Deep self-weighted multi-view fuzzy clustering

Multi-view clustering has attracted considerable attention in various fields, such as computer vision and information retrieval. Most existing methods adopt a stepwise strategy to achieve a consistent representation and produce final clusters. However, this strategy neglects label consistency for th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 328; s. 114158
Hlavní autoři: Shi, Mei, Zhao, Xiaowei, Yin, Xiaoyan, Xiao, Yun, Guo, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 25.10.2025
Témata:
ISSN:0950-7051
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Multi-view clustering has attracted considerable attention in various fields, such as computer vision and information retrieval. Most existing methods adopt a stepwise strategy to achieve a consistent representation and produce final clusters. However, this strategy neglects label consistency for the same sample across different views, which results in sub-optimal representations. Furthermore, conventional methods frequently overlook the potential fuzzy membership relationships inherent in multi-view data and predominantly rely on shallow models, which fail to capture the complex properties of data, resulting in unsatisfactory outcomes. To address these challenges, we propose a novel deep self-weighted multi-view fuzzy clustering method that thoroughly explores the intricate view-specific characteristics of data to better represent consensus membership (i.e. consistent representation) between samples and centroids across multiple views. In particular, the method uses deep auto-encoders to non-linearly project samples from each view into corresponding latent spaces in a layer-wise manner. The consensus membership is then shared by samples from the middle and reconstruction layers, thereby reducing discrepancies in soft cluster assignment between the same sample in the latent and original spaces. Without introducing additional parameters, the self-weighted strategy adjusts the contribution of each view to fuzzy clustering. In addition, we adopt entropy regularization to tune the uniformity of the membership and design an alternating optimization algorithm to update all variables. Experimental results demonstrate the superior performance of the proposed method on five datasets (including images, web pages and videos) evaluated using four metrics.
AbstractList Multi-view clustering has attracted considerable attention in various fields, such as computer vision and information retrieval. Most existing methods adopt a stepwise strategy to achieve a consistent representation and produce final clusters. However, this strategy neglects label consistency for the same sample across different views, which results in sub-optimal representations. Furthermore, conventional methods frequently overlook the potential fuzzy membership relationships inherent in multi-view data and predominantly rely on shallow models, which fail to capture the complex properties of data, resulting in unsatisfactory outcomes. To address these challenges, we propose a novel deep self-weighted multi-view fuzzy clustering method that thoroughly explores the intricate view-specific characteristics of data to better represent consensus membership (i.e. consistent representation) between samples and centroids across multiple views. In particular, the method uses deep auto-encoders to non-linearly project samples from each view into corresponding latent spaces in a layer-wise manner. The consensus membership is then shared by samples from the middle and reconstruction layers, thereby reducing discrepancies in soft cluster assignment between the same sample in the latent and original spaces. Without introducing additional parameters, the self-weighted strategy adjusts the contribution of each view to fuzzy clustering. In addition, we adopt entropy regularization to tune the uniformity of the membership and design an alternating optimization algorithm to update all variables. Experimental results demonstrate the superior performance of the proposed method on five datasets (including images, web pages and videos) evaluated using four metrics.
ArticleNumber 114158
Author Shi, Mei
Zhao, Xiaowei
Xiao, Yun
Guo, Jun
Yin, Xiaoyan
Author_xml – sequence: 1
  givenname: Mei
  surname: Shi
  fullname: Shi, Mei
  organization: Guangdong Provincial Key Laboratory of Intelligent Information Processing and Shenzhen Key Laboratory of Media Security, Shenzhen University, Shenzhen, 518060, China
– sequence: 2
  givenname: Xiaowei
  surname: Zhao
  fullname: Zhao, Xiaowei
  organization: State Key Laboratory of Electromechanical Integrated Manufacturing of High-Performance Electronic Equipment, The Center for Complex Systems, School of Mechano-Electronic Engineering, Xidian University, Xi’an, 710071, Shaanxi, China
– sequence: 3
  givenname: Xiaoyan
  orcidid: 0000-0003-3265-2954
  surname: Yin
  fullname: Yin, Xiaoyan
  organization: School of Information Science and Technology, Northwest University, Xi’an, 710127, China
– sequence: 4
  givenname: Yun
  surname: Xiao
  fullname: Xiao, Yun
  organization: School of Information Science and Technology, Northwest University, Xi’an, 710127, China
– sequence: 5
  givenname: Jun
  surname: Guo
  fullname: Guo, Jun
  email: guojun@nwu.edu.cn
  organization: School of Information Science and Technology, Northwest University, Xi’an, 710127, China
BookMark eNp9j8tqwzAURLVIoUnaP-jCPyD3XsXyY1Mo6SOFQDfZC1m-SuU6dpDshuTr6-CuCwOzmsOcBZu1XUuMPSDECJg-1vF324VziAUIGSMmKPMZm0MhgWcg8ZYtQqgBQAjM5yx-ITpGgRrLT-T2Xz1V0WFoesd_HJ0iO1wu58g0Q-jJu3Z_x26sbgLd__WS7d5ed-sN336-f6yft9wImfVciIJglRSlHpMhVVbY3GppMoNZrjEVlSaZ6hxKrFLSUpZgIS20TbQp09WSJRPW-C4ET1YdvTtof1YI6qqpajVpqqummjTH2dM0o_Ha-N-rYBy1hirnyfSq6tz_gF9k9GJb
Cites_doi 10.1109/TKDE.2019.2903810
10.1016/j.eswa.2016.10.006
10.1016/j.knosys.2021.107751
10.1016/j.neucom.2021.03.090
10.1109/TKDE.2015.2448542
10.1016/j.knosys.2018.10.022
10.1109/TKDE.2021.3068461
10.1016/j.procs.2022.01.009
10.1016/j.knosys.2021.106807
10.1142/S012906570000034X
10.1016/j.neucom.2021.06.011
10.1016/j.neucom.2019.12.054
10.1016/j.neucom.2020.11.074
10.1016/j.patcog.2021.108064
10.1109/TFUZZ.2023.3335361
10.1016/j.knosys.2020.106273
10.1016/j.inffus.2018.11.019
10.1109/TPAMI.2018.2877660
10.1016/j.patcog.2023.109836
10.1016/j.patcog.2022.108815
10.1007/s13042-021-01307-7
10.1109/TSP.2019.2910475
10.1016/j.neucom.2019.06.098
10.1109/TCYB.2014.2334595
10.1016/j.neucom.2020.02.104
10.1109/TIP.2021.3083072
10.1016/j.knosys.2019.105102
10.1016/j.neucom.2019.11.070
10.1109/TMM.2020.3025666
10.1016/j.knosys.2023.110424
10.1109/TFUZZ.2024.3389705
10.1109/TIP.2017.2754939
10.1016/0098-3004(84)90020-7
10.1016/j.ins.2021.11.075
10.1109/TMM.2009.2030629
10.26599/BDMA.2018.9020003
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2025.114158
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_knosys_2025_114158
S0950705125011992
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77I
77K
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
~HD
29L
9DU
AAQXK
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
ID FETCH-LOGICAL-c257t-229e0349ba9ba71edf2f8fa5c7c178a162dae56a80b1d6ea55b0f069af4acb63
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001605741300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Sat Nov 29 06:51:17 EST 2025
Wed Dec 10 14:26:12 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Fuzzy clustering
Alternating optimization algorithm
Information entropy
Multi-view learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-229e0349ba9ba71edf2f8fa5c7c178a162dae56a80b1d6ea55b0f069af4acb63
ORCID 0000-0003-3265-2954
ParticipantIDs crossref_primary_10_1016_j_knosys_2025_114158
elsevier_sciencedirect_doi_10_1016_j_knosys_2025_114158
PublicationCentury 2000
PublicationDate 2025-10-25
PublicationDateYYYYMMDD 2025-10-25
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-25
  day: 25
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cleuziou, Exbrayat, Martin, Sublemontier (bib0028) 2009
Zhang, Xu, Lu, Huang (bib0053) 2009; 11
Luong, Nayak, Balasubramaniam, Bashar (bib0046) 2022; 131
Li, Zhang, Fu, Peng, Zhou, Hu (bib0047) 2019
Chen, Rouditchenko, Duarte, Kuehne, Thomas, Boggust, Panda, Kingsbury, Feris, Harwath, Glass, Picheny, Chang (bib0006) 2021
Pehlivan, Turksen (bib0026) 2021; 24
Wang, Yang, Liu, Fujita (bib0040) 2019; 163
Reformat, Chen, Yager (bib0025) 2018; volume 855
Huang, Zhou, Zhu, Zhang, Lv, Peng (bib0036) 2021; 30
Yang, Wang (bib0004) 2018; 1
Fu, Lin, Vasilakos, Wang (bib0003) 2020; 402
Zhang, Hu, Fu, Zhu, Cao (bib0023) 2017
Chang, Xiang, Hospedales (bib0042) 2018
Nie, Cai, Li, Li (bib0049) 2017; 27
Zhang, Nie, Li, Wei (bib0001) 2019; 50
Rupnik, Shawe-Taylor (bib0012) 2010; volume 473
A. Asuncion, D. Newman, Uci machine learning repository, 2007.
Hu, Qin, Shen, Pedrycz, Liu, Liu (bib0055) 2024; 32
Kang, Shi, Huang, Chen, Pu, Zhou, Xu (bib0020) 2020; 189
Zhao, Yang, Nie (bib0058) 2023; 144
Borlea, Precup, Borlea (bib0027) 2022; 199
Nie, Li, Li (bib0056) 2017
Huang, Tsang, Xu, Lv (bib0057) 2022; 34
Wang, Arora, Livescu, Bilmes (bib0035) 2015
Wang, Xiao, Zhu, Guo (bib0039) 2022; 586
Zhao, Ding, Fu (bib0043) 2017
Shi, Lu, Fang, Zhang (bib0048) 2024; 32
Zhao, Li, Ahmed (bib0007) 2020; 206
Chen, Qian, Chen, Zheng, Zhu (bib0021) 2019; 366
Bezdek, Ehrlich, Full (bib0054) 1984; 10
Wang, Chen, Li (bib0032) 2017
Zhang, Fu, Hu, Cao, Xie, Tao, Xu (bib0024) 2018; 42
Jiang, Chung, Wang, Deng, Wang, Qian (bib0029) 2015; 45
Liu, Wang, Gao, Han (bib0015) 2013
Wang, Chen (bib0031) 2017; 72
Cai, Nie, Cai, Huang (bib0050) 2013
Zou, Tang, Zheng, Sun, Zhang, Ding (bib0041) 2023; 267
Lai, Fyfe (bib0014) 2000; 10
Zhang, Zhang, Li, Xu (bib0038) 2021; 458
Wang, Cheng, Gao, Zhao, Jiao (bib0037) 2020; 23
Khan, Hu, Li, Diallo, Wang (bib0019) 2022; 13
Sanghavi, Verma (bib0010) 2022
Wang, Wang, Tian, Liu, Yu, Liu (bib0016) 2016
Härdle, Simar (bib0011) 2015
Guo, Shi, Zhu, Huang, He, Zhang, Tang (bib0002) 2021; 458
Li, Zhou, Qiu, Wang, Zhang, Xie (bib0044) 2020; 390
Chen, Wang, Giannakis (bib0013) 2019; 67
Yang, Sinaga (bib0030) 2021; 119
Wu, Lin, Han, Liu, Ding, Zhang, Shen (bib0005) 2018
Chang, Hu, Li, Wang, Peng (bib0045) 2021; 217
Huang, Xu, Kang, Ren (bib0017) 2019; 382
Yan, Hu, Mao, Ye, Yu (bib0033) 2021; 448
Guan, Zhang, Peng, Fan (bib0009) 2015; 27
Ma, Wang, Lin, Pan, Zhang, Yang (bib0008) 2022; 236
Fei-Fei, Fergus, Perona (bib0051) 2004
Kapil, Chawla (bib0059) 2016
Liu, Wang, Lu, Luo (bib0018) 2020
Wang, Yang, Liu (bib0022) 2019; 32
Andrew, Arora, Bilmes, Livescu (bib0034) 2013
Guo (10.1016/j.knosys.2025.114158_bib0002) 2021; 458
Huang (10.1016/j.knosys.2025.114158_bib0057) 2022; 34
Liu (10.1016/j.knosys.2025.114158_bib0015) 2013
Jiang (10.1016/j.knosys.2025.114158_bib0029) 2015; 45
Chang (10.1016/j.knosys.2025.114158_bib0045) 2021; 217
Zhang (10.1016/j.knosys.2025.114158_bib0001) 2019; 50
Borlea (10.1016/j.knosys.2025.114158_bib0027) 2022; 199
10.1016/j.knosys.2025.114158_bib0052
Yang (10.1016/j.knosys.2025.114158_bib0004) 2018; 1
Cai (10.1016/j.knosys.2025.114158_bib0050) 2013
Li (10.1016/j.knosys.2025.114158_bib0044) 2020; 390
Huang (10.1016/j.knosys.2025.114158_bib0017) 2019; 382
Kang (10.1016/j.knosys.2025.114158_bib0020) 2020; 189
Lai (10.1016/j.knosys.2025.114158_bib0014) 2000; 10
Chen (10.1016/j.knosys.2025.114158_bib0013) 2019; 67
Reformat (10.1016/j.knosys.2025.114158_bib0025) 2018; volume 855
Cleuziou (10.1016/j.knosys.2025.114158_bib0028) 2009
Shi (10.1016/j.knosys.2025.114158_bib0048) 2024; 32
Wang (10.1016/j.knosys.2025.114158_bib0016) 2016
Hu (10.1016/j.knosys.2025.114158_bib0055) 2024; 32
Zou (10.1016/j.knosys.2025.114158_bib0041) 2023; 267
Huang (10.1016/j.knosys.2025.114158_bib0036) 2021; 30
Andrew (10.1016/j.knosys.2025.114158_bib0034) 2013
Wang (10.1016/j.knosys.2025.114158_bib0031) 2017; 72
Wang (10.1016/j.knosys.2025.114158_bib0040) 2019; 163
Fei-Fei (10.1016/j.knosys.2025.114158_bib0051) 2004
Guan (10.1016/j.knosys.2025.114158_bib0009) 2015; 27
Wang (10.1016/j.knosys.2025.114158_bib0035) 2015
Zhang (10.1016/j.knosys.2025.114158_bib0053) 2009; 11
Khan (10.1016/j.knosys.2025.114158_bib0019) 2022; 13
Wu (10.1016/j.knosys.2025.114158_bib0005) 2018
Li (10.1016/j.knosys.2025.114158_bib0047) 2019
Yan (10.1016/j.knosys.2025.114158_bib0033) 2021; 448
Wang (10.1016/j.knosys.2025.114158_bib0032) 2017
Yang (10.1016/j.knosys.2025.114158_bib0030) 2021; 119
Fu (10.1016/j.knosys.2025.114158_bib0003) 2020; 402
Chang (10.1016/j.knosys.2025.114158_bib0042) 2018
Nie (10.1016/j.knosys.2025.114158_bib0049) 2017; 27
Zhao (10.1016/j.knosys.2025.114158_bib0058) 2023; 144
Zhang (10.1016/j.knosys.2025.114158_bib0023) 2017
Sanghavi (10.1016/j.knosys.2025.114158_bib0010) 2022
Nie (10.1016/j.knosys.2025.114158_bib0056) 2017
Ma (10.1016/j.knosys.2025.114158_bib0008) 2022; 236
Wang (10.1016/j.knosys.2025.114158_bib0022) 2019; 32
Wang (10.1016/j.knosys.2025.114158_bib0037) 2020; 23
Luong (10.1016/j.knosys.2025.114158_bib0046) 2022; 131
Wang (10.1016/j.knosys.2025.114158_bib0039) 2022; 586
Pehlivan (10.1016/j.knosys.2025.114158_bib0026) 2021; 24
Härdle (10.1016/j.knosys.2025.114158_bib0011) 2015
Kapil (10.1016/j.knosys.2025.114158_bib0059) 2016
Bezdek (10.1016/j.knosys.2025.114158_bib0054) 1984; 10
Zhao (10.1016/j.knosys.2025.114158_bib0007) 2020; 206
Chen (10.1016/j.knosys.2025.114158_bib0006) 2021
Chen (10.1016/j.knosys.2025.114158_bib0021) 2019; 366
Zhang (10.1016/j.knosys.2025.114158_bib0038) 2021; 458
Rupnik (10.1016/j.knosys.2025.114158_bib0012) 2010; volume 473
Zhang (10.1016/j.knosys.2025.114158_bib0024) 2018; 42
Liu (10.1016/j.knosys.2025.114158_bib0018) 2020
Zhao (10.1016/j.knosys.2025.114158_bib0043) 2017
References_xml – volume: 119
  year: 2021
  ident: bib0030
  article-title: Collaborative feature-weighted multi-view fuzzy c-means clustering
  publication-title: Pattern Recogn.
– start-page: 1488
  year: 2018
  end-page: 1497
  ident: bib0042
  article-title: Scalable and effective deep CCA via soft decorrelation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 4701
  year: 2022
  end-page: 4710
  ident: bib0010
  article-title: Multi-view multi-label canonical correlation analysis for cross-modal matching and retrieval
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: bib0054
  article-title: Fcm: the fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
– volume: 32
  start-page: 4038
  year: 2024
  end-page: 4048
  ident: bib0048
  article-title: Unsupervised domain adaptation enhanced by fuzzy prompt learning
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 390
  start-page: 108
  year: 2020
  end-page: 116
  ident: bib0044
  article-title: Deep graph regularized non-negative matrix factorization for multi-view clustering
  publication-title: Neurocomputing
– volume: 382
  start-page: 196
  year: 2019
  end-page: 209
  ident: bib0017
  article-title: Regularized nonnegative matrix factorization with adaptive local structure learning
  publication-title: Neurocomputing
– volume: 32
  start-page: 1886
  year: 2024
  end-page: 1899
  ident: bib0055
  article-title: An efficient federated multiview fuzzy c-means clustering method
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 34
  start-page: 5869
  year: 2022
  end-page: 5883
  ident: bib0057
  article-title: Measuring diversity in graph learning: a unified framework for structured multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 4279
  year: 2017
  end-page: 4287
  ident: bib0023
  article-title: Latent multi-view subspace clustering
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 458
  start-page: 14
  year: 2021
  end-page: 23
  ident: bib0002
  article-title: Improving human action recognition by jointly exploiting video and wifi clues
  publication-title: Neurocomputing
– volume: 67
  start-page: 2826
  year: 2019
  end-page: 2838
  ident: bib0013
  article-title: Graph multiview canonical correlation analysis
  publication-title: IEEE Trans. Signal Process.
– volume: 402
  start-page: 148
  year: 2020
  end-page: 161
  ident: bib0003
  article-title: An overview of recent multi-view clustering
  publication-title: Neurocomputing
– volume: 206
  year: 2020
  ident: bib0007
  article-title: Spidernet: a spiderweb graph neural network for multi-view gait recognition
  publication-title: Knowl. Based Syst.
– start-page: 2564
  year: 2017
  end-page: 2570
  ident: bib0056
  article-title: Self-weighted multiview clustering with multiple graphs
  publication-title: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017
– start-page: 2971
  year: 2017
  end-page: 2977
  ident: bib0032
  article-title: Multiple medoids based multi-view relational fuzzy clustering with minimax optimization
  publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence
– volume: 50
  start-page: 158
  year: 2019
  end-page: 167
  ident: bib0001
  article-title: Feature selection with multi-view data: a survey
  publication-title: Inform. Fus.
– start-page: 1083
  year: 2015
  end-page: 1092
  ident: bib0035
  article-title: On deep multi-view representation learning
  publication-title: International Conference on Machine Learning
– volume: 144
  year: 2023
  ident: bib0058
  article-title: Deep multi-view spectral clustering via ensemble
  publication-title: Pattern Recogn.
– start-page: 1737
  year: 2013
  end-page: 1744
  ident: bib0050
  article-title: Heterogeneous image features integration via multi-modal semi-supervised learning model
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 435
  year: 2016
  end-page: 444
  ident: bib0016
  article-title: Adaptive multi-view semi-supervised nonnegative matrix factorization
  publication-title: International Conference on Neural Information Processing
– volume: 199
  start-page: 63
  year: 2022
  end-page: 70
  ident: bib0027
  article-title: Improvement of k-means cluster quality by post processing resulted clusters
  publication-title: Proc. Comput. Sci.
– volume: 366
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib0021
  article-title: Auto-weighted multi-view constrained spectral clustering
  publication-title: Neurocomputing
– volume: 30
  start-page: 5352
  year: 2021
  end-page: 5362
  ident: bib0036
  article-title: Deep spectral representation learning from multi-view data
  publication-title: IEEE Trans. Image Process.
– volume: 45
  start-page: 688
  year: 2015
  end-page: 701
  ident: bib0029
  article-title: Collaborative fuzzy clustering from multiple weighted views
  publication-title: IEEE Trans. Cybern.
– volume: 131
  year: 2022
  ident: bib0046
  article-title: Multi-layer manifold learning for deep non-negative matrix factorization-based multi-view clustering
  publication-title: Pattern Recogn.
– volume: 163
  start-page: 1009
  year: 2019
  end-page: 1019
  ident: bib0040
  article-title: A study of graph-based system for multi-view clustering
  publication-title: Knowl. Based Syst.
– volume: 586
  start-page: 224
  year: 2022
  end-page: 238
  ident: bib0039
  article-title: Multi-view fuzzy clustering of deep random walk and sparse low-rank embedding
  publication-title: Inform. Sci.
– volume: 11
  start-page: 1276
  year: 2009
  end-page: 1288
  ident: bib0053
  article-title: Character identification in feature-length films using global face-name matching
  publication-title: IEEE Trans. Multimedia
– volume: 72
  start-page: 457
  year: 2017
  end-page: 466
  ident: bib0031
  article-title: Multi-view fuzzy clustering with minimax optimization for effective clustering of data from multiple sources
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 79
  year: 2021
  end-page: 98
  ident: bib0026
  article-title: A novel multiplicative fuzzy regression function with a multiplicative fuzzy clustering algorithm
  publication-title: Roman. J. Inform. Sci. Technol.
– reference: A. Asuncion, D. Newman, Uci machine learning repository, 2007.
– volume: 32
  start-page: 1116
  year: 2019
  end-page: 1129
  ident: bib0022
  article-title: Gmc: graph-based multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 267
  year: 2023
  ident: bib0041
  article-title: Inclusivity induced adaptive graph learning for multi-view clustering
  publication-title: Knowl. Based Syst.
– year: 2004
  ident: bib0051
  article-title: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories
  publication-title: 2004 Conference on Computer Vision and Pattern Recognition Workshop
– start-page: 1
  year: 2016
  end-page: 4
  ident: bib0059
  article-title: Performance evaluation of k-means clustering algorithm with various distance metrics
  publication-title: 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)
– start-page: 2921
  year: 2017
  end-page: 2927
  ident: bib0043
  article-title: Multi-view clustering via deep matrix factorization
  publication-title: Thirty-first AAAI Conference on Artificial Intelligence
– start-page: 1247
  year: 2013
  end-page: 1255
  ident: bib0034
  article-title: Deep canonical correlation analysis
  publication-title: International Conference on Machine Learning
– start-page: 752
  year: 2009
  end-page: 757
  ident: bib0028
  article-title: CoFKM: a centralized method for multiple-view clustering
  publication-title: ICDM 2009, The Ninth IEEE International Conference on Data Mining, Miami, Florida, USA, 6-9 December 2009
– volume: 42
  start-page: 86
  year: 2018
  end-page: 99
  ident: bib0024
  article-title: Generalized latent multi-view subspace clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 236
  year: 2022
  ident: bib0008
  article-title: A multi-view network for real-time emotion recognition in conversations
  publication-title: Knowl. Based Syst.
– volume: 23
  start-page: 3483
  year: 2020
  end-page: 3493
  ident: bib0037
  article-title: Deep multi-view subspace clustering with unified and discriminative learning
  publication-title: IEEE Trans. Multimedia
– volume: 10
  start-page: 365
  year: 2000
  end-page: 377
  ident: bib0014
  article-title: Kernel and nonlinear canonical correlation analysis
  publication-title: Int. J. Neural Syst.
– start-page: 3964
  year: 2020
  end-page: 3971
  ident: bib0018
  article-title: Multi-view non-negative matrix factorization discriminant learning via cross entropy loss
  publication-title: 2020 Chinese Control And Decision Conference (CCDC)
– start-page: 252
  year: 2013
  end-page: 260
  ident: bib0015
  article-title: Multi-view clustering via joint nonnegative matrix factorization
  publication-title: Proceedings of the 2013 SIAM International Conference on Data Mining
– start-page: 8012
  year: 2021
  end-page: 8021
  ident: bib0006
  article-title: Multimodal clustering networks for self-supervised learning from unlabeled videos
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
– start-page: 2854
  year: 2018
  end-page: 2860
  ident: bib0005
  article-title: Unsupervised deep hashing via binary latent factor models for large-scale cross-modal retrieval
  publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence
– volume: 448
  start-page: 106
  year: 2021
  end-page: 129
  ident: bib0033
  article-title: Deep multi-view learning methods: a review
  publication-title: Neurocomputing
– volume: 13
  start-page: 677
  year: 2022
  end-page: 689
  ident: bib0019
  article-title: Multi-view data clustering via non-negative matrix factorization with manifold regularization
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 458
  start-page: 47
  year: 2021
  end-page: 55
  ident: bib0038
  article-title: Robust multi-view fuzzy clustering via softmin
  publication-title: Neurocomputing
– volume: volume 473
  start-page: 1
  year: 2010
  end-page: 4
  ident: bib0012
  article-title: Multi-view canonical correlation analysis
  publication-title: Conference on Data Mining and Data Warehouses (SiKDD 2010)
– volume: volume 855
  start-page: 715
  year: 2018
  end-page: 726
  ident: bib0025
  article-title: Clustering of propositions equipped with uncertainty
  publication-title: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications - 17th International Conference, IPMU 2018, Cádiz, Spain, June 11-15, 2018, Proceedings, Part III
– start-page: 8172
  year: 2019
  end-page: 8180
  ident: bib0047
  article-title: Reciprocal multi-layer subspace learning for multi-view clustering
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 217
  year: 2021
  ident: bib0045
  article-title: Multi-view clustering via deep concept factorization
  publication-title: Knowl. Based Syst.
– start-page: 443
  year: 2015
  end-page: 454
  ident: bib0011
  article-title: Canonical correlation analysis
  publication-title: Applied Multivariate Statistical Analysis
– volume: 27
  start-page: 3016
  year: 2015
  end-page: 3028
  ident: bib0009
  article-title: Multi-view concept learning for data representation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 27
  start-page: 1501
  year: 2017
  end-page: 1511
  ident: bib0049
  article-title: Auto-weighted multi-view learning for image clustering and semi-supervised classification
  publication-title: IEEE Trans. Image Process.
– volume: 1
  start-page: 83
  year: 2018
  end-page: 107
  ident: bib0004
  article-title: Multi-view clustering: a survey
  publication-title: Big Data Mining Anal.
– volume: 189
  year: 2020
  ident: bib0020
  article-title: Multi-graph fusion for multi-view spectral clustering
  publication-title: Knowl. Based Syst.
– volume: 32
  start-page: 1116
  issue: 6
  year: 2019
  ident: 10.1016/j.knosys.2025.114158_bib0022
  article-title: Gmc: graph-based multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2903810
– volume: 72
  start-page: 457
  year: 2017
  ident: 10.1016/j.knosys.2025.114158_bib0031
  article-title: Multi-view fuzzy clustering with minimax optimization for effective clustering of data from multiple sources
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.10.006
– volume: 236
  year: 2022
  ident: 10.1016/j.knosys.2025.114158_bib0008
  article-title: A multi-view network for real-time emotion recognition in conversations
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.107751
– start-page: 2854
  year: 2018
  ident: 10.1016/j.knosys.2025.114158_bib0005
  article-title: Unsupervised deep hashing via binary latent factor models for large-scale cross-modal retrieval
– volume: 448
  start-page: 106
  year: 2021
  ident: 10.1016/j.knosys.2025.114158_bib0033
  article-title: Deep multi-view learning methods: a review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.090
– volume: 27
  start-page: 3016
  issue: 11
  year: 2015
  ident: 10.1016/j.knosys.2025.114158_bib0009
  article-title: Multi-view concept learning for data representation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2448542
– volume: 163
  start-page: 1009
  year: 2019
  ident: 10.1016/j.knosys.2025.114158_bib0040
  article-title: A study of graph-based system for multi-view clustering
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.10.022
– volume: 34
  start-page: 5869
  issue: 12
  year: 2022
  ident: 10.1016/j.knosys.2025.114158_bib0057
  article-title: Measuring diversity in graph learning: a unified framework for structured multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3068461
– volume: 199
  start-page: 63
  year: 2022
  ident: 10.1016/j.knosys.2025.114158_bib0027
  article-title: Improvement of k-means cluster quality by post processing resulted clusters
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2022.01.009
– volume: 217
  year: 2021
  ident: 10.1016/j.knosys.2025.114158_bib0045
  article-title: Multi-view clustering via deep concept factorization
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.106807
– volume: 10
  start-page: 365
  issue: 05
  year: 2000
  ident: 10.1016/j.knosys.2025.114158_bib0014
  article-title: Kernel and nonlinear canonical correlation analysis
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S012906570000034X
– volume: 458
  start-page: 47
  year: 2021
  ident: 10.1016/j.knosys.2025.114158_bib0038
  article-title: Robust multi-view fuzzy clustering via softmin
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.06.011
– year: 2004
  ident: 10.1016/j.knosys.2025.114158_bib0051
  article-title: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories
– volume: 390
  start-page: 108
  year: 2020
  ident: 10.1016/j.knosys.2025.114158_bib0044
  article-title: Deep graph regularized non-negative matrix factorization for multi-view clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.054
– volume: volume 473
  start-page: 1
  year: 2010
  ident: 10.1016/j.knosys.2025.114158_bib0012
  article-title: Multi-view canonical correlation analysis
– volume: 458
  start-page: 14
  year: 2021
  ident: 10.1016/j.knosys.2025.114158_bib0002
  article-title: Improving human action recognition by jointly exploiting video and wifi clues
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.11.074
– start-page: 1488
  year: 2018
  ident: 10.1016/j.knosys.2025.114158_bib0042
  article-title: Scalable and effective deep CCA via soft decorrelation
– start-page: 252
  year: 2013
  ident: 10.1016/j.knosys.2025.114158_bib0015
  article-title: Multi-view clustering via joint nonnegative matrix factorization
– volume: 119
  year: 2021
  ident: 10.1016/j.knosys.2025.114158_bib0030
  article-title: Collaborative feature-weighted multi-view fuzzy c-means clustering
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2021.108064
– volume: 32
  start-page: 1886
  issue: 4
  year: 2024
  ident: 10.1016/j.knosys.2025.114158_bib0055
  article-title: An efficient federated multiview fuzzy c-means clustering method
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2023.3335361
– start-page: 443
  year: 2015
  ident: 10.1016/j.knosys.2025.114158_bib0011
  article-title: Canonical correlation analysis
– start-page: 435
  year: 2016
  ident: 10.1016/j.knosys.2025.114158_bib0016
  article-title: Adaptive multi-view semi-supervised nonnegative matrix factorization
– start-page: 1247
  year: 2013
  ident: 10.1016/j.knosys.2025.114158_bib0034
  article-title: Deep canonical correlation analysis
– volume: 206
  year: 2020
  ident: 10.1016/j.knosys.2025.114158_bib0007
  article-title: Spidernet: a spiderweb graph neural network for multi-view gait recognition
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.106273
– volume: 50
  start-page: 158
  year: 2019
  ident: 10.1016/j.knosys.2025.114158_bib0001
  article-title: Feature selection with multi-view data: a survey
  publication-title: Inform. Fus.
  doi: 10.1016/j.inffus.2018.11.019
– volume: 42
  start-page: 86
  issue: 1
  year: 2018
  ident: 10.1016/j.knosys.2025.114158_bib0024
  article-title: Generalized latent multi-view subspace clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2877660
– volume: 144
  year: 2023
  ident: 10.1016/j.knosys.2025.114158_bib0058
  article-title: Deep multi-view spectral clustering via ensemble
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2023.109836
– start-page: 2921
  year: 2017
  ident: 10.1016/j.knosys.2025.114158_bib0043
  article-title: Multi-view clustering via deep matrix factorization
– volume: 131
  year: 2022
  ident: 10.1016/j.knosys.2025.114158_bib0046
  article-title: Multi-layer manifold learning for deep non-negative matrix factorization-based multi-view clustering
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2022.108815
– volume: 13
  start-page: 677
  issue: 3
  year: 2022
  ident: 10.1016/j.knosys.2025.114158_bib0019
  article-title: Multi-view data clustering via non-negative matrix factorization with manifold regularization
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-021-01307-7
– start-page: 752
  year: 2009
  ident: 10.1016/j.knosys.2025.114158_bib0028
  article-title: CoFKM: a centralized method for multiple-view clustering
– ident: 10.1016/j.knosys.2025.114158_bib0052
– start-page: 1
  year: 2016
  ident: 10.1016/j.knosys.2025.114158_bib0059
  article-title: Performance evaluation of k-means clustering algorithm with various distance metrics
– volume: 67
  start-page: 2826
  issue: 11
  year: 2019
  ident: 10.1016/j.knosys.2025.114158_bib0013
  article-title: Graph multiview canonical correlation analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2910475
– volume: 366
  start-page: 1
  year: 2019
  ident: 10.1016/j.knosys.2025.114158_bib0021
  article-title: Auto-weighted multi-view constrained spectral clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.06.098
– volume: 45
  start-page: 688
  issue: 4
  year: 2015
  ident: 10.1016/j.knosys.2025.114158_bib0029
  article-title: Collaborative fuzzy clustering from multiple weighted views
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2334595
– volume: 402
  start-page: 148
  year: 2020
  ident: 10.1016/j.knosys.2025.114158_bib0003
  article-title: An overview of recent multi-view clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.02.104
– volume: 24
  start-page: 79
  issue: 1
  year: 2021
  ident: 10.1016/j.knosys.2025.114158_bib0026
  article-title: A novel multiplicative fuzzy regression function with a multiplicative fuzzy clustering algorithm
  publication-title: Roman. J. Inform. Sci. Technol.
– volume: 30
  start-page: 5352
  year: 2021
  ident: 10.1016/j.knosys.2025.114158_bib0036
  article-title: Deep spectral representation learning from multi-view data
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3083072
– start-page: 1737
  year: 2013
  ident: 10.1016/j.knosys.2025.114158_bib0050
  article-title: Heterogeneous image features integration via multi-modal semi-supervised learning model
– volume: 189
  year: 2020
  ident: 10.1016/j.knosys.2025.114158_bib0020
  article-title: Multi-graph fusion for multi-view spectral clustering
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2019.105102
– volume: 382
  start-page: 196
  year: 2019
  ident: 10.1016/j.knosys.2025.114158_bib0017
  article-title: Regularized nonnegative matrix factorization with adaptive local structure learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.070
– volume: 23
  start-page: 3483
  year: 2020
  ident: 10.1016/j.knosys.2025.114158_bib0037
  article-title: Deep multi-view subspace clustering with unified and discriminative learning
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2020.3025666
– volume: volume 855
  start-page: 715
  year: 2018
  ident: 10.1016/j.knosys.2025.114158_bib0025
  article-title: Clustering of propositions equipped with uncertainty
– volume: 267
  year: 2023
  ident: 10.1016/j.knosys.2025.114158_bib0041
  article-title: Inclusivity induced adaptive graph learning for multi-view clustering
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2023.110424
– volume: 32
  start-page: 4038
  issue: 7
  year: 2024
  ident: 10.1016/j.knosys.2025.114158_bib0048
  article-title: Unsupervised domain adaptation enhanced by fuzzy prompt learning
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2024.3389705
– start-page: 8012
  year: 2021
  ident: 10.1016/j.knosys.2025.114158_bib0006
  article-title: Multimodal clustering networks for self-supervised learning from unlabeled videos
– start-page: 1083
  year: 2015
  ident: 10.1016/j.knosys.2025.114158_bib0035
  article-title: On deep multi-view representation learning
– volume: 27
  start-page: 1501
  issue: 3
  year: 2017
  ident: 10.1016/j.knosys.2025.114158_bib0049
  article-title: Auto-weighted multi-view learning for image clustering and semi-supervised classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2754939
– start-page: 2971
  year: 2017
  ident: 10.1016/j.knosys.2025.114158_bib0032
  article-title: Multiple medoids based multi-view relational fuzzy clustering with minimax optimization
– start-page: 3964
  year: 2020
  ident: 10.1016/j.knosys.2025.114158_bib0018
  article-title: Multi-view non-negative matrix factorization discriminant learning via cross entropy loss
– start-page: 4701
  year: 2022
  ident: 10.1016/j.knosys.2025.114158_bib0010
  article-title: Multi-view multi-label canonical correlation analysis for cross-modal matching and retrieval
– start-page: 2564
  year: 2017
  ident: 10.1016/j.knosys.2025.114158_bib0056
  article-title: Self-weighted multiview clustering with multiple graphs
– volume: 10
  start-page: 191
  issue: 2-3
  year: 1984
  ident: 10.1016/j.knosys.2025.114158_bib0054
  article-title: Fcm: the fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– volume: 586
  start-page: 224
  year: 2022
  ident: 10.1016/j.knosys.2025.114158_bib0039
  article-title: Multi-view fuzzy clustering of deep random walk and sparse low-rank embedding
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.11.075
– volume: 11
  start-page: 1276
  issue: 7
  year: 2009
  ident: 10.1016/j.knosys.2025.114158_bib0053
  article-title: Character identification in feature-length films using global face-name matching
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2009.2030629
– start-page: 4279
  year: 2017
  ident: 10.1016/j.knosys.2025.114158_bib0023
  article-title: Latent multi-view subspace clustering
– start-page: 8172
  year: 2019
  ident: 10.1016/j.knosys.2025.114158_bib0047
  article-title: Reciprocal multi-layer subspace learning for multi-view clustering
– volume: 1
  start-page: 83
  issue: 2
  year: 2018
  ident: 10.1016/j.knosys.2025.114158_bib0004
  article-title: Multi-view clustering: a survey
  publication-title: Big Data Mining Anal.
  doi: 10.26599/BDMA.2018.9020003
SSID ssj0002218
Score 2.437641
Snippet Multi-view clustering has attracted considerable attention in various fields, such as computer vision and information retrieval. Most existing methods adopt a...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 114158
SubjectTerms Alternating optimization algorithm
Deep learning
Fuzzy clustering
Information entropy
Multi-view learning
Title Deep self-weighted multi-view fuzzy clustering
URI https://dx.doi.org/10.1016/j.knosys.2025.114158
Volume 328
WOSCitedRecordID wos001605741300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002218
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELWgcODCjtiVA7fKVeIsTo6IRSwCIdFDOUWOY0uFKq1oSwtfz3hJUhYhOCBFVuIktuMXzYxHnjcIHUU-k5nwKeawVsAB5QGOiZSYZ5nSDkLlkNPJJujtbdzpJHc2S-dQpxOgRRFPp8ngX6GGOgBbhc7-Ae6qUaiAcwAdSoAdyl8BfyrEoDkUPYkn2u0JFqXeNYh1jIocv729NnlvrAgSSrVljdPr0r-GlW7LLctzZXTf6_y_zRvRnfE2a09rp8v6k7r6wfASqNrX-udTl1rgj4tZVwPRFKUmLLnyGbqYupYh1opP3wZ3GwEIyyvPcLF_kc3GTfDYeir6MP6W6qBVP_6RCvuTiqo2DpZ70h5T00qqWklNK_NogdAwiRto4fjyrHNVKWRCtJu3Gn0ZQam3-X0dzfcWyozV0V5Fy3a54BwbmNfQnCjW0UqZisOxknkDtRTqzgfUnRp1R6Pu1Khvovb5WfvkAttUGJiDTB1hQhKhmIQyBgf1RC6JjCULOeUejZkXkZyJMGKxm3l5JFgYZq50o4TJgPEs8rdQo-gXYhs5rqAe4QHcYXkQMLAIQ5lI7kfM4zKOsh2Ey69PB4bwJP1p1ncQLacotUabMcZSwP3HN3f_2NMeWqp_yn3UGD2PxQFa5C-j7vD50IL-DqLJZYE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+self-weighted+multi-view+fuzzy+clustering&rft.jtitle=Knowledge-based+systems&rft.au=Shi%2C+Mei&rft.au=Zhao%2C+Xiaowei&rft.au=Yin%2C+Xiaoyan&rft.au=Xiao%2C+Yun&rft.date=2025-10-25&rft.issn=0950-7051&rft.volume=328&rft.spage=114158&rft_id=info:doi/10.1016%2Fj.knosys.2025.114158&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2025_114158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon