Distributed moving horizon fusion estimation for linear constrained uncertain systems
In this paper, the distributed moving horizon fusion estimation of uncertain systems with constraints of system noise and state variables is studied. Firstly, relying on the basic idea of consensus algorithm, the cost function in the performance index is reconstructed by weighted fusion of the state...
Uloženo v:
| Vydáno v: | Asian journal of control Ročník 26; číslo 6; s. 3027 - 3039 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken
Wiley Subscription Services, Inc
01.11.2024
|
| Témata: | |
| ISSN: | 1561-8625, 1934-6093 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, the distributed moving horizon fusion estimation of uncertain systems with constraints of system noise and state variables is studied. Firstly, relying on the basic idea of consensus algorithm, the cost function in the performance index is reconstructed by weighted fusion of the state prediction values. Secondly, considering the performance index with uncertain parameters, the min‐max optimization problem of the algorithm is transformed into the least squares optimization problem based on 2‐norm regularization method. Thirdly, the scalar‐weighted linear minimum variance fusion estimation strategy is used to realize the weighted fusion of local state estimation values. Then, on the premise of minimum network connectivity and collective observability, the stability of the proposed algorithm is studied, and the sufficient conditions for the expected convergence of the fused estimation error norm square are given. Finally, the effectiveness of the algorithm is verified by numerical simulation. |
|---|---|
| AbstractList | In this paper, the distributed moving horizon fusion estimation of uncertain systems with constraints of system noise and state variables is studied. Firstly, relying on the basic idea of consensus algorithm, the cost function in the performance index is reconstructed by weighted fusion of the state prediction values. Secondly, considering the performance index with uncertain parameters, the min‐max optimization problem of the algorithm is transformed into the least squares optimization problem based on 2‐norm regularization method. Thirdly, the scalar‐weighted linear minimum variance fusion estimation strategy is used to realize the weighted fusion of local state estimation values. Then, on the premise of minimum network connectivity and collective observability, the stability of the proposed algorithm is studied, and the sufficient conditions for the expected convergence of the fused estimation error norm square are given. Finally, the effectiveness of the algorithm is verified by numerical simulation. |
| Author | Wang, Shoudong Xue, Binqiang |
| Author_xml | – sequence: 1 givenname: Shoudong orcidid: 0000-0001-5400-9826 surname: Wang fullname: Wang, Shoudong organization: Qingdao University – sequence: 2 givenname: Binqiang orcidid: 0000-0001-7560-5491 surname: Xue fullname: Xue, Binqiang email: xuebinqiang2005@163.com organization: Qingdao University |
| BookMark | eNp1kDtPwzAUhS1UJNrCwD-IxMSQ1rGT2Bmr8lYlBuhsOfY1uGrtYieg8utxKCvTPVf6zn2cCRo57wChywLPCozJXMaNmlHK-QkaFw0t8xo3dJR0VRc5r0l1hiYxbjCuC8qrMVrf2NgF2_Yd6GznP617y959sN_eZaaPNhWInd3JbpDGh2xrHciQKe-SUaZGZ71TELqks3iIHeziOTo1chvh4q9O0fru9nX5kK-e7x-Xi1WuSMV4XhEGHEoDlVTANdWt5C1lBlPMtAbWlLqWRDaSS6mZbk3DWkKNUappFYOWTtHVce4--I8-HSo2vg8urRS0ICVhJWNNoq6PlAo-xgBG7EP6KBxEgcWQmhhSE0NqiZ0f2S-7hcP_oFi8PC1_HT-5jXRH |
| Cites_doi | 10.1109/JSEN.2018.2808330 10.1109/TAC.2019.2897887 10.1016/j.automatica.2016.01.015 10.1016/j.automatica.2013.08.028 10.1109/TCNS.2017.2763756 10.1109/9.935054 10.1109/TCST.2017.2715849 10.1002/asjc.34 10.1109/TCST.2012.2228652 10.1109/ACCESS.2021.3050198 10.1109/JSEN.2015.2416511 10.1016/j.compchemeng.2008.10.008 10.1016/j.automatica.2015.08.016 10.1016/j.inffus.2020.01.009 10.1016/j.automatica.2010.02.010 10.1137/090762798 10.1016/S0005-1098(01)00115-7 10.1016/j.automatica.2012.09.009 10.1016/j.compchemeng.2010.07.012 10.1109/TAC.2018.2879598 10.1109/TAC.2004.834121 10.1109/BSN.2017.7936006 10.1109/TAC.2005.858684 10.3182/20070822-3-ZA-2920.00173 10.1109/TIM.2021.3094593 10.1002/rnc.1676 10.1109/ICRA.2014.6906889 10.1109/TSMC.2022.3146182 10.3724/SP.J.1004.2010.00767 10.1109/TRO.2015.2463671 |
| ContentType | Journal Article |
| Copyright | 2024 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd |
| Copyright_xml | – notice: 2024 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1002/asjc.3388 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | CrossRef ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1934-6093 |
| EndPage | 3039 |
| ExternalDocumentID | 10_1002_asjc_3388 ASJC3388 |
| Genre | article |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2017M612205 – fundername: National Natural Science Foundation of China funderid: 61603205 |
| GroupedDBID | .4S .DC 05W 0R~ 1L6 1OC 23N 31~ 33P 3SF 4.4 52U 5DZ 5GY 8-0 8-1 A00 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DRFUL DRSTM EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ I-F J9A LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O9- OIG P2W P4E PQQKQ ROL RWI SUPJJ TUS WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION JQ2 |
| ID | FETCH-LOGICAL-c2578-527e8e4fe5ace8d3dba8b37f0307dde794d6a2a9a8aad7dbf97b23ffcc9bc7eb3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001202808900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1561-8625 |
| IngestDate | Fri Jul 25 12:18:31 EDT 2025 Sat Nov 29 04:00:08 EST 2025 Wed Jan 22 17:15:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2578-527e8e4fe5ace8d3dba8b37f0307dde794d6a2a9a8aad7dbf97b23ffcc9bc7eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5400-9826 0000-0001-7560-5491 |
| PQID | 3124274779 |
| PQPubID | 866359 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3124274779 crossref_primary_10_1002_asjc_3388 wiley_primary_10_1002_asjc_3388_ASJC3388 |
| PublicationCentury | 2000 |
| PublicationDate | November 2024 2024-11-00 20241101 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Asian journal of control |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 47 2021; 9 2015; 15 2010; 36 2013; 49 2013; 21 2004; 49 2020; 60 2015; 31 2008; 10 2016; 2016 2011; 35 2001; 46 2018; 26 2021; 70 2012; 50 2009; 33 2018; 18 2018; 5 2010; 46 2019; 64 2015; 61 2008; 23 2013; 60 2017 2022; 52 2001; 37 2014 2007; 40 2005; 50 2012; 22 2021; 2021 2016; 67 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_16_1 e_1_2_12_20_1 Zhao G. R. (e_1_2_12_8_1) 2016; 2016 e_1_2_12_21_1 e_1_2_12_22_1 e_1_2_12_23_1 e_1_2_12_24_1 e_1_2_12_25_1 Zhao H. Y. (e_1_2_12_17_1) 2008; 23 Liu L. (e_1_2_12_11_1) 2021; 2021 e_1_2_12_27_1 e_1_2_12_28_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_31_1 He D. (e_1_2_12_35_1) 2021; 70 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 e_1_2_12_36_1 Ma J. (e_1_2_12_10_1) 2021; 47 e_1_2_12_15_1 Liu A. (e_1_2_12_26_1) 2013; 60 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_7_1 e_1_2_12_9_1 |
| References_xml | – volume: 49 start-page: 193 issue: 1 year: 2013 end-page: 199 article-title: A combined moving horizon and direct virtual sensor approach for constrained nonlinear estimation publication-title: Automatica – start-page: 409 year: 2014 end-page: 416 – volume: 5 start-page: 1841 issue: 4 year: 2018 end-page: 1851 article-title: Fully distributed dynamic state estimation with uncertain process models publication-title: IEEE Trans. Control Netw. Syst. – volume: 22 start-page: 123 issue: 2 year: 2012 end-page: 143 article-title: Distributed moving horizon estimation for nonlinear constrained systems publication-title: Int. J. Robust Nonlinear Control – volume: 64 start-page: 4396 issue: 10 year: 2019 end-page: 4403 article-title: Distributed Kalman filtering and control through embedded average consensus information fusion publication-title: IEEE Trans. Autom. Control – volume: 50 start-page: 1736 issue: 11 year: 2005 end-page: 1748 article-title: Receding‐horizon estimation for switching discrete‐time linear systems publication-title: IEEE Trans. Autom. Control – volume: 60 start-page: 1 year: 2020 end-page: 10 article-title: Moving horizon estimation meets multi‐sensor information fusion: development, opportunities and challenges publication-title: Inform. Fusion – volume: 18 start-page: 3780 issue: 9 year: 2018 end-page: 3788 article-title: Consistent EKF‐based visual‐inertial odometry on matrix Lie group publication-title: IEEE Sensors J. – volume: 36 start-page: 767 issue: 5 year: 2010 end-page: 772 article-title: Robust Kalman filtering for uncertain discrete‐time systems with multiple packet dropouts publication-title: Acta Autom. Sin. – volume: 26 start-page: 1300 issue: 4 year: 2018 end-page: 1316 article-title: On the convergence conditions of distributed dynamic state estimation using sensor networks: a unified framework publication-title: IEEE Trans. Control Syst. Technol. – volume: 49 start-page: 1453 issue: 9 year: 2004 end-page: 1464 article-title: Kalman filtering with intermittent observations publication-title: IEEE Trans. Autom. Control – volume: 9 start-page: 10328 year: 2021 end-page: 10337 article-title: Distributed robust dimensionality reduction fusion estimation under DoS attacks and uncertain covariances publication-title: IEEE Access – volume: 10 start-page: 277 year: 2008 end-page: 290 article-title: Multi‐sensor track‐to‐track fusion via linear minimum variance sense estimators publication-title: Asian J. Control – volume: 67 start-page: 85 year: 2016 end-page: 93 article-title: Moving‐horizon estimation with guaranteed robustness for discrete‐time linear systems and measurements subject to outliers publication-title: Automatica – volume: 70 start-page: 1 year: 2021 end-page: 12 article-title: Moving horizon estimation of constrained multisensor systems with uncertainties and fading channels publication-title: IEEE Trans. Instrument. Meas. – volume: 2016 start-page: 1413 year: 2016 end-page: 1418 article-title: Fusion estimator with stochastic sensor gain degradation for uncertain systems publication-title: Control Dec. – start-page: 2017 year: 2017 – volume: 23 start-page: 217 issue: 2 year: 2008 end-page: 220 article-title: Moving horizon estimation approach to constrained systems with uncertain noise covariance publication-title: Control Dec. – volume: 2021 start-page: 1 year: 2021 end-page: 13 article-title: Distributed fusion estimation for stochastic uncertain systems with network‐induced complexity and multiple noise publication-title: IEEE Trans. Cybern. – volume: 49 start-page: 3270 issue: 11 year: 2013 end-page: 3281 article-title: Moving horizon estimation for switching nonlinear systems publication-title: Automatica – volume: 46 start-page: 910 issue: 5 year: 2010 end-page: 918 article-title: Moving‐horizon partition‐based state estimation of large‐scale systems publication-title: Automatica – volume: 61 start-page: 302 year: 2015 end-page: 307 article-title: An iterative partition‐based moving horizon estimator with coupled inequality constraints publication-title: Automatica – volume: 47 start-page: 1 year: 2021 end-page: 13 article-title: Distributed fusion estimation for multi‐sensor systems with time‐correlated multiplicative noises publication-title: Acta Autom. Sin. – volume: 50 start-page: 1439 issue: 3 year: 2012 end-page: 1465 article-title: Min‐max moving‐horizon estimation for uncertain discrete‐time systems publication-title: SIAM J. Control Optim. – volume: 15 start-page: 4346 issue: 8 year: 2015 end-page: 4354 article-title: Fusion predictors for multisensor stochastic uncertain systems with missing measurements and unknown measurement disturbances publication-title: IEEE Sensors J. – volume: 40 start-page: 1040 issue: 12 year: 2007 end-page: 1045 article-title: Moving horizon estimation and control for an industrial gas phase polymerization reactor publication-title: IFAC Proc. Volumes – volume: 60 start-page: 1823 issue: 7 year: 2013 end-page: 1834 article-title: Moving horizon estimation for networked systems with quantized measurements and packet dropouts publication-title: IEEE Trans. Circ. Syst. – volume: 35 start-page: 71 issue: 1 year: 2011 end-page: 83 article-title: A real‐time algorithm for moving horizon state and parameter estimation publication-title: Comput. Chem. Eng. – volume: 21 start-page: 2114 issue: 6 year: 2013 end-page: 2128 article-title: Regularized nonlinear moving‐horizon observer with robustness to delayed and lost data publication-title: IEEE Trans. Control Syst. Technol. – volume: 46 start-page: 998 issue: 7 year: 2001 end-page: 1013 article-title: A framework for state‐space estimation with uncertain models publication-title: IEEE Trans. Autom. Control – volume: 33 start-page: 379 issue: 1 year: 2009 end-page: 390 article-title: Optimization‐based strategies for the operation of low‐density polyethylene tubular reactors: Moving horizon estimation publication-title: Comput. Chem. Eng. – volume: 37 start-page: 1619 issue: 10 year: 2001 end-page: 1628 article-title: Constrained linear state estimation‐a moving horizon approach publication-title: Automatica – volume: 31 start-page: 1147 issue: 5 year: 2015 end-page: 1163 article-title: Orb‐slam: a versatile and accurate monocular slam system publication-title: IEEE Trans. Robot. – volume: 52 start-page: 6439 issue: 10 year: 2022 end-page: 6451 article-title: Event‐triggered distributed moving horizon state estimation of linear systems publication-title: IEEE Trans. Syst. Man, Cybern.: Syst. – volume: 64 start-page: 3316 issue: 8 year: 2019 end-page: 3323 article-title: Distributed moving‐horizon estimation with arrival‐cost consensus publication-title: IEEE Trans. Autom. Control – ident: e_1_2_12_3_1 doi: 10.1109/JSEN.2018.2808330 – ident: e_1_2_12_36_1 doi: 10.1109/TAC.2019.2897887 – ident: e_1_2_12_30_1 doi: 10.1016/j.automatica.2016.01.015 – ident: e_1_2_12_22_1 doi: 10.1016/j.automatica.2013.08.028 – ident: e_1_2_12_12_1 doi: 10.1109/TCNS.2017.2763756 – ident: e_1_2_12_15_1 doi: 10.1109/9.935054 – ident: e_1_2_12_34_1 doi: 10.1109/TCST.2017.2715849 – ident: e_1_2_12_5_1 doi: 10.1002/asjc.34 – ident: e_1_2_12_29_1 doi: 10.1109/TCST.2012.2228652 – ident: e_1_2_12_13_1 doi: 10.1109/ACCESS.2021.3050198 – ident: e_1_2_12_14_1 doi: 10.1109/JSEN.2015.2416511 – ident: e_1_2_12_19_1 doi: 10.1016/j.compchemeng.2008.10.008 – ident: e_1_2_12_25_1 doi: 10.1016/j.automatica.2015.08.016 – ident: e_1_2_12_2_1 doi: 10.1016/j.inffus.2020.01.009 – volume: 60 start-page: 1823 issue: 7 year: 2013 ident: e_1_2_12_26_1 article-title: Moving horizon estimation for networked systems with quantized measurements and packet dropouts publication-title: IEEE Trans. Circ. Syst. – ident: e_1_2_12_23_1 doi: 10.1016/j.automatica.2010.02.010 – ident: e_1_2_12_27_1 doi: 10.1137/090762798 – ident: e_1_2_12_32_1 doi: 10.1016/S0005-1098(01)00115-7 – ident: e_1_2_12_28_1 doi: 10.1016/j.automatica.2012.09.009 – ident: e_1_2_12_18_1 doi: 10.1016/j.compchemeng.2010.07.012 – ident: e_1_2_12_31_1 doi: 10.1109/TAC.2018.2879598 – ident: e_1_2_12_33_1 doi: 10.1109/TAC.2004.834121 – ident: e_1_2_12_7_1 doi: 10.1109/BSN.2017.7936006 – ident: e_1_2_12_21_1 doi: 10.1109/TAC.2005.858684 – ident: e_1_2_12_20_1 doi: 10.3182/20070822-3-ZA-2920.00173 – volume: 2016 start-page: 1413 year: 2016 ident: e_1_2_12_8_1 article-title: Fusion estimator with stochastic sensor gain degradation for uncertain systems publication-title: Control Dec. – volume: 2021 start-page: 1 year: 2021 ident: e_1_2_12_11_1 article-title: Distributed fusion estimation for stochastic uncertain systems with network‐induced complexity and multiple noise publication-title: IEEE Trans. Cybern. – volume: 47 start-page: 1 year: 2021 ident: e_1_2_12_10_1 article-title: Distributed fusion estimation for multi‐sensor systems with time‐correlated multiplicative noises publication-title: Acta Autom. Sin. – volume: 23 start-page: 217 issue: 2 year: 2008 ident: e_1_2_12_17_1 article-title: Moving horizon estimation approach to constrained systems with uncertain noise covariance publication-title: Control Dec. – volume: 70 start-page: 1 year: 2021 ident: e_1_2_12_35_1 article-title: Moving horizon h∞$$ {h}_{\infty } $$ estimation of constrained multisensor systems with uncertainties and fading channels publication-title: IEEE Trans. Instrument. Meas. doi: 10.1109/TIM.2021.3094593 – ident: e_1_2_12_16_1 doi: 10.1002/rnc.1676 – ident: e_1_2_12_6_1 doi: 10.1109/ICRA.2014.6906889 – ident: e_1_2_12_24_1 doi: 10.1109/TSMC.2022.3146182 – ident: e_1_2_12_9_1 doi: 10.3724/SP.J.1004.2010.00767 – ident: e_1_2_12_4_1 doi: 10.1109/TRO.2015.2463671 |
| SSID | ssj0061385 |
| Score | 2.35765 |
| Snippet | In this paper, the distributed moving horizon fusion estimation of uncertain systems with constraints of system noise and state variables is studied. Firstly,... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3027 |
| SubjectTerms | Algorithms consensus algorithm Cost function Error analysis moving horizon estimation Noise prediction Observability (systems) Optimization Parameter uncertainty performance index Performance indices Regularization regularization method stability analysis State estimation uncertain parameters |
| Title | Distributed moving horizon fusion estimation for linear constrained uncertain systems |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasjc.3388 https://www.proquest.com/docview/3124274779 |
| Volume | 26 |
| WOSCitedRecordID | wos001202808900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1934-6093 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061385 issn: 1561-8625 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsVqlUU8eIk12SSb4Km0FpFSRK30FjabXaxgKknrwV_vTjZp60EQvOWQDcPsPL7Z7HwDcOEnNlWJG1rSpr7l2viTUPrCspVggnKXquK2xcuADYfBeBw-1OCm6oUx_BCLAzf0jCJeo4PzOG8vSUN5_iaudIEVrEHD0Xbr1qHRe-yPBlUg1omqmMipKxTb0sDdq4iFrp32YvHPdLTEmKtItUg1_e1_CbkDWyXCJB1jErtQk-kebK7wDu7DqId0uTjpSibkvThTIK_TbPI1TYma4_kZQfIN09VINKwlKAnPiEA0iUMl9DqdEM11AmLYoPMDGPVvn7t3VjlfwRLoqLoGZTKQrpIeFzJIaBLzIKZMod_rqKc9NfG5w0MecJ6wJFYhix2qlBBhLJiuwg-hnk5TeQTED6QGmoJ6eotdZCGMmaccQYXvI4Cxm3BeqTn6MDQakSFMdiLUUYQ6akKr2oCo9KQ8ohqAYOXMwiZcFqr-_QNR5-m-iw_Hf3_1BDYcLbBpL2xBfZbN5Smsi8_ZJM_OSpP6Bga20vo |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6gH32K16iIevMSabJJNwEtpLVVrEW2lt7DZ7GIFW0laD_56d_Jo9SAI3nLIhmV2Ht9Mdr4BOHMjk6rI9g1pUtewTfxJKF1hmEowQblNVXrb4rnLej1vOPQfSnBV9MJk_BDzghtaRuqv0cCxIF1fsIby5FVc6AzLW4KKrdXIKUOl9dgedAtPrCNVOpJTpyimoZG7UzALXVr1-eKf8WgBMr9D1TTWtDf-t8tNWM8xJmlkSrEFJTnehrVvzIM7MGghYS7OupIReUurCuRlEo8-J2OiZlhBI0i_kfU1Eg1sCW6Fx0QgnsSxEnqdDonZhQKS8UEnuzBoX_ebHSOfsGAINFWdhTLpSVtJhwvpRTQKuRdSptDytd_Tthq53OI-9ziPWBQqn4UWVUoIPxRM5-F7UB5PxnIfiOtJDTUFdfQh28hDGDJHWYIK10UIY1bhtJBz8J4RaQQZZbIVoIwClFEVasUJBLktJQHVEARzZ-ZX4TyV9e8fCBpPt018OPj7qyew0unfd4PuTe_uEFYtvfms2bAG5Wk8k0ewLD6moyQ-zvXrC6W01uo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gGKMH30YUdWM8eKnYbtttEy8EJD4IISqGW7PdR8REIAU8-OvdaSngwcTEWw_dZjO73843051vAC58aVMt3dBSNvUt18afhMoXlq0FE5S7VKe3LV5brN0Oer2wU4CbvBYm04eYJ9wQGel5jQBXI6mrC9VQPn4XVybCClag5Hqhb2BZajw1u638JDaeKm3JaUIU2zLM3cuVha6d6nzwT3-0IJnLVDX1Nc2t_81yGzZnHJPUsk2xAwU12IWNJeXBPeg2UDAXe10pST7SrAJ5Gyb9r-GA6Clm0AjKb2R1jcQQW4JT4QkRyCexrYQZZ1xidqGAZHrQ433oNm9f6nfWrMOCJRCqJgplKlCuVh4XKpBUxjyIKdOIfHPuGaxKnzs85AHnkslYhyx2qNZChLFgJg4_gOJgOFCHQPxAGaopqGcW2UUdwph52hFU-D5SGLsM57mdo1EmpBFlkslOhDaK0EZlqOQrEM2wNI6ooSAYO7OwDJeprX__QFR7fqjjw9HfXz2DtU6jGbXu24_HsO6YuWe1hhUoTpKpOoFV8Tnpj5PT2fb6Bm8y1mU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+moving+horizon+fusion+estimation+for+linear+constrained+uncertain+systems&rft.jtitle=Asian+journal+of+control&rft.au=Wang%2C+Shoudong&rft.au=Xue%2C+Binqiang&rft.date=2024-11-01&rft.issn=1561-8625&rft.eissn=1934-6093&rft.volume=26&rft.issue=6&rft.spage=3027&rft.epage=3039&rft_id=info:doi/10.1002%2Fasjc.3388&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_asjc_3388 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1561-8625&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1561-8625&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1561-8625&client=summon |