparison to existing state-of-the-art methods for DTIs prediction, our model demonstrates remarkable improvements in predictive performance. These findings highlight the capability of the proposed model to effectively integrate diverse sources of information for predicting DTIs, addressing critical challenges in drug discovery and offering a robust and efficient framework that contributes valuable perspectives to the field.
AbstractList The rapid identification of novel drug–target interactions (DTIs) remains a critical challenge in drug development, as traditional experimental methods are both resource-intensive and time-consuming. Motivated by the need to accelerate drug discovery and reduce experimental costs, computational strategies have emerged as powerful alternatives, leveraging advanced algorithms and data-driven approaches to predict potential DTIs efficiently. In this paper, we introduce a novel method, which employs a stacked variational autoencoder (SVAE) to efficiently predict drug–target interactions, with the goal of enhancing the understanding and identification of these crucial relationships in drug discovery. This model leverages protein sequences and drug chemical properties as input features. It employs a stacked variational autoencoder (SVAE) with Long Short-Term Memory (LSTM) networks to map high-dimensional data into compact, informative low-dimensional vectors. The LSTM architecture captures temporal dependencies in protein sequences, thereby enhancing the model's ability to encode complex patterns. Next, the feature representation is fed into a neural collaborative filtering (NCF) model. This model combines the linear characteristics of matrix factorization with the nonlinear representation power of a multi-layer perceptron (MLP) to generate the final prediction, thereby improving the accuracy of DTI prediction. As a result, in comparison to existing state-of-the-art methods for DTIs prediction, our model demonstrates remarkable improvements in predictive performance. These findings highlight the capability of the proposed model to effectively integrate diverse sources of information for predicting DTIs, addressing critical challenges in drug discovery and offering a robust and efficient framework that contributes valuable perspectives to the field.
ArticleNumber 131837
Author Ha, Jihwan
Author_xml – sequence: 1
  givenname: Jihwan
  surname: Ha
  fullname: Ha, Jihwan
  email: jhha@pknu.ac.kr
  organization: Major of Big Data Convergence, Division of Data Information Science, Pukyong National University, Busan 48513, South Korea
BookMark eNp9kMtOwzAQRb0oEi3wByz8Awm283DCAgmVApWKWKSwtRx7Ulxau7Ldov49acOazYxGOvdqdCZoZJ0FhG4pSSmh5d06tbBXbpsywoqUZrTK-AiNSc2KhGWUXaJJCGtCKKesHqN98_m0nN_jJkr1DRofpDcyGmflBst9dGCV0-Dxj4lfuHmbL2ZN0srQk9rvV9jDzkMAG8-ZgDvnsdH9bbqjsaszlETpVxCxsRG8VCfwGl10chPg5m9foY_n2XL6mizeX-bTx0WiWMFjwjRhHedZqypVtkTKoq5oxdu6ZVWrIat4qUEySnip-sm6nBJS5V2r24zllGdXKB96lXcheOjEzput9EdBiTjpEmsx6BInXWLQ1ccehhj0vx0MeBGU6U2ANh5UFNqZ_wt-AQenezY
Cites_doi 10.1093/bib/bbab582
10.1007/978-1-62703-107-3_9
10.1093/bib/bbab042
10.1093/nar/gkh081
10.1038/s41598-023-27995-5
10.1093/bioinformatics/btae533
10.1093/bib/bbac384
10.1093/bib/bby010
10.1093/nar/gkr777
10.1371/journal.pone.0066952
10.1016/j.jbi.2020.103381
10.1016/j.neucom.2020.12.068
10.1039/D4SC06864E
10.1186/2193-9616-1-17
10.1093/bioinformatics/btn162
10.1038/s41573-023-00672-y
10.1016/j.csbj.2024.06.032
10.2174/1389202922666210920125800
10.1109/ICICS49469.2020.239556
10.1007/s44196-024-00561-1
10.1093/bioinformatics/btaa1005
10.1371/journal.pcbi.1004760
10.1016/j.ygeno.2019.06.021
10.1093/nar/gkm958
10.1039/c2mb00002d
10.1016/j.neucom.2023.126509
10.1016/j.ins.2024.121360
10.1093/nar/27.1.29
10.3390/ijms26094283
10.1371/journal.pcbi.1002503
10.3390/jpm12060885
10.1016/j.sbi.2021.102327
10.1093/nar/gkw1092
10.1038/nbt.1990
10.1126/science.287.5460.1960
10.1093/bib/bbad079
10.1093/bioinformatics/btaa880
10.1109/TCBB.2022.3191972
10.1093/nar/gkae1075
10.1145/2487575.2487670
10.1093/bib/bbaa430
10.1016/j.eswa.2020.113662
10.1109/ACCESS.2021.3084148
10.1371/journal.pone.0246920
10.1093/nar/gkj102
10.3390/biomedicines13010136
10.1016/j.neucom.2022.04.104
10.1016/j.compbiomed.2025.110442
10.1109/BIBM.2015.7359921
10.1016/j.jbi.2019.103358
10.1093/bioinformatics/btq382
10.1016/j.compbiomed.2024.108339
10.1109/ACCESS.2025.3568461
10.1016/j.physd.2019.132306
10.1186/s12918-019-0700-4
10.3390/biomedicines13030536
10.1093/nar/gkm862
10.1186/s13321-016-0128-4
10.1093/bioinformatics/bty543
10.1109/ACCESS.2024.3401005
10.1021/ci400709d
10.1016/j.knosys.2023.110295
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2025.131837
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_neucom_2025_131837
S0925231225025093
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
~HD
29N
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
LG9
M41
R2-
SBC
WUQ
XPP
ID FETCH-LOGICAL-c257t-2d02f773bc8c6b0aa598187b9b28bde3876dea21076c2102f410084fbdb324173
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001614694600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Thu Nov 27 00:59:55 EST 2025
Sat Nov 29 17:02:33 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Drug
Target
Neural collaborative filtering
Stacked variational autoencoder
Drug-target interaction
Protein
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-2d02f773bc8c6b0aa598187b9b28bde3876dea21076c2102f410084fbdb324173
ParticipantIDs crossref_primary_10_1016_j_neucom_2025_131837
elsevier_sciencedirect_doi_10_1016_j_neucom_2025_131837
PublicationCentury 2000
PublicationDate 2026-01-14
PublicationDateYYYYMMDD 2026-01-14
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-14
  day: 14
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ha (bib64) Feb. 2025; 13
Bhargava, Sharma, Suravajhala (bib10) 2021; 22
Poleksic (bib16) 2023; 13
Cho, Ha, Park, Park (bib42) 2020; 103
Masoudi-Sobhanzadeh, Omidi, Amanlou, Masoudi-Nejad (bib3) 2020; 112
Yamanishi (bib9) 2013
Tang, Szwajda, Shakyawar, Xu, Hintsanen, Wennerberg (bib41) 2014; 54
Ogata, Goto, Sato, Fujibuchi, Bono, Kanehisa (bib57) 1999; 27
Lian, Wang, Du (bib20) 2022; 500
Huang, Xiao, Glass, Sun (bib27) 2021; 37
Ha, Park (bib8) 2021; 9
Lian, Wang, Du (bib32) 2023; 551
Islam, Hossain, Ray (bib22) 2021; 16
Percha, Garten, Altman (bib24) 2012
Schomburg, Chang, Ebeling, Gremse, Heldt, Huhn, Schomburg (bib36) 2004; 32
Norouzi, Norouzi, Abbasi, Norouzi, Razzaghi (bib62) 2025; 194
Shang, Gao, Zou, Yu (bib31) 2021; 434
Davis, Hunt, Herrgard, Ciceri, Wodicka, Pallares (bib40) 2011; 29
Sherstinsky (bib43) 2020; 404
Drews (bib1) 2000; 287
Chen, Liu, Yan (bib17) 2012; 8
Cheng, Liu, Jiang, Lu, Li, Liu (bib19) 2012; 8
Zhao, Su, Yang, Li, Li, Hu, Hu (bib59) 2024; 23
Peng, Wang, Guan, Li, Han, Hao (bib51) 2021; 22
Masoudi-Nejad, Mousavian, Bozorgmehr (bib2) 2013; 1
Liu, Wu, Miao, Zhao, Li (bib52) 2016; 12
Wang, Luo, Qin, Wang, Wan, Fang, Kang (bib60) 2025; 16
Zhang, Wang, Guan, Jain, Wang, Roy (bib30) 2024; 17
Cheng, Han, Zhu, Qi, Wang, Zhang (bib4) 2021; 22
Hao, Bryant, Wang (bib11) 2019; 20
Günther, Kuhn, Dunkel, Campillos, Senger, Petsalaki (bib38) 2007; 36
Kim, Ha (bib65) 2025; 13
Huang, Fu, Glass, Zitnik, Xiao, Sun (bib26) 2020; 36
Wishart, Knox, Guo, Cheng, Shrivastava, Tzur (bib37) 2008; 36
Gaulton, Bellis, Bento, Chambers, Davies, Hersey (bib56) 2012; 40
Ding, Tang, Guo, Zou (bib15) 2022; 23
Ha, Park (bib46) 2022; 20
Ha (bib13) 2023; 263
Abbasi, Razzaghi (bib63) 2020; 160
Wan, Hong, Xiao, Jiang, Zeng (bib50) 2019; 35
Ha (bib12) 2024; 12
Zhang, Wang, Guan, Jain, Wang, Roy (bib55) 2024; 17
Ba-Alawi, Soufan, Essack, Kalnis, Bajic (bib18) 2016; 8
Ahmed, Ansari, Zhang (bib54) 2024; 40
Zhao, Su, Hu, Ma, Zhou, Hu (bib61) 2022; 23
Kanehisa, Furumichi, Tanabe, Sato, Morishima (bib34) 2017; 45
Zhang, Wang, Wang, Meng, Cui (bib53) 2023; 24
Li, Hilgenfeld, Whitley, De Clercq (bib5) 2023; 22
Lemaître, Nogueira, Aridas (bib48) 2017; 18
Ha (bib14) 2022; 12
Tari, Anwar, Liang, Cai, Baral (bib25) 2010; 26
Ha, Park, Park (bib6) 2019; 13
Zhang, Chen, Zhong, Wang, Jiang, Zhang, Li (bib29) 2022; 73
Mohammed R., Rawashdeh J., Abdullah M. Machine learning with oversampling and undersampling techniques: overview study and experimental results. In: 2020 11th Int Conf Inf Commun Syst (ICICS); 2020 Apr; 243-248. IEEE.
Kanehisa, Goto, Hattori, Aoki-Kinoshita, Itoh, Kawashima (bib35) 2006; 34
Shi J.Y., Yiu S.M. SRP: A concise non-parametric similarity-rank-based model for predicting drug-target interactions. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2015 Nov; 1636-1641. IEEE.
Ha (bib45) 2025; 13
Gao, Zhang, Chen, Zhang, Wang, Wang, Song (bib28) 2024; 173
Ha, Park, Park, Park (bib7) 2020; 102
Van Laarhoven, Marchiori (bib21) 2013; 8
Liu, Hwang, Burley, Nitsche, Southan, Walters (bib39) 2025; 53
Ha, Kim (bib66) 2025; 26
Yamanishi, Araki, Gutteridge, Honda, Kanehisa (bib33) 2008; 24
Che, Yang, Wang (bib44) 2020; 76
Zheng X., Ding H., Mamitsuka H., Zhu S. Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: Proc 19th ACM SIGKDD Int Conf Knowl Discov Data Mining; 2013 Aug; 1025-1033.
Zhao, Su, Yang, Li, Li, Hu, Hu (bib58) 2025; 686
Masoudi-Nejad (10.1016/j.neucom.2025.131837_bib2) 2013; 1
Poleksic (10.1016/j.neucom.2025.131837_bib16) 2023; 13
Lian (10.1016/j.neucom.2025.131837_bib32) 2023; 551
Masoudi-Sobhanzadeh (10.1016/j.neucom.2025.131837_bib3) 2020; 112
Ba-Alawi (10.1016/j.neucom.2025.131837_bib18) 2016; 8
Ha (10.1016/j.neucom.2025.131837_bib66) 2025; 26
Liu (10.1016/j.neucom.2025.131837_bib39) 2025; 53
Zhang (10.1016/j.neucom.2025.131837_bib55) 2024; 17
Zhao (10.1016/j.neucom.2025.131837_bib61) 2022; 23
Kim (10.1016/j.neucom.2025.131837_bib65) 2025; 13
Yamanishi (10.1016/j.neucom.2025.131837_bib33) 2008; 24
Ha (10.1016/j.neucom.2025.131837_bib14) 2022; 12
Cheng (10.1016/j.neucom.2025.131837_bib19) 2012; 8
Tari (10.1016/j.neucom.2025.131837_bib25) 2010; 26
Percha (10.1016/j.neucom.2025.131837_bib24) 2012
Günther (10.1016/j.neucom.2025.131837_bib38) 2007; 36
Wang (10.1016/j.neucom.2025.131837_bib60) 2025; 16
Hao (10.1016/j.neucom.2025.131837_bib11) 2019; 20
10.1016/j.neucom.2025.131837_bib49
Yamanishi (10.1016/j.neucom.2025.131837_bib9) 2013
Huang (10.1016/j.neucom.2025.131837_bib26) 2020; 36
Ha (10.1016/j.neucom.2025.131837_bib8) 2021; 9
Bhargava (10.1016/j.neucom.2025.131837_bib10) 2021; 22
Kanehisa (10.1016/j.neucom.2025.131837_bib35) 2006; 34
Ha (10.1016/j.neucom.2025.131837_bib64) 2025; 13
Liu (10.1016/j.neucom.2025.131837_bib52) 2016; 12
Zhang (10.1016/j.neucom.2025.131837_bib53) 2023; 24
Ha (10.1016/j.neucom.2025.131837_bib45) 2025; 13
Cho (10.1016/j.neucom.2025.131837_bib42) 2020; 103
Ogata (10.1016/j.neucom.2025.131837_bib57) 1999; 27
Wishart (10.1016/j.neucom.2025.131837_bib37) 2008; 36
Li (10.1016/j.neucom.2025.131837_bib5) 2023; 22
Ha (10.1016/j.neucom.2025.131837_bib46) 2022; 20
10.1016/j.neucom.2025.131837_bib47
Ding (10.1016/j.neucom.2025.131837_bib15) 2022; 23
Gao (10.1016/j.neucom.2025.131837_bib28) 2024; 173
Davis (10.1016/j.neucom.2025.131837_bib40) 2011; 29
Kanehisa (10.1016/j.neucom.2025.131837_bib34) 2017; 45
Abbasi (10.1016/j.neucom.2025.131837_bib63) 2020; 160
Drews (10.1016/j.neucom.2025.131837_bib1) 2000; 287
Zhang (10.1016/j.neucom.2025.131837_bib30) 2024; 17
Ha (10.1016/j.neucom.2025.131837_bib13) 2023; 263
Huang (10.1016/j.neucom.2025.131837_bib27) 2021; 37
Sherstinsky (10.1016/j.neucom.2025.131837_bib43) 2020; 404
Norouzi (10.1016/j.neucom.2025.131837_bib62) 2025; 194
Ha (10.1016/j.neucom.2025.131837_bib6) 2019; 13
Wan (10.1016/j.neucom.2025.131837_bib50) 2019; 35
Ahmed (10.1016/j.neucom.2025.131837_bib54) 2024; 40
Tang (10.1016/j.neucom.2025.131837_bib41) 2014; 54
Che (10.1016/j.neucom.2025.131837_bib44) 2020; 76
Lian (10.1016/j.neucom.2025.131837_bib20) 2022; 500
Cheng (10.1016/j.neucom.2025.131837_bib4) 2021; 22
Gaulton (10.1016/j.neucom.2025.131837_bib56) 2012; 40
Zhao (10.1016/j.neucom.2025.131837_bib59) 2024; 23
Chen (10.1016/j.neucom.2025.131837_bib17) 2012; 8
Van Laarhoven (10.1016/j.neucom.2025.131837_bib21) 2013; 8
Peng (10.1016/j.neucom.2025.131837_bib51) 2021; 22
Ha (10.1016/j.neucom.2025.131837_bib7) 2020; 102
Zhang (10.1016/j.neucom.2025.131837_bib29) 2022; 73
Shang (10.1016/j.neucom.2025.131837_bib31) 2021; 434
Zhao (10.1016/j.neucom.2025.131837_bib58) 2025; 686
Islam (10.1016/j.neucom.2025.131837_bib22) 2021; 16
Lemaître (10.1016/j.neucom.2025.131837_bib48) 2017; 18
Schomburg (10.1016/j.neucom.2025.131837_bib36) 2004; 32
10.1016/j.neucom.2025.131837_bib23
Ha (10.1016/j.neucom.2025.131837_bib12) 2024; 12
References_xml – volume: 17
  start-page: 165
  year: 2024
  ident: bib30
  article-title: MocFormer: a two-stage pre-training-driven transformer for drug–target interactions prediction
  publication-title: Int. J. Comput. Intell. Syst.
– volume: 13
  start-page: 536
  year: Feb. 2025
  ident: bib64
  article-title: DeepWalk-based graph embeddings for miRNA–disease association prediction using deep neural network
  publication-title: Biomedicines
– volume: 500
  start-page: 1
  year: 2022
  end-page: 12
  ident: bib20
  article-title: Integrated multi-similarity fusion and heterogeneous graph inference for drug-target interaction prediction
  publication-title: Neurocomputing
– volume: 76
  year: 2020
  ident: bib44
  article-title: Text feature extraction based on stacked variational autoencoder
  publication-title: Microprocess Micro
– volume: 160
  year: 2020
  ident: bib63
  article-title: Incorporating part-whole hierarchies into fully convolutional network for scene parsing
  publication-title: Expert Syst. Appl.
– volume: 36
  start-page: D901
  year: 2008
  end-page: D906
  ident: bib37
  article-title: DrugBank: a knowledgebase for drugs, drug actions and drug targets
  publication-title: Nucleic Acids Res.
– volume: 22
  year: 2021
  ident: bib10
  article-title: Chemogenomic approaches for revealing drug-target interactions in drug discovery
  publication-title: Curr. Genom.
– start-page: 97
  year: 2013
  end-page: 113
  ident: bib9
  article-title: Chemogenomic approaches to infer drug-target interaction networks
  publication-title: Data Min. Syst. Biol. Methods Protoc.
– volume: 23
  start-page: bbac384
  year: 2022
  ident: bib61
  article-title: A geometric deep learning framework for drug repositioning over heterogeneous information networks
  publication-title: Brief. Bioinform.
– volume: 12
  start-page: 885
  year: 2022
  ident: bib14
  article-title: MDMF: predicting miRNA–disease association based on matrix factorization with disease similarity constraint
  publication-title: J. Pers. Med.
– volume: 40
  start-page: D1100
  year: 2012
  end-page: D1107
  ident: bib56
  article-title: ChEMBL: a large-scale bioactivity database for drug discovery
  publication-title: Nucleic Acids Res.
– volume: 22
  start-page: 1442
  year: 2021
  end-page: 1450
  ident: bib4
  article-title: Functional alterations caused by mutations reflect evolutionary trends of SARS-CoV-2
  publication-title: Brief. Bioinform
– volume: 36
  start-page: D919
  year: 2007
  end-page: D922
  ident: bib38
  article-title: SuperTarget and Matador: resources for exploring drug-target relationships
  publication-title: Nucleic Acids Res.
– volume: 173
  year: 2024
  ident: bib28
  article-title: Graphormerdti: a graph transformer-based approach for drug-target interaction prediction
  publication-title: Comput. Biol. Med.
– volume: 404
  year: 2020
  ident: bib43
  article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network
  publication-title: Phys. D Nonlinear Phenomena
– volume: 102
  year: 2020
  ident: bib7
  article-title: IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization
  publication-title: J. Biomed. Inf.
– volume: 53
  start-page: D1633
  year: 2025
  end-page: D1644
  ident: bib39
  article-title: BindingDB in 2024: a FAIR knowledgebase of protein-small molecule binding data
  publication-title: Nucleic Acids Res.
– volume: 1
  start-page: 1
  year: 2013
  end-page: 4
  ident: bib2
  article-title: Drug-target and disease networks: polypharmacology in the post-genomic era
  publication-title: Silico Pharm.
– volume: 9
  start-page: 78847
  year: 2021
  end-page: 78858
  ident: bib8
  article-title: MLMD: Metric learning for predicting miRNA-disease associations
  publication-title: IEEE Access
– volume: 45
  start-page: D353
  year: 2017
  end-page: D361
  ident: bib34
  article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs
  publication-title: Nucleic Acids Res.
– reference: Zheng X., Ding H., Mamitsuka H., Zhu S. Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: Proc 19th ACM SIGKDD Int Conf Knowl Discov Data Mining; 2013 Aug; 1025-1033.
– volume: 23
  start-page: 2924
  year: 2024
  end-page: 2933
  ident: bib59
  article-title: A heterogeneous information network learning model with neighborhood-level structural representation for predicting lncRNA–miRNA interactions
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 16
  year: 2021
  ident: bib22
  article-title: DTI-SNNFRA: drug-target interaction prediction by shared nearest neighbors and fuzzy-rough approximation
  publication-title: PLoS One
– reference: Shi J.Y., Yiu S.M. SRP: A concise non-parametric similarity-rank-based model for predicting drug-target interactions. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2015 Nov; 1636-1641. IEEE.
– volume: 8
  year: 2012
  ident: bib19
  article-title: Prediction of drug-target interactions and drug repositioning via network-based inference
  publication-title: PLoS Comput. Biol.
– volume: 13
  start-page: 136
  year: 2025
  ident: bib45
  article-title: Graph Convolutional Network with Neural Collaborative Filtering for Predicting miRNA-Disease Association
  publication-title: Biomedicines
– volume: 27
  start-page: 29
  year: 1999
  end-page: 34
  ident: bib57
  article-title: KEGG: Kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res.
– volume: 24
  start-page: i232
  year: 2008
  end-page: i240
  ident: bib33
  article-title: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces
  publication-title: Bioinformatics
– volume: 40
  year: 2024
  ident: bib54
  article-title: DTI-LM: language model powered drug-target interaction prediction
  publication-title: Bioinformatics
– volume: 22
  start-page: 449
  year: 2023
  end-page: 475
  ident: bib5
  article-title: Therapeutic strategies for COVID-19: progress and lessons learned
  publication-title: Nat. Rev. Drug Discov.
– volume: 8
  start-page: 1970
  year: 2012
  end-page: 1978
  ident: bib17
  article-title: Drug–target interaction prediction by random walk on the heterogeneous network
  publication-title: Mol. Biosyst.
– volume: 13
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib6
  article-title: PMAMCA: prediction of microRNA-disease association utilizing a matrix completion approach
  publication-title: BMC Syst. Biol.
– volume: 20
  start-page: 1465
  year: 2019
  end-page: 1474
  ident: bib11
  article-title: Open-source chemogenomic data-driven algorithms for predicting drug–target interactions
  publication-title: Brief. Bioinform.
– volume: 686
  year: 2025
  ident: bib58
  article-title: Regulation-aware graph learning for drug repositioning over heterogeneous biological network
  publication-title: Inf. Sci.
– volume: 12
  year: 2016
  ident: bib52
  article-title: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction
  publication-title: PLoS Comput. Biol.
– volume: 26
  start-page: 4283
  year: 2025
  ident: bib66
  article-title: Neighborhood-regularized matrix factorization for lncRNA–disease association identification
  publication-title: Int. J. Mol. Sci.
– volume: 34
  start-page: D354
  year: 2006
  end-page: D357
  ident: bib35
  article-title: From genomics to chemical genomics: new developments in KEGG
  publication-title: Nucleic Acids Res.
– volume: 18
  start-page: 1
  year: 2017
  end-page: 5
  ident: bib48
  article-title: Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn Res.
– volume: 13
  start-page: 959
  year: 2023
  ident: bib16
  article-title: Hyperbolic matrix factorization improves prediction of drug-target associations
  publication-title: Sci. Rep.
– volume: 54
  start-page: 735
  year: 2014
  end-page: 743
  ident: bib41
  article-title: Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis
  publication-title: J. Chem. Inf. Model
– volume: 37
  start-page: 830
  year: 2021
  end-page: 836
  ident: bib27
  article-title: MolTrans: molecular interaction transformer for drug–target interaction prediction
  publication-title: Bioinformatics
– volume: 16
  start-page: 637
  year: 2025
  end-page: 648
  ident: bib60
  article-title: 3DSMILES-GPT: 3D molecular pocket-based generation with token-only large language model
  publication-title: Chem. Sci.
– volume: 73
  year: 2022
  ident: bib29
  article-title: Graph neural network approaches for drug-target interactions
  publication-title: Curr. Opin. Struct. Biol.
– volume: 26
  start-page: i547
  year: 2010
  end-page: i553
  ident: bib25
  article-title: Discovering drug–drug interactions: a text-mining and reasoning approach based on properties of drug metabolism
  publication-title: Bioinformatics
– volume: 194
  year: 2025
  ident: bib62
  article-title: DFT_ANPD: A dual-feature two-sided attention network for anticancer natural products detection
  publication-title: Comput. Biol. Med.
– volume: 24
  year: 2023
  ident: bib53
  article-title: MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug-target interaction prediction
  publication-title: Brief. Bioinform.
– volume: 17
  start-page: 165
  year: 2024
  ident: bib55
  article-title: MocFormer: a two-stage pre-training-driven transformer for drug–target interactions prediction
  publication-title: Int. J. Comput. Intell. Syst.
– volume: 8
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib18
  article-title: DASPfind: new efficient method to predict drug–target interactions
  publication-title: J. Chemin..
– volume: 29
  start-page: 1046
  year: 2011
  end-page: 1051
  ident: bib40
  article-title: Comprehensive analysis of kinase inhibitor selectivity
  publication-title: Nat. Biotechnol.
– volume: 13
  start-page: 85330
  year: 2025
  end-page: 85341
  ident: bib65
  article-title: GMFLDA: improved prediction of lncRNA-disease association via graph convolutional network
  publication-title: IEEE Access
– volume: 112
  start-page: 1087
  year: 2020
  end-page: 1095
  ident: bib3
  article-title: Drug databases and their contributions to drug repurposing
  publication-title: Genomics
– reference: Mohammed R., Rawashdeh J., Abdullah M. Machine learning with oversampling and undersampling techniques: overview study and experimental results. In: 2020 11th Int Conf Inf Commun Syst (ICICS); 2020 Apr; 243-248. IEEE.
– volume: 22
  year: 2021
  ident: bib51
  article-title: An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction
  publication-title: Brief. Bioinform.
– volume: 12
  start-page: 70297
  year: 2024
  end-page: 70304
  ident: bib12
  article-title: LncRNA expression profile-based matrix factorization for identifying lncRNA-disease association
  publication-title: S. IEEE Access
– volume: 551
  year: 2023
  ident: bib32
  article-title: Drug-target interactions prediction based on network topology feature representation embedded deep forest
  publication-title: Neurocomputing
– volume: 36
  start-page: 5545
  year: 2020
  end-page: 5547
  ident: bib26
  article-title: DeepPurpose: a deep learning library for drug–target interaction prediction
  publication-title: Bioinformatics
– volume: 20
  start-page: 1257
  year: 2022
  end-page: 1268
  ident: bib46
  article-title: NCMD: Node2vec-based neural collaborative filtering for predicting miRNA-disease association
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform
– volume: 32
  start-page: D431
  year: 2004
  end-page: D433
  ident: bib36
  article-title: BRENDA, the enzyme database: updates and major new developments
  publication-title: Nucleic Acids Res.
– volume: 23
  year: 2022
  ident: bib15
  article-title: Identification of drug–target interactions via multiple kernel-based triple collaborative matrix factorization
  publication-title: Brief. Bioinform.
– volume: 434
  start-page: 80
  year: 2021
  end-page: 89
  ident: bib31
  article-title: Prediction of drug-target interactions based on multi-layer network representation learning
  publication-title: Neurocomputing
– volume: 8
  year: 2013
  ident: bib21
  article-title: Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile
  publication-title: PLoS One
– start-page: 410
  year: 2012
  end-page: 421
  ident: bib24
  article-title: Discovery and Explanation of Drug-drug Interactions Via Text Mining
  publication-title: Biocomputing
– volume: 287
  start-page: 1960
  year: 2000
  end-page: 1964
  ident: bib1
  article-title: Drug discovery: a historical perspective
  publication-title: Science
– volume: 35
  start-page: 104
  year: 2019
  end-page: 111
  ident: bib50
  article-title: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions
  publication-title: Bioinformatics
– volume: 263
  year: 2023
  ident: bib13
  article-title: SMAP: Similarity-based matrix factorization framework for inferring miRNA-disease association
  publication-title: Knowl. Based Syst.
– volume: 103
  year: 2020
  ident: bib42
  article-title: Combinatorial feature embedding based on CNN and LSTM for biomedical named entity recognition
  publication-title: J. Biomed. Inf.
– volume: 23
  issue: 2
  year: 2022
  ident: 10.1016/j.neucom.2025.131837_bib15
  article-title: Identification of drug–target interactions via multiple kernel-based triple collaborative matrix factorization
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab582
– start-page: 97
  year: 2013
  ident: 10.1016/j.neucom.2025.131837_bib9
  article-title: Chemogenomic approaches to infer drug-target interaction networks
  publication-title: Data Min. Syst. Biol. Methods Protoc.
  doi: 10.1007/978-1-62703-107-3_9
– volume: 22
  start-page: 1442
  issue: 2
  year: 2021
  ident: 10.1016/j.neucom.2025.131837_bib4
  article-title: Functional alterations caused by mutations reflect evolutionary trends of SARS-CoV-2
  publication-title: Brief. Bioinform
  doi: 10.1093/bib/bbab042
– volume: 32
  start-page: D431
  issue: _1
  year: 2004
  ident: 10.1016/j.neucom.2025.131837_bib36
  article-title: BRENDA, the enzyme database: updates and major new developments
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh081
– volume: 13
  start-page: 959
  issue: 1
  year: 2023
  ident: 10.1016/j.neucom.2025.131837_bib16
  article-title: Hyperbolic matrix factorization improves prediction of drug-target associations
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-27995-5
– volume: 40
  issue: 9
  year: 2024
  ident: 10.1016/j.neucom.2025.131837_bib54
  article-title: DTI-LM: language model powered drug-target interaction prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btae533
– volume: 23
  start-page: bbac384
  issue: 6
  year: 2022
  ident: 10.1016/j.neucom.2025.131837_bib61
  article-title: A geometric deep learning framework for drug repositioning over heterogeneous information networks
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac384
– volume: 20
  start-page: 1465
  issue: 4
  year: 2019
  ident: 10.1016/j.neucom.2025.131837_bib11
  article-title: Open-source chemogenomic data-driven algorithms for predicting drug–target interactions
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bby010
– volume: 40
  start-page: D1100
  issue: D1
  year: 2012
  ident: 10.1016/j.neucom.2025.131837_bib56
  article-title: ChEMBL: a large-scale bioactivity database for drug discovery
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr777
– volume: 8
  issue: 6
  year: 2013
  ident: 10.1016/j.neucom.2025.131837_bib21
  article-title: Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0066952
– volume: 103
  year: 2020
  ident: 10.1016/j.neucom.2025.131837_bib42
  article-title: Combinatorial feature embedding based on CNN and LSTM for biomedical named entity recognition
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2020.103381
– volume: 434
  start-page: 80
  year: 2021
  ident: 10.1016/j.neucom.2025.131837_bib31
  article-title: Prediction of drug-target interactions based on multi-layer network representation learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.12.068
– volume: 16
  start-page: 637
  issue: 2
  year: 2025
  ident: 10.1016/j.neucom.2025.131837_bib60
  article-title: 3DSMILES-GPT: 3D molecular pocket-based generation with token-only large language model
  publication-title: Chem. Sci.
  doi: 10.1039/D4SC06864E
– volume: 1
  start-page: 1
  year: 2013
  ident: 10.1016/j.neucom.2025.131837_bib2
  article-title: Drug-target and disease networks: polypharmacology in the post-genomic era
  publication-title: Silico Pharm.
  doi: 10.1186/2193-9616-1-17
– volume: 24
  start-page: i232
  issue: 13
  year: 2008
  ident: 10.1016/j.neucom.2025.131837_bib33
  article-title: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn162
– volume: 22
  start-page: 449
  issue: 6
  year: 2023
  ident: 10.1016/j.neucom.2025.131837_bib5
  article-title: Therapeutic strategies for COVID-19: progress and lessons learned
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-023-00672-y
– volume: 23
  start-page: 2924
  year: 2024
  ident: 10.1016/j.neucom.2025.131837_bib59
  article-title: A heterogeneous information network learning model with neighborhood-level structural representation for predicting lncRNA–miRNA interactions
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2024.06.032
– volume: 22
  issue: 5
  year: 2021
  ident: 10.1016/j.neucom.2025.131837_bib10
  article-title: Chemogenomic approaches for revealing drug-target interactions in drug discovery
  publication-title: Curr. Genom.
  doi: 10.2174/1389202922666210920125800
– ident: 10.1016/j.neucom.2025.131837_bib47
  doi: 10.1109/ICICS49469.2020.239556
– volume: 17
  start-page: 165
  issue: 1
  year: 2024
  ident: 10.1016/j.neucom.2025.131837_bib30
  article-title: MocFormer: a two-stage pre-training-driven transformer for drug–target interactions prediction
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1007/s44196-024-00561-1
– volume: 36
  start-page: 5545
  issue: 22-23
  year: 2020
  ident: 10.1016/j.neucom.2025.131837_bib26
  article-title: DeepPurpose: a deep learning library for drug–target interaction prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa1005
– volume: 12
  issue: 2
  year: 2016
  ident: 10.1016/j.neucom.2025.131837_bib52
  article-title: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004760
– volume: 112
  start-page: 1087
  issue: 2
  year: 2020
  ident: 10.1016/j.neucom.2025.131837_bib3
  article-title: Drug databases and their contributions to drug repurposing
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.06.021
– volume: 36
  start-page: D901
  issue: _1
  year: 2008
  ident: 10.1016/j.neucom.2025.131837_bib37
  article-title: DrugBank: a knowledgebase for drugs, drug actions and drug targets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm958
– volume: 8
  start-page: 1970
  issue: 7
  year: 2012
  ident: 10.1016/j.neucom.2025.131837_bib17
  article-title: Drug–target interaction prediction by random walk on the heterogeneous network
  publication-title: Mol. Biosyst.
  doi: 10.1039/c2mb00002d
– volume: 551
  year: 2023
  ident: 10.1016/j.neucom.2025.131837_bib32
  article-title: Drug-target interactions prediction based on network topology feature representation embedded deep forest
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126509
– volume: 17
  start-page: 165
  issue: 1
  year: 2024
  ident: 10.1016/j.neucom.2025.131837_bib55
  article-title: MocFormer: a two-stage pre-training-driven transformer for drug–target interactions prediction
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.1007/s44196-024-00561-1
– volume: 686
  year: 2025
  ident: 10.1016/j.neucom.2025.131837_bib58
  article-title: Regulation-aware graph learning for drug repositioning over heterogeneous biological network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.121360
– volume: 27
  start-page: 29
  issue: 1
  year: 1999
  ident: 10.1016/j.neucom.2025.131837_bib57
  article-title: KEGG: Kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.1.29
– volume: 26
  start-page: 4283
  issue: 9
  year: 2025
  ident: 10.1016/j.neucom.2025.131837_bib66
  article-title: Neighborhood-regularized matrix factorization for lncRNA–disease association identification
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms26094283
– volume: 8
  issue: 5
  year: 2012
  ident: 10.1016/j.neucom.2025.131837_bib19
  article-title: Prediction of drug-target interactions and drug repositioning via network-based inference
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002503
– volume: 12
  start-page: 885
  issue: 6
  year: 2022
  ident: 10.1016/j.neucom.2025.131837_bib14
  article-title: MDMF: predicting miRNA–disease association based on matrix factorization with disease similarity constraint
  publication-title: J. Pers. Med.
  doi: 10.3390/jpm12060885
– volume: 73
  year: 2022
  ident: 10.1016/j.neucom.2025.131837_bib29
  article-title: Graph neural network approaches for drug-target interactions
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2021.102327
– volume: 45
  start-page: D353
  issue: D1
  year: 2017
  ident: 10.1016/j.neucom.2025.131837_bib34
  article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1092
– volume: 29
  start-page: 1046
  issue: 11
  year: 2011
  ident: 10.1016/j.neucom.2025.131837_bib40
  article-title: Comprehensive analysis of kinase inhibitor selectivity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1990
– volume: 287
  start-page: 1960
  issue: 5460
  year: 2000
  ident: 10.1016/j.neucom.2025.131837_bib1
  article-title: Drug discovery: a historical perspective
  publication-title: Science
  doi: 10.1126/science.287.5460.1960
– volume: 24
  issue: 2
  year: 2023
  ident: 10.1016/j.neucom.2025.131837_bib53
  article-title: MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug-target interaction prediction
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbad079
– volume: 37
  start-page: 830
  issue: 6
  year: 2021
  ident: 10.1016/j.neucom.2025.131837_bib27
  article-title: MolTrans: molecular interaction transformer for drug–target interaction prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa880
– volume: 20
  start-page: 1257
  issue: 2
  year: 2022
  ident: 10.1016/j.neucom.2025.131837_bib46
  article-title: NCMD: Node2vec-based neural collaborative filtering for predicting miRNA-disease association
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform
  doi: 10.1109/TCBB.2022.3191972
– volume: 53
  start-page: D1633
  issue: D1
  year: 2025
  ident: 10.1016/j.neucom.2025.131837_bib39
  article-title: BindingDB in 2024: a FAIR knowledgebase of protein-small molecule binding data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkae1075
– ident: 10.1016/j.neucom.2025.131837_bib49
  doi: 10.1145/2487575.2487670
– volume: 22
  issue: 5
  year: 2021
  ident: 10.1016/j.neucom.2025.131837_bib51
  article-title: An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa430
– volume: 160
  year: 2020
  ident: 10.1016/j.neucom.2025.131837_bib63
  article-title: Incorporating part-whole hierarchies into fully convolutional network for scene parsing
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113662
– volume: 9
  start-page: 78847
  year: 2021
  ident: 10.1016/j.neucom.2025.131837_bib8
  article-title: MLMD: Metric learning for predicting miRNA-disease associations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3084148
– volume: 16
  issue: 2
  year: 2021
  ident: 10.1016/j.neucom.2025.131837_bib22
  article-title: DTI-SNNFRA: drug-target interaction prediction by shared nearest neighbors and fuzzy-rough approximation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0246920
– volume: 34
  start-page: D354
  issue: _1
  year: 2006
  ident: 10.1016/j.neucom.2025.131837_bib35
  article-title: From genomics to chemical genomics: new developments in KEGG
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkj102
– volume: 13
  start-page: 136
  issue: 1
  year: 2025
  ident: 10.1016/j.neucom.2025.131837_bib45
  article-title: Graph Convolutional Network with Neural Collaborative Filtering for Predicting miRNA-Disease Association
  publication-title: Biomedicines
  doi: 10.3390/biomedicines13010136
– volume: 500
  start-page: 1
  year: 2022
  ident: 10.1016/j.neucom.2025.131837_bib20
  article-title: Integrated multi-similarity fusion and heterogeneous graph inference for drug-target interaction prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.104
– volume: 194
  year: 2025
  ident: 10.1016/j.neucom.2025.131837_bib62
  article-title: DFT_ANPD: A dual-feature two-sided attention network for anticancer natural products detection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2025.110442
– ident: 10.1016/j.neucom.2025.131837_bib23
  doi: 10.1109/BIBM.2015.7359921
– volume: 102
  year: 2020
  ident: 10.1016/j.neucom.2025.131837_bib7
  article-title: IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2019.103358
– volume: 26
  start-page: i547
  issue: 18
  year: 2010
  ident: 10.1016/j.neucom.2025.131837_bib25
  article-title: Discovering drug–drug interactions: a text-mining and reasoning approach based on properties of drug metabolism
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq382
– volume: 173
  year: 2024
  ident: 10.1016/j.neucom.2025.131837_bib28
  article-title: Graphormerdti: a graph transformer-based approach for drug-target interaction prediction
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108339
– volume: 18
  start-page: 1
  issue: 17
  year: 2017
  ident: 10.1016/j.neucom.2025.131837_bib48
  article-title: Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn Res.
– volume: 13
  start-page: 85330
  year: 2025
  ident: 10.1016/j.neucom.2025.131837_bib65
  article-title: GMFLDA: improved prediction of lncRNA-disease association via graph convolutional network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3568461
– volume: 404
  year: 2020
  ident: 10.1016/j.neucom.2025.131837_bib43
  article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network
  publication-title: Phys. D Nonlinear Phenomena
  doi: 10.1016/j.physd.2019.132306
– volume: 13
  start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2025.131837_bib6
  article-title: PMAMCA: prediction of microRNA-disease association utilizing a matrix completion approach
  publication-title: BMC Syst. Biol.
  doi: 10.1186/s12918-019-0700-4
– volume: 13
  start-page: 536
  issue: 3
  year: 2025
  ident: 10.1016/j.neucom.2025.131837_bib64
  article-title: DeepWalk-based graph embeddings for miRNA–disease association prediction using deep neural network
  publication-title: Biomedicines
  doi: 10.3390/biomedicines13030536
– volume: 36
  start-page: D919
  issue: _1
  year: 2007
  ident: 10.1016/j.neucom.2025.131837_bib38
  article-title: SuperTarget and Matador: resources for exploring drug-target relationships
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm862
– start-page: 410
  year: 2012
  ident: 10.1016/j.neucom.2025.131837_bib24
  article-title: Discovery and Explanation of Drug-drug Interactions Via Text Mining
– volume: 8
  start-page: 1
  year: 2016
  ident: 10.1016/j.neucom.2025.131837_bib18
  article-title: DASPfind: new efficient method to predict drug–target interactions
  publication-title: J. Chemin..
  doi: 10.1186/s13321-016-0128-4
– volume: 76
  year: 2020
  ident: 10.1016/j.neucom.2025.131837_bib44
  article-title: Text feature extraction based on stacked variational autoencoder
  publication-title: Microprocess Micro
– volume: 35
  start-page: 104
  issue: 1
  year: 2019
  ident: 10.1016/j.neucom.2025.131837_bib50
  article-title: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty543
– volume: 12
  start-page: 70297
  year: 2024
  ident: 10.1016/j.neucom.2025.131837_bib12
  article-title: LncRNA expression profile-based matrix factorization for identifying lncRNA-disease association
  publication-title: S. IEEE Access
  doi: 10.1109/ACCESS.2024.3401005
– volume: 54
  start-page: 735
  issue: 3
  year: 2014
  ident: 10.1016/j.neucom.2025.131837_bib41
  article-title: Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci400709d
– volume: 263
  year: 2023
  ident: 10.1016/j.neucom.2025.131837_bib13
  article-title: SMAP: Similarity-based matrix factorization framework for inferring miRNA-disease association
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.110295
SSID ssj0017129
Score 2.4616253
Snippet The rapid identification of novel drug–target interactions (DTIs) remains a critical challenge in drug development, as traditional experimental methods are...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 131837
SubjectTerms Drug
Drug-target interaction
Neural collaborative filtering
Protein
Stacked variational autoencoder
Target
Title SVDTI: Stacked variational autoencoder with SMILES-based drug representations for identifying drug-target interaction
URI https://dx.doi.org/10.1016/j.neucom.2025.131837
Volume 661
WOSCitedRecordID wos001614694600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELZ47IELLLCIx-7KB26VUfN0zK1iu9oiQEgtqLfIsZOlSARUGuDnM2M7baArtCAhRVYUJU7lbzKemc58Q8i-5DrOwQ1gPG5rFmZKMwkj41hXHIioiAJtmk3ws7NkOBTnrof7vWknwMsyeXoSd58KNVwDsLF09h1wTyeFC3AOoMMIsMP4X8D3L38Neujogx0Jn6huPYA7XIf8ZDW5RepKZJAwIdj-ae-k22e4memWHld_W4bmsi5JKg1dQ2tkynltSRTexGwCuSGbGNvSiKaVaxg_lOkX4SIRnRskZNAofWKm9IwIja4enYS64INvgg_eLPg4XxVjQ4t-xMBufKFlY8u5PqexbfDg-qDMK0zfgZdEBx4qGj7boaZ5g32cGmcGww0OESySZZ9HAtTZcqfXHR5P_0Dinm9pFt1PqasmTWrf_Lv-bZU0LI3BV7LqXATasdCuk4W83CBrdfsN6rTxJqkM0ofU4UwbONMGzhRxpk2cKUJIX-FMAWfawJk2cKYNnL-Ri9_dwdEf5rpoMAXqeMJ83fYLzoNMJSrO2lJGAr5DnonMTzKdB7Ad6lyC589jhf5_ESLfU1hkOgNj2-PBFlkqb8t8m1Cfw02hjiMpglAUKilkFHq5p9pKwmbl7RBWr2J6Z8lS0jqL8Dq1q57iqqd21XcIr5c6dQafNeRSkI43n9z98JN7ZGUmyN_J0mRc5T_IF_UwGd2PfzoxegbLkH69
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVDTI%3A+Stacked+variational+autoencoder+with+SMILES-based+drug+representations+for+identifying+drug-target+interaction&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Ha%2C+Jihwan&rft.date=2026-01-14&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.volume=661&rft_id=info:doi/10.1016%2Fj.neucom.2025.131837&rft.externalDocID=S0925231225025093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon