SVDTI: Stacked variational autoencoder with SMILES-based drug representations for identifying drug-target interaction
The rapid identification of novel drug–target interactions (DTIs) remains a critical challenge in drug development, as traditional experimental methods are both resource-intensive and time-consuming. Motivated by the need to accelerate drug discovery and reduce experimental costs, computational stra...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 661; s. 131837 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
14.01.2026
|
| Témata: | |
| ISSN: | 0925-2312 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The rapid identification of novel drug–target interactions (DTIs) remains a critical challenge in drug development, as traditional experimental methods are both resource-intensive and time-consuming. Motivated by the need to accelerate drug discovery and reduce experimental costs, computational strategies have emerged as powerful alternatives, leveraging advanced algorithms and data-driven approaches to predict potential DTIs efficiently. In this paper, we introduce a novel method, which employs a stacked variational autoencoder (SVAE) to efficiently predict drug–target interactions, with the goal of enhancing the understanding and identification of these crucial relationships in drug discovery. This model leverages protein sequences and drug chemical properties as input features. It employs a stacked variational autoencoder (SVAE) with Long Short-Term Memory (LSTM) networks to map high-dimensional data into compact, informative low-dimensional vectors. The LSTM architecture captures temporal dependencies in protein sequences, thereby enhancing the model's ability to encode complex patterns. Next, the feature representation is fed into a neural collaborative filtering (NCF) model. This model combines the linear characteristics of matrix factorization with the nonlinear representation power of a multi-layer perceptron (MLP) to generate the final prediction, thereby improving the accuracy of DTI prediction. As a result, in comparison to existing state-of-the-art methods for DTIs prediction, our model demonstrates remarkable improvements in predictive performance. These findings highlight the capability of the proposed model to effectively integrate diverse sources of information for predicting DTIs, addressing critical challenges in drug discovery and offering a robust and efficient framework that contributes valuable perspectives to the field. |
|---|---|
| AbstractList | The rapid identification of novel drug–target interactions (DTIs) remains a critical challenge in drug development, as traditional experimental methods are both resource-intensive and time-consuming. Motivated by the need to accelerate drug discovery and reduce experimental costs, computational strategies have emerged as powerful alternatives, leveraging advanced algorithms and data-driven approaches to predict potential DTIs efficiently. In this paper, we introduce a novel method, which employs a stacked variational autoencoder (SVAE) to efficiently predict drug–target interactions, with the goal of enhancing the understanding and identification of these crucial relationships in drug discovery. This model leverages protein sequences and drug chemical properties as input features. It employs a stacked variational autoencoder (SVAE) with Long Short-Term Memory (LSTM) networks to map high-dimensional data into compact, informative low-dimensional vectors. The LSTM architecture captures temporal dependencies in protein sequences, thereby enhancing the model's ability to encode complex patterns. Next, the feature representation is fed into a neural collaborative filtering (NCF) model. This model combines the linear characteristics of matrix factorization with the nonlinear representation power of a multi-layer perceptron (MLP) to generate the final prediction, thereby improving the accuracy of DTI prediction. As a result, in comparison to existing state-of-the-art methods for DTIs prediction, our model demonstrates remarkable improvements in predictive performance. These findings highlight the capability of the proposed model to effectively integrate diverse sources of information for predicting DTIs, addressing critical challenges in drug discovery and offering a robust and efficient framework that contributes valuable perspectives to the field. |
| ArticleNumber | 131837 |
| Author | Ha, Jihwan |
| Author_xml | – sequence: 1 givenname: Jihwan surname: Ha fullname: Ha, Jihwan email: jhha@pknu.ac.kr organization: Major of Big Data Convergence, Division of Data Information Science, Pukyong National University, Busan 48513, South Korea |
| BookMark | eNp9kMtOwzAQRb0oEi3wByz8Awm283DCAgmVApWKWKSwtRx7Ulxau7Ldov49acOazYxGOvdqdCZoZJ0FhG4pSSmh5d06tbBXbpsywoqUZrTK-AiNSc2KhGWUXaJJCGtCKKesHqN98_m0nN_jJkr1DRofpDcyGmflBst9dGCV0-Dxj4lfuHmbL2ZN0srQk9rvV9jDzkMAG8-ZgDvnsdH9bbqjsaszlETpVxCxsRG8VCfwGl10chPg5m9foY_n2XL6mizeX-bTx0WiWMFjwjRhHedZqypVtkTKoq5oxdu6ZVWrIat4qUEySnip-sm6nBJS5V2r24zllGdXKB96lXcheOjEzput9EdBiTjpEmsx6BInXWLQ1ccehhj0vx0MeBGU6U2ANh5UFNqZ_wt-AQenezY |
| Cites_doi | 10.1093/bib/bbab582 10.1007/978-1-62703-107-3_9 10.1093/bib/bbab042 10.1093/nar/gkh081 10.1038/s41598-023-27995-5 10.1093/bioinformatics/btae533 10.1093/bib/bbac384 10.1093/bib/bby010 10.1093/nar/gkr777 10.1371/journal.pone.0066952 10.1016/j.jbi.2020.103381 10.1016/j.neucom.2020.12.068 10.1039/D4SC06864E 10.1186/2193-9616-1-17 10.1093/bioinformatics/btn162 10.1038/s41573-023-00672-y 10.1016/j.csbj.2024.06.032 10.2174/1389202922666210920125800 10.1109/ICICS49469.2020.239556 10.1007/s44196-024-00561-1 10.1093/bioinformatics/btaa1005 10.1371/journal.pcbi.1004760 10.1016/j.ygeno.2019.06.021 10.1093/nar/gkm958 10.1039/c2mb00002d 10.1016/j.neucom.2023.126509 10.1016/j.ins.2024.121360 10.1093/nar/27.1.29 10.3390/ijms26094283 10.1371/journal.pcbi.1002503 10.3390/jpm12060885 10.1016/j.sbi.2021.102327 10.1093/nar/gkw1092 10.1038/nbt.1990 10.1126/science.287.5460.1960 10.1093/bib/bbad079 10.1093/bioinformatics/btaa880 10.1109/TCBB.2022.3191972 10.1093/nar/gkae1075 10.1145/2487575.2487670 10.1093/bib/bbaa430 10.1016/j.eswa.2020.113662 10.1109/ACCESS.2021.3084148 10.1371/journal.pone.0246920 10.1093/nar/gkj102 10.3390/biomedicines13010136 10.1016/j.neucom.2022.04.104 10.1016/j.compbiomed.2025.110442 10.1109/BIBM.2015.7359921 10.1016/j.jbi.2019.103358 10.1093/bioinformatics/btq382 10.1016/j.compbiomed.2024.108339 10.1109/ACCESS.2025.3568461 10.1016/j.physd.2019.132306 10.1186/s12918-019-0700-4 10.3390/biomedicines13030536 10.1093/nar/gkm862 10.1186/s13321-016-0128-4 10.1093/bioinformatics/bty543 10.1109/ACCESS.2024.3401005 10.1021/ci400709d 10.1016/j.knosys.2023.110295 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2025.131837 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_neucom_2025_131837 S0925231225025093 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYFN AAYWO ABBOA ABCQJ ABFNM ABJNI ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSN SSV SSZ T5K ZMT ~G- ~HD 29N 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ LG9 M41 R2- SBC WUQ XPP |
| ID | FETCH-LOGICAL-c257t-2d02f773bc8c6b0aa598187b9b28bde3876dea21076c2102f410084fbdb324173 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001614694600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Thu Nov 27 00:59:55 EST 2025 Sat Nov 29 17:02:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Drug Target Neural collaborative filtering Stacked variational autoencoder Drug-target interaction Protein |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c257t-2d02f773bc8c6b0aa598187b9b28bde3876dea21076c2102f410084fbdb324173 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2025_131837 elsevier_sciencedirect_doi_10_1016_j_neucom_2025_131837 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-01-14 |
| PublicationDateYYYYMMDD | 2026-01-14 |
| PublicationDate_xml | – month: 01 year: 2026 text: 2026-01-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2026 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ha (bib64) Feb. 2025; 13 Bhargava, Sharma, Suravajhala (bib10) 2021; 22 Poleksic (bib16) 2023; 13 Cho, Ha, Park, Park (bib42) 2020; 103 Masoudi-Sobhanzadeh, Omidi, Amanlou, Masoudi-Nejad (bib3) 2020; 112 Yamanishi (bib9) 2013 Tang, Szwajda, Shakyawar, Xu, Hintsanen, Wennerberg (bib41) 2014; 54 Ogata, Goto, Sato, Fujibuchi, Bono, Kanehisa (bib57) 1999; 27 Lian, Wang, Du (bib20) 2022; 500 Huang, Xiao, Glass, Sun (bib27) 2021; 37 Ha, Park (bib8) 2021; 9 Lian, Wang, Du (bib32) 2023; 551 Islam, Hossain, Ray (bib22) 2021; 16 Percha, Garten, Altman (bib24) 2012 Schomburg, Chang, Ebeling, Gremse, Heldt, Huhn, Schomburg (bib36) 2004; 32 Norouzi, Norouzi, Abbasi, Norouzi, Razzaghi (bib62) 2025; 194 Shang, Gao, Zou, Yu (bib31) 2021; 434 Davis, Hunt, Herrgard, Ciceri, Wodicka, Pallares (bib40) 2011; 29 Sherstinsky (bib43) 2020; 404 Drews (bib1) 2000; 287 Chen, Liu, Yan (bib17) 2012; 8 Cheng, Liu, Jiang, Lu, Li, Liu (bib19) 2012; 8 Zhao, Su, Yang, Li, Li, Hu, Hu (bib59) 2024; 23 Peng, Wang, Guan, Li, Han, Hao (bib51) 2021; 22 Masoudi-Nejad, Mousavian, Bozorgmehr (bib2) 2013; 1 Liu, Wu, Miao, Zhao, Li (bib52) 2016; 12 Wang, Luo, Qin, Wang, Wan, Fang, Kang (bib60) 2025; 16 Zhang, Wang, Guan, Jain, Wang, Roy (bib30) 2024; 17 Cheng, Han, Zhu, Qi, Wang, Zhang (bib4) 2021; 22 Hao, Bryant, Wang (bib11) 2019; 20 Günther, Kuhn, Dunkel, Campillos, Senger, Petsalaki (bib38) 2007; 36 Kim, Ha (bib65) 2025; 13 Huang, Fu, Glass, Zitnik, Xiao, Sun (bib26) 2020; 36 Wishart, Knox, Guo, Cheng, Shrivastava, Tzur (bib37) 2008; 36 Gaulton, Bellis, Bento, Chambers, Davies, Hersey (bib56) 2012; 40 Ding, Tang, Guo, Zou (bib15) 2022; 23 Ha, Park (bib46) 2022; 20 Ha (bib13) 2023; 263 Abbasi, Razzaghi (bib63) 2020; 160 Wan, Hong, Xiao, Jiang, Zeng (bib50) 2019; 35 Ha (bib12) 2024; 12 Zhang, Wang, Guan, Jain, Wang, Roy (bib55) 2024; 17 Ba-Alawi, Soufan, Essack, Kalnis, Bajic (bib18) 2016; 8 Ahmed, Ansari, Zhang (bib54) 2024; 40 Zhao, Su, Hu, Ma, Zhou, Hu (bib61) 2022; 23 Kanehisa, Furumichi, Tanabe, Sato, Morishima (bib34) 2017; 45 Zhang, Wang, Wang, Meng, Cui (bib53) 2023; 24 Li, Hilgenfeld, Whitley, De Clercq (bib5) 2023; 22 Lemaître, Nogueira, Aridas (bib48) 2017; 18 Ha (bib14) 2022; 12 Tari, Anwar, Liang, Cai, Baral (bib25) 2010; 26 Ha, Park, Park (bib6) 2019; 13 Zhang, Chen, Zhong, Wang, Jiang, Zhang, Li (bib29) 2022; 73 Mohammed R., Rawashdeh J., Abdullah M. Machine learning with oversampling and undersampling techniques: overview study and experimental results. In: 2020 11th Int Conf Inf Commun Syst (ICICS); 2020 Apr; 243-248. IEEE. Kanehisa, Goto, Hattori, Aoki-Kinoshita, Itoh, Kawashima (bib35) 2006; 34 Shi J.Y., Yiu S.M. SRP: A concise non-parametric similarity-rank-based model for predicting drug-target interactions. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2015 Nov; 1636-1641. IEEE. Ha (bib45) 2025; 13 Gao, Zhang, Chen, Zhang, Wang, Wang, Song (bib28) 2024; 173 Ha, Park, Park, Park (bib7) 2020; 102 Van Laarhoven, Marchiori (bib21) 2013; 8 Liu, Hwang, Burley, Nitsche, Southan, Walters (bib39) 2025; 53 Ha, Kim (bib66) 2025; 26 Yamanishi, Araki, Gutteridge, Honda, Kanehisa (bib33) 2008; 24 Che, Yang, Wang (bib44) 2020; 76 Zheng X., Ding H., Mamitsuka H., Zhu S. Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: Proc 19th ACM SIGKDD Int Conf Knowl Discov Data Mining; 2013 Aug; 1025-1033. Zhao, Su, Yang, Li, Li, Hu, Hu (bib58) 2025; 686 Masoudi-Nejad (10.1016/j.neucom.2025.131837_bib2) 2013; 1 Poleksic (10.1016/j.neucom.2025.131837_bib16) 2023; 13 Lian (10.1016/j.neucom.2025.131837_bib32) 2023; 551 Masoudi-Sobhanzadeh (10.1016/j.neucom.2025.131837_bib3) 2020; 112 Ba-Alawi (10.1016/j.neucom.2025.131837_bib18) 2016; 8 Ha (10.1016/j.neucom.2025.131837_bib66) 2025; 26 Liu (10.1016/j.neucom.2025.131837_bib39) 2025; 53 Zhang (10.1016/j.neucom.2025.131837_bib55) 2024; 17 Zhao (10.1016/j.neucom.2025.131837_bib61) 2022; 23 Kim (10.1016/j.neucom.2025.131837_bib65) 2025; 13 Yamanishi (10.1016/j.neucom.2025.131837_bib33) 2008; 24 Ha (10.1016/j.neucom.2025.131837_bib14) 2022; 12 Cheng (10.1016/j.neucom.2025.131837_bib19) 2012; 8 Tari (10.1016/j.neucom.2025.131837_bib25) 2010; 26 Percha (10.1016/j.neucom.2025.131837_bib24) 2012 Günther (10.1016/j.neucom.2025.131837_bib38) 2007; 36 Wang (10.1016/j.neucom.2025.131837_bib60) 2025; 16 Hao (10.1016/j.neucom.2025.131837_bib11) 2019; 20 10.1016/j.neucom.2025.131837_bib49 Yamanishi (10.1016/j.neucom.2025.131837_bib9) 2013 Huang (10.1016/j.neucom.2025.131837_bib26) 2020; 36 Ha (10.1016/j.neucom.2025.131837_bib8) 2021; 9 Bhargava (10.1016/j.neucom.2025.131837_bib10) 2021; 22 Kanehisa (10.1016/j.neucom.2025.131837_bib35) 2006; 34 Ha (10.1016/j.neucom.2025.131837_bib64) 2025; 13 Liu (10.1016/j.neucom.2025.131837_bib52) 2016; 12 Zhang (10.1016/j.neucom.2025.131837_bib53) 2023; 24 Ha (10.1016/j.neucom.2025.131837_bib45) 2025; 13 Cho (10.1016/j.neucom.2025.131837_bib42) 2020; 103 Ogata (10.1016/j.neucom.2025.131837_bib57) 1999; 27 Wishart (10.1016/j.neucom.2025.131837_bib37) 2008; 36 Li (10.1016/j.neucom.2025.131837_bib5) 2023; 22 Ha (10.1016/j.neucom.2025.131837_bib46) 2022; 20 10.1016/j.neucom.2025.131837_bib47 Ding (10.1016/j.neucom.2025.131837_bib15) 2022; 23 Gao (10.1016/j.neucom.2025.131837_bib28) 2024; 173 Davis (10.1016/j.neucom.2025.131837_bib40) 2011; 29 Kanehisa (10.1016/j.neucom.2025.131837_bib34) 2017; 45 Abbasi (10.1016/j.neucom.2025.131837_bib63) 2020; 160 Drews (10.1016/j.neucom.2025.131837_bib1) 2000; 287 Zhang (10.1016/j.neucom.2025.131837_bib30) 2024; 17 Ha (10.1016/j.neucom.2025.131837_bib13) 2023; 263 Huang (10.1016/j.neucom.2025.131837_bib27) 2021; 37 Sherstinsky (10.1016/j.neucom.2025.131837_bib43) 2020; 404 Norouzi (10.1016/j.neucom.2025.131837_bib62) 2025; 194 Ha (10.1016/j.neucom.2025.131837_bib6) 2019; 13 Wan (10.1016/j.neucom.2025.131837_bib50) 2019; 35 Ahmed (10.1016/j.neucom.2025.131837_bib54) 2024; 40 Tang (10.1016/j.neucom.2025.131837_bib41) 2014; 54 Che (10.1016/j.neucom.2025.131837_bib44) 2020; 76 Lian (10.1016/j.neucom.2025.131837_bib20) 2022; 500 Cheng (10.1016/j.neucom.2025.131837_bib4) 2021; 22 Gaulton (10.1016/j.neucom.2025.131837_bib56) 2012; 40 Zhao (10.1016/j.neucom.2025.131837_bib59) 2024; 23 Chen (10.1016/j.neucom.2025.131837_bib17) 2012; 8 Van Laarhoven (10.1016/j.neucom.2025.131837_bib21) 2013; 8 Peng (10.1016/j.neucom.2025.131837_bib51) 2021; 22 Ha (10.1016/j.neucom.2025.131837_bib7) 2020; 102 Zhang (10.1016/j.neucom.2025.131837_bib29) 2022; 73 Shang (10.1016/j.neucom.2025.131837_bib31) 2021; 434 Zhao (10.1016/j.neucom.2025.131837_bib58) 2025; 686 Islam (10.1016/j.neucom.2025.131837_bib22) 2021; 16 Lemaître (10.1016/j.neucom.2025.131837_bib48) 2017; 18 Schomburg (10.1016/j.neucom.2025.131837_bib36) 2004; 32 10.1016/j.neucom.2025.131837_bib23 Ha (10.1016/j.neucom.2025.131837_bib12) 2024; 12 |
| References_xml | – volume: 17 start-page: 165 year: 2024 ident: bib30 article-title: MocFormer: a two-stage pre-training-driven transformer for drug–target interactions prediction publication-title: Int. J. Comput. Intell. Syst. – volume: 13 start-page: 536 year: Feb. 2025 ident: bib64 article-title: DeepWalk-based graph embeddings for miRNA–disease association prediction using deep neural network publication-title: Biomedicines – volume: 500 start-page: 1 year: 2022 end-page: 12 ident: bib20 article-title: Integrated multi-similarity fusion and heterogeneous graph inference for drug-target interaction prediction publication-title: Neurocomputing – volume: 76 year: 2020 ident: bib44 article-title: Text feature extraction based on stacked variational autoencoder publication-title: Microprocess Micro – volume: 160 year: 2020 ident: bib63 article-title: Incorporating part-whole hierarchies into fully convolutional network for scene parsing publication-title: Expert Syst. Appl. – volume: 36 start-page: D901 year: 2008 end-page: D906 ident: bib37 article-title: DrugBank: a knowledgebase for drugs, drug actions and drug targets publication-title: Nucleic Acids Res. – volume: 22 year: 2021 ident: bib10 article-title: Chemogenomic approaches for revealing drug-target interactions in drug discovery publication-title: Curr. Genom. – start-page: 97 year: 2013 end-page: 113 ident: bib9 article-title: Chemogenomic approaches to infer drug-target interaction networks publication-title: Data Min. Syst. Biol. Methods Protoc. – volume: 23 start-page: bbac384 year: 2022 ident: bib61 article-title: A geometric deep learning framework for drug repositioning over heterogeneous information networks publication-title: Brief. Bioinform. – volume: 12 start-page: 885 year: 2022 ident: bib14 article-title: MDMF: predicting miRNA–disease association based on matrix factorization with disease similarity constraint publication-title: J. Pers. Med. – volume: 40 start-page: D1100 year: 2012 end-page: D1107 ident: bib56 article-title: ChEMBL: a large-scale bioactivity database for drug discovery publication-title: Nucleic Acids Res. – volume: 22 start-page: 1442 year: 2021 end-page: 1450 ident: bib4 article-title: Functional alterations caused by mutations reflect evolutionary trends of SARS-CoV-2 publication-title: Brief. Bioinform – volume: 36 start-page: D919 year: 2007 end-page: D922 ident: bib38 article-title: SuperTarget and Matador: resources for exploring drug-target relationships publication-title: Nucleic Acids Res. – volume: 173 year: 2024 ident: bib28 article-title: Graphormerdti: a graph transformer-based approach for drug-target interaction prediction publication-title: Comput. Biol. Med. – volume: 404 year: 2020 ident: bib43 article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network publication-title: Phys. D Nonlinear Phenomena – volume: 102 year: 2020 ident: bib7 article-title: IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization publication-title: J. Biomed. Inf. – volume: 53 start-page: D1633 year: 2025 end-page: D1644 ident: bib39 article-title: BindingDB in 2024: a FAIR knowledgebase of protein-small molecule binding data publication-title: Nucleic Acids Res. – volume: 1 start-page: 1 year: 2013 end-page: 4 ident: bib2 article-title: Drug-target and disease networks: polypharmacology in the post-genomic era publication-title: Silico Pharm. – volume: 9 start-page: 78847 year: 2021 end-page: 78858 ident: bib8 article-title: MLMD: Metric learning for predicting miRNA-disease associations publication-title: IEEE Access – volume: 45 start-page: D353 year: 2017 end-page: D361 ident: bib34 article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs publication-title: Nucleic Acids Res. – reference: Zheng X., Ding H., Mamitsuka H., Zhu S. Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: Proc 19th ACM SIGKDD Int Conf Knowl Discov Data Mining; 2013 Aug; 1025-1033. – volume: 23 start-page: 2924 year: 2024 end-page: 2933 ident: bib59 article-title: A heterogeneous information network learning model with neighborhood-level structural representation for predicting lncRNA–miRNA interactions publication-title: Comput. Struct. Biotechnol. J. – volume: 16 year: 2021 ident: bib22 article-title: DTI-SNNFRA: drug-target interaction prediction by shared nearest neighbors and fuzzy-rough approximation publication-title: PLoS One – reference: Shi J.Y., Yiu S.M. SRP: A concise non-parametric similarity-rank-based model for predicting drug-target interactions. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2015 Nov; 1636-1641. IEEE. – volume: 8 year: 2012 ident: bib19 article-title: Prediction of drug-target interactions and drug repositioning via network-based inference publication-title: PLoS Comput. Biol. – volume: 13 start-page: 136 year: 2025 ident: bib45 article-title: Graph Convolutional Network with Neural Collaborative Filtering for Predicting miRNA-Disease Association publication-title: Biomedicines – volume: 27 start-page: 29 year: 1999 end-page: 34 ident: bib57 article-title: KEGG: Kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res. – volume: 24 start-page: i232 year: 2008 end-page: i240 ident: bib33 article-title: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces publication-title: Bioinformatics – volume: 40 year: 2024 ident: bib54 article-title: DTI-LM: language model powered drug-target interaction prediction publication-title: Bioinformatics – volume: 22 start-page: 449 year: 2023 end-page: 475 ident: bib5 article-title: Therapeutic strategies for COVID-19: progress and lessons learned publication-title: Nat. Rev. Drug Discov. – volume: 8 start-page: 1970 year: 2012 end-page: 1978 ident: bib17 article-title: Drug–target interaction prediction by random walk on the heterogeneous network publication-title: Mol. Biosyst. – volume: 13 start-page: 1 year: 2019 end-page: 13 ident: bib6 article-title: PMAMCA: prediction of microRNA-disease association utilizing a matrix completion approach publication-title: BMC Syst. Biol. – volume: 20 start-page: 1465 year: 2019 end-page: 1474 ident: bib11 article-title: Open-source chemogenomic data-driven algorithms for predicting drug–target interactions publication-title: Brief. Bioinform. – volume: 686 year: 2025 ident: bib58 article-title: Regulation-aware graph learning for drug repositioning over heterogeneous biological network publication-title: Inf. Sci. – volume: 12 year: 2016 ident: bib52 article-title: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction publication-title: PLoS Comput. Biol. – volume: 26 start-page: 4283 year: 2025 ident: bib66 article-title: Neighborhood-regularized matrix factorization for lncRNA–disease association identification publication-title: Int. J. Mol. Sci. – volume: 34 start-page: D354 year: 2006 end-page: D357 ident: bib35 article-title: From genomics to chemical genomics: new developments in KEGG publication-title: Nucleic Acids Res. – volume: 18 start-page: 1 year: 2017 end-page: 5 ident: bib48 article-title: Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning publication-title: J. Mach. Learn Res. – volume: 13 start-page: 959 year: 2023 ident: bib16 article-title: Hyperbolic matrix factorization improves prediction of drug-target associations publication-title: Sci. Rep. – volume: 54 start-page: 735 year: 2014 end-page: 743 ident: bib41 article-title: Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis publication-title: J. Chem. Inf. Model – volume: 37 start-page: 830 year: 2021 end-page: 836 ident: bib27 article-title: MolTrans: molecular interaction transformer for drug–target interaction prediction publication-title: Bioinformatics – volume: 16 start-page: 637 year: 2025 end-page: 648 ident: bib60 article-title: 3DSMILES-GPT: 3D molecular pocket-based generation with token-only large language model publication-title: Chem. Sci. – volume: 73 year: 2022 ident: bib29 article-title: Graph neural network approaches for drug-target interactions publication-title: Curr. Opin. Struct. Biol. – volume: 26 start-page: i547 year: 2010 end-page: i553 ident: bib25 article-title: Discovering drug–drug interactions: a text-mining and reasoning approach based on properties of drug metabolism publication-title: Bioinformatics – volume: 194 year: 2025 ident: bib62 article-title: DFT_ANPD: A dual-feature two-sided attention network for anticancer natural products detection publication-title: Comput. Biol. Med. – volume: 24 year: 2023 ident: bib53 article-title: MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug-target interaction prediction publication-title: Brief. Bioinform. – volume: 17 start-page: 165 year: 2024 ident: bib55 article-title: MocFormer: a two-stage pre-training-driven transformer for drug–target interactions prediction publication-title: Int. J. Comput. Intell. Syst. – volume: 8 start-page: 1 year: 2016 end-page: 9 ident: bib18 article-title: DASPfind: new efficient method to predict drug–target interactions publication-title: J. Chemin.. – volume: 29 start-page: 1046 year: 2011 end-page: 1051 ident: bib40 article-title: Comprehensive analysis of kinase inhibitor selectivity publication-title: Nat. Biotechnol. – volume: 13 start-page: 85330 year: 2025 end-page: 85341 ident: bib65 article-title: GMFLDA: improved prediction of lncRNA-disease association via graph convolutional network publication-title: IEEE Access – volume: 112 start-page: 1087 year: 2020 end-page: 1095 ident: bib3 article-title: Drug databases and their contributions to drug repurposing publication-title: Genomics – reference: Mohammed R., Rawashdeh J., Abdullah M. Machine learning with oversampling and undersampling techniques: overview study and experimental results. In: 2020 11th Int Conf Inf Commun Syst (ICICS); 2020 Apr; 243-248. IEEE. – volume: 22 year: 2021 ident: bib51 article-title: An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction publication-title: Brief. Bioinform. – volume: 12 start-page: 70297 year: 2024 end-page: 70304 ident: bib12 article-title: LncRNA expression profile-based matrix factorization for identifying lncRNA-disease association publication-title: S. IEEE Access – volume: 551 year: 2023 ident: bib32 article-title: Drug-target interactions prediction based on network topology feature representation embedded deep forest publication-title: Neurocomputing – volume: 36 start-page: 5545 year: 2020 end-page: 5547 ident: bib26 article-title: DeepPurpose: a deep learning library for drug–target interaction prediction publication-title: Bioinformatics – volume: 20 start-page: 1257 year: 2022 end-page: 1268 ident: bib46 article-title: NCMD: Node2vec-based neural collaborative filtering for predicting miRNA-disease association publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform – volume: 32 start-page: D431 year: 2004 end-page: D433 ident: bib36 article-title: BRENDA, the enzyme database: updates and major new developments publication-title: Nucleic Acids Res. – volume: 23 year: 2022 ident: bib15 article-title: Identification of drug–target interactions via multiple kernel-based triple collaborative matrix factorization publication-title: Brief. Bioinform. – volume: 434 start-page: 80 year: 2021 end-page: 89 ident: bib31 article-title: Prediction of drug-target interactions based on multi-layer network representation learning publication-title: Neurocomputing – volume: 8 year: 2013 ident: bib21 article-title: Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile publication-title: PLoS One – start-page: 410 year: 2012 end-page: 421 ident: bib24 article-title: Discovery and Explanation of Drug-drug Interactions Via Text Mining publication-title: Biocomputing – volume: 287 start-page: 1960 year: 2000 end-page: 1964 ident: bib1 article-title: Drug discovery: a historical perspective publication-title: Science – volume: 35 start-page: 104 year: 2019 end-page: 111 ident: bib50 article-title: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions publication-title: Bioinformatics – volume: 263 year: 2023 ident: bib13 article-title: SMAP: Similarity-based matrix factorization framework for inferring miRNA-disease association publication-title: Knowl. Based Syst. – volume: 103 year: 2020 ident: bib42 article-title: Combinatorial feature embedding based on CNN and LSTM for biomedical named entity recognition publication-title: J. Biomed. Inf. – volume: 23 issue: 2 year: 2022 ident: 10.1016/j.neucom.2025.131837_bib15 article-title: Identification of drug–target interactions via multiple kernel-based triple collaborative matrix factorization publication-title: Brief. Bioinform. doi: 10.1093/bib/bbab582 – start-page: 97 year: 2013 ident: 10.1016/j.neucom.2025.131837_bib9 article-title: Chemogenomic approaches to infer drug-target interaction networks publication-title: Data Min. Syst. Biol. Methods Protoc. doi: 10.1007/978-1-62703-107-3_9 – volume: 22 start-page: 1442 issue: 2 year: 2021 ident: 10.1016/j.neucom.2025.131837_bib4 article-title: Functional alterations caused by mutations reflect evolutionary trends of SARS-CoV-2 publication-title: Brief. Bioinform doi: 10.1093/bib/bbab042 – volume: 32 start-page: D431 issue: _1 year: 2004 ident: 10.1016/j.neucom.2025.131837_bib36 article-title: BRENDA, the enzyme database: updates and major new developments publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh081 – volume: 13 start-page: 959 issue: 1 year: 2023 ident: 10.1016/j.neucom.2025.131837_bib16 article-title: Hyperbolic matrix factorization improves prediction of drug-target associations publication-title: Sci. Rep. doi: 10.1038/s41598-023-27995-5 – volume: 40 issue: 9 year: 2024 ident: 10.1016/j.neucom.2025.131837_bib54 article-title: DTI-LM: language model powered drug-target interaction prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btae533 – volume: 23 start-page: bbac384 issue: 6 year: 2022 ident: 10.1016/j.neucom.2025.131837_bib61 article-title: A geometric deep learning framework for drug repositioning over heterogeneous information networks publication-title: Brief. Bioinform. doi: 10.1093/bib/bbac384 – volume: 20 start-page: 1465 issue: 4 year: 2019 ident: 10.1016/j.neucom.2025.131837_bib11 article-title: Open-source chemogenomic data-driven algorithms for predicting drug–target interactions publication-title: Brief. Bioinform. doi: 10.1093/bib/bby010 – volume: 40 start-page: D1100 issue: D1 year: 2012 ident: 10.1016/j.neucom.2025.131837_bib56 article-title: ChEMBL: a large-scale bioactivity database for drug discovery publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr777 – volume: 8 issue: 6 year: 2013 ident: 10.1016/j.neucom.2025.131837_bib21 article-title: Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile publication-title: PLoS One doi: 10.1371/journal.pone.0066952 – volume: 103 year: 2020 ident: 10.1016/j.neucom.2025.131837_bib42 article-title: Combinatorial feature embedding based on CNN and LSTM for biomedical named entity recognition publication-title: J. Biomed. Inf. doi: 10.1016/j.jbi.2020.103381 – volume: 434 start-page: 80 year: 2021 ident: 10.1016/j.neucom.2025.131837_bib31 article-title: Prediction of drug-target interactions based on multi-layer network representation learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.12.068 – volume: 16 start-page: 637 issue: 2 year: 2025 ident: 10.1016/j.neucom.2025.131837_bib60 article-title: 3DSMILES-GPT: 3D molecular pocket-based generation with token-only large language model publication-title: Chem. Sci. doi: 10.1039/D4SC06864E – volume: 1 start-page: 1 year: 2013 ident: 10.1016/j.neucom.2025.131837_bib2 article-title: Drug-target and disease networks: polypharmacology in the post-genomic era publication-title: Silico Pharm. doi: 10.1186/2193-9616-1-17 – volume: 24 start-page: i232 issue: 13 year: 2008 ident: 10.1016/j.neucom.2025.131837_bib33 article-title: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn162 – volume: 22 start-page: 449 issue: 6 year: 2023 ident: 10.1016/j.neucom.2025.131837_bib5 article-title: Therapeutic strategies for COVID-19: progress and lessons learned publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-023-00672-y – volume: 23 start-page: 2924 year: 2024 ident: 10.1016/j.neucom.2025.131837_bib59 article-title: A heterogeneous information network learning model with neighborhood-level structural representation for predicting lncRNA–miRNA interactions publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2024.06.032 – volume: 22 issue: 5 year: 2021 ident: 10.1016/j.neucom.2025.131837_bib10 article-title: Chemogenomic approaches for revealing drug-target interactions in drug discovery publication-title: Curr. Genom. doi: 10.2174/1389202922666210920125800 – ident: 10.1016/j.neucom.2025.131837_bib47 doi: 10.1109/ICICS49469.2020.239556 – volume: 17 start-page: 165 issue: 1 year: 2024 ident: 10.1016/j.neucom.2025.131837_bib30 article-title: MocFormer: a two-stage pre-training-driven transformer for drug–target interactions prediction publication-title: Int. J. Comput. Intell. Syst. doi: 10.1007/s44196-024-00561-1 – volume: 36 start-page: 5545 issue: 22-23 year: 2020 ident: 10.1016/j.neucom.2025.131837_bib26 article-title: DeepPurpose: a deep learning library for drug–target interaction prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa1005 – volume: 12 issue: 2 year: 2016 ident: 10.1016/j.neucom.2025.131837_bib52 article-title: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004760 – volume: 112 start-page: 1087 issue: 2 year: 2020 ident: 10.1016/j.neucom.2025.131837_bib3 article-title: Drug databases and their contributions to drug repurposing publication-title: Genomics doi: 10.1016/j.ygeno.2019.06.021 – volume: 36 start-page: D901 issue: _1 year: 2008 ident: 10.1016/j.neucom.2025.131837_bib37 article-title: DrugBank: a knowledgebase for drugs, drug actions and drug targets publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm958 – volume: 8 start-page: 1970 issue: 7 year: 2012 ident: 10.1016/j.neucom.2025.131837_bib17 article-title: Drug–target interaction prediction by random walk on the heterogeneous network publication-title: Mol. Biosyst. doi: 10.1039/c2mb00002d – volume: 551 year: 2023 ident: 10.1016/j.neucom.2025.131837_bib32 article-title: Drug-target interactions prediction based on network topology feature representation embedded deep forest publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126509 – volume: 17 start-page: 165 issue: 1 year: 2024 ident: 10.1016/j.neucom.2025.131837_bib55 article-title: MocFormer: a two-stage pre-training-driven transformer for drug–target interactions prediction publication-title: Int. J. Comput. Intell. Syst. doi: 10.1007/s44196-024-00561-1 – volume: 686 year: 2025 ident: 10.1016/j.neucom.2025.131837_bib58 article-title: Regulation-aware graph learning for drug repositioning over heterogeneous biological network publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.121360 – volume: 27 start-page: 29 issue: 1 year: 1999 ident: 10.1016/j.neucom.2025.131837_bib57 article-title: KEGG: Kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.1.29 – volume: 26 start-page: 4283 issue: 9 year: 2025 ident: 10.1016/j.neucom.2025.131837_bib66 article-title: Neighborhood-regularized matrix factorization for lncRNA–disease association identification publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms26094283 – volume: 8 issue: 5 year: 2012 ident: 10.1016/j.neucom.2025.131837_bib19 article-title: Prediction of drug-target interactions and drug repositioning via network-based inference publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002503 – volume: 12 start-page: 885 issue: 6 year: 2022 ident: 10.1016/j.neucom.2025.131837_bib14 article-title: MDMF: predicting miRNA–disease association based on matrix factorization with disease similarity constraint publication-title: J. Pers. Med. doi: 10.3390/jpm12060885 – volume: 73 year: 2022 ident: 10.1016/j.neucom.2025.131837_bib29 article-title: Graph neural network approaches for drug-target interactions publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2021.102327 – volume: 45 start-page: D353 issue: D1 year: 2017 ident: 10.1016/j.neucom.2025.131837_bib34 article-title: KEGG: new perspectives on genomes, pathways, diseases and drugs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1092 – volume: 29 start-page: 1046 issue: 11 year: 2011 ident: 10.1016/j.neucom.2025.131837_bib40 article-title: Comprehensive analysis of kinase inhibitor selectivity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1990 – volume: 287 start-page: 1960 issue: 5460 year: 2000 ident: 10.1016/j.neucom.2025.131837_bib1 article-title: Drug discovery: a historical perspective publication-title: Science doi: 10.1126/science.287.5460.1960 – volume: 24 issue: 2 year: 2023 ident: 10.1016/j.neucom.2025.131837_bib53 article-title: MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug-target interaction prediction publication-title: Brief. Bioinform. doi: 10.1093/bib/bbad079 – volume: 37 start-page: 830 issue: 6 year: 2021 ident: 10.1016/j.neucom.2025.131837_bib27 article-title: MolTrans: molecular interaction transformer for drug–target interaction prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa880 – volume: 20 start-page: 1257 issue: 2 year: 2022 ident: 10.1016/j.neucom.2025.131837_bib46 article-title: NCMD: Node2vec-based neural collaborative filtering for predicting miRNA-disease association publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform doi: 10.1109/TCBB.2022.3191972 – volume: 53 start-page: D1633 issue: D1 year: 2025 ident: 10.1016/j.neucom.2025.131837_bib39 article-title: BindingDB in 2024: a FAIR knowledgebase of protein-small molecule binding data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkae1075 – ident: 10.1016/j.neucom.2025.131837_bib49 doi: 10.1145/2487575.2487670 – volume: 22 issue: 5 year: 2021 ident: 10.1016/j.neucom.2025.131837_bib51 article-title: An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction publication-title: Brief. Bioinform. doi: 10.1093/bib/bbaa430 – volume: 160 year: 2020 ident: 10.1016/j.neucom.2025.131837_bib63 article-title: Incorporating part-whole hierarchies into fully convolutional network for scene parsing publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113662 – volume: 9 start-page: 78847 year: 2021 ident: 10.1016/j.neucom.2025.131837_bib8 article-title: MLMD: Metric learning for predicting miRNA-disease associations publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3084148 – volume: 16 issue: 2 year: 2021 ident: 10.1016/j.neucom.2025.131837_bib22 article-title: DTI-SNNFRA: drug-target interaction prediction by shared nearest neighbors and fuzzy-rough approximation publication-title: PLoS One doi: 10.1371/journal.pone.0246920 – volume: 34 start-page: D354 issue: _1 year: 2006 ident: 10.1016/j.neucom.2025.131837_bib35 article-title: From genomics to chemical genomics: new developments in KEGG publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj102 – volume: 13 start-page: 136 issue: 1 year: 2025 ident: 10.1016/j.neucom.2025.131837_bib45 article-title: Graph Convolutional Network with Neural Collaborative Filtering for Predicting miRNA-Disease Association publication-title: Biomedicines doi: 10.3390/biomedicines13010136 – volume: 500 start-page: 1 year: 2022 ident: 10.1016/j.neucom.2025.131837_bib20 article-title: Integrated multi-similarity fusion and heterogeneous graph inference for drug-target interaction prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.04.104 – volume: 194 year: 2025 ident: 10.1016/j.neucom.2025.131837_bib62 article-title: DFT_ANPD: A dual-feature two-sided attention network for anticancer natural products detection publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2025.110442 – ident: 10.1016/j.neucom.2025.131837_bib23 doi: 10.1109/BIBM.2015.7359921 – volume: 102 year: 2020 ident: 10.1016/j.neucom.2025.131837_bib7 article-title: IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization publication-title: J. Biomed. Inf. doi: 10.1016/j.jbi.2019.103358 – volume: 26 start-page: i547 issue: 18 year: 2010 ident: 10.1016/j.neucom.2025.131837_bib25 article-title: Discovering drug–drug interactions: a text-mining and reasoning approach based on properties of drug metabolism publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq382 – volume: 173 year: 2024 ident: 10.1016/j.neucom.2025.131837_bib28 article-title: Graphormerdti: a graph transformer-based approach for drug-target interaction prediction publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.108339 – volume: 18 start-page: 1 issue: 17 year: 2017 ident: 10.1016/j.neucom.2025.131837_bib48 article-title: Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning publication-title: J. Mach. Learn Res. – volume: 13 start-page: 85330 year: 2025 ident: 10.1016/j.neucom.2025.131837_bib65 article-title: GMFLDA: improved prediction of lncRNA-disease association via graph convolutional network publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3568461 – volume: 404 year: 2020 ident: 10.1016/j.neucom.2025.131837_bib43 article-title: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network publication-title: Phys. D Nonlinear Phenomena doi: 10.1016/j.physd.2019.132306 – volume: 13 start-page: 1 year: 2019 ident: 10.1016/j.neucom.2025.131837_bib6 article-title: PMAMCA: prediction of microRNA-disease association utilizing a matrix completion approach publication-title: BMC Syst. Biol. doi: 10.1186/s12918-019-0700-4 – volume: 13 start-page: 536 issue: 3 year: 2025 ident: 10.1016/j.neucom.2025.131837_bib64 article-title: DeepWalk-based graph embeddings for miRNA–disease association prediction using deep neural network publication-title: Biomedicines doi: 10.3390/biomedicines13030536 – volume: 36 start-page: D919 issue: _1 year: 2007 ident: 10.1016/j.neucom.2025.131837_bib38 article-title: SuperTarget and Matador: resources for exploring drug-target relationships publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm862 – start-page: 410 year: 2012 ident: 10.1016/j.neucom.2025.131837_bib24 article-title: Discovery and Explanation of Drug-drug Interactions Via Text Mining – volume: 8 start-page: 1 year: 2016 ident: 10.1016/j.neucom.2025.131837_bib18 article-title: DASPfind: new efficient method to predict drug–target interactions publication-title: J. Chemin.. doi: 10.1186/s13321-016-0128-4 – volume: 76 year: 2020 ident: 10.1016/j.neucom.2025.131837_bib44 article-title: Text feature extraction based on stacked variational autoencoder publication-title: Microprocess Micro – volume: 35 start-page: 104 issue: 1 year: 2019 ident: 10.1016/j.neucom.2025.131837_bib50 article-title: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty543 – volume: 12 start-page: 70297 year: 2024 ident: 10.1016/j.neucom.2025.131837_bib12 article-title: LncRNA expression profile-based matrix factorization for identifying lncRNA-disease association publication-title: S. IEEE Access doi: 10.1109/ACCESS.2024.3401005 – volume: 54 start-page: 735 issue: 3 year: 2014 ident: 10.1016/j.neucom.2025.131837_bib41 article-title: Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis publication-title: J. Chem. Inf. Model doi: 10.1021/ci400709d – volume: 263 year: 2023 ident: 10.1016/j.neucom.2025.131837_bib13 article-title: SMAP: Similarity-based matrix factorization framework for inferring miRNA-disease association publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2023.110295 |
| SSID | ssj0017129 |
| Score | 2.4616253 |
| Snippet | The rapid identification of novel drug–target interactions (DTIs) remains a critical challenge in drug development, as traditional experimental methods are... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 131837 |
| SubjectTerms | Drug Drug-target interaction Neural collaborative filtering Protein Stacked variational autoencoder Target |
| Title | SVDTI: Stacked variational autoencoder with SMILES-based drug representations for identifying drug-target interaction |
| URI | https://dx.doi.org/10.1016/j.neucom.2025.131837 |
| Volume | 661 |
| WOSCitedRecordID | wos001614694600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017129 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELY24GEv7AdMsLHJD3urjBrnh2PeKihaJ4YmtaC-RbGdQJEIqG06_nzubKfN1gmxSZOqqIoSp_J3OX939X1HyBcjeMFhKWGpKiMWxTpnSgaGwfIgglJpVWrbteRMnJ-n47H84Xu4z2w7AVFV6cODvP-vUMM5ABtLZ_8C7uWgcAK-A-hwBNjh-Czgh5cnowEG-sAj4RU1nQWEw03KL6_ndyhdiQoSNgU7_D446w8ZLmamY6b1VcfKXDYlSZWVa-hMbDmvK4nCi5jbQG7FJqauNKLNcq3ih7b9InwmoneLggwGrU-unJ41ocn1T2-hPvnAbfIhWCUf16tiXGqRxwx44y9eNnGa62se2yUPbg6rosbtO_CQ-DBARyNWK9Ry3-AQh8aRgbjBR4YvySYXsQR3ttkb9Mffln8giYA7mUX_U5qqSbu1b_1Zf2YlLaYxekO2fYhAew7at-RFUb0jr5v2G9R74x1SW6SPqMeZtnCmLZwp4kzbOFOEkP6GMwWcaQtn2sKZtnDeJRen_dHxV-a7aDAN7njOuOnyUohQ6VQnqpvnsQSSJpRUPFWmCGE5NEUOkb9INMb_ZYR6T1GpjAKyHYjwPdmo7qpij9BIR8C3k65OSo1tzvI4KPM8CJO0G0olxT5hzSxm904sJWt2Ed5kbtYznPXMzfo-Ec1UZ57wOSKXgXU8eeeHf77zI3m1MuQDsjGf1sUnsqUX88ls-tmb0SPxDn7P |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVDTI%3A+Stacked+variational+autoencoder+with+SMILES-based+drug+representations+for+identifying+drug-target+interaction&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Ha%2C+Jihwan&rft.date=2026-01-14&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.volume=661&rft_id=info:doi/10.1016%2Fj.neucom.2025.131837&rft.externalDocID=S0925231225025093 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |