Distributed moving horizon fusion estimation for linear constrained uncertain systems

In this paper, the distributed moving horizon fusion estimation of uncertain systems with constraints of system noise and state variables is studied. Firstly, relying on the basic idea of consensus algorithm, the cost function in the performance index is reconstructed by weighted fusion of the state...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Asian journal of control Ročník 26; číslo 6; s. 3027 - 3039
Hlavní autoři: Wang, Shoudong, Xue, Binqiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 01.11.2024
Témata:
ISSN:1561-8625, 1934-6093
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, the distributed moving horizon fusion estimation of uncertain systems with constraints of system noise and state variables is studied. Firstly, relying on the basic idea of consensus algorithm, the cost function in the performance index is reconstructed by weighted fusion of the state prediction values. Secondly, considering the performance index with uncertain parameters, the min‐max optimization problem of the algorithm is transformed into the least squares optimization problem based on 2‐norm regularization method. Thirdly, the scalar‐weighted linear minimum variance fusion estimation strategy is used to realize the weighted fusion of local state estimation values. Then, on the premise of minimum network connectivity and collective observability, the stability of the proposed algorithm is studied, and the sufficient conditions for the expected convergence of the fused estimation error norm square are given. Finally, the effectiveness of the algorithm is verified by numerical simulation.
AbstractList In this paper, the distributed moving horizon fusion estimation of uncertain systems with constraints of system noise and state variables is studied. Firstly, relying on the basic idea of consensus algorithm, the cost function in the performance index is reconstructed by weighted fusion of the state prediction values. Secondly, considering the performance index with uncertain parameters, the min‐max optimization problem of the algorithm is transformed into the least squares optimization problem based on 2‐norm regularization method. Thirdly, the scalar‐weighted linear minimum variance fusion estimation strategy is used to realize the weighted fusion of local state estimation values. Then, on the premise of minimum network connectivity and collective observability, the stability of the proposed algorithm is studied, and the sufficient conditions for the expected convergence of the fused estimation error norm square are given. Finally, the effectiveness of the algorithm is verified by numerical simulation.
Author Wang, Shoudong
Xue, Binqiang
Author_xml – sequence: 1
  givenname: Shoudong
  orcidid: 0000-0001-5400-9826
  surname: Wang
  fullname: Wang, Shoudong
  organization: Qingdao University
– sequence: 2
  givenname: Binqiang
  orcidid: 0000-0001-7560-5491
  surname: Xue
  fullname: Xue, Binqiang
  email: xuebinqiang2005@163.com
  organization: Qingdao University
BookMark eNp1kDtPwzAUhS1UJNrCwD-IxMSQ1rGT2Bmr8lYlBuhsOfY1uGrtYieg8utxKCvTPVf6zn2cCRo57wChywLPCozJXMaNmlHK-QkaFw0t8xo3dJR0VRc5r0l1hiYxbjCuC8qrMVrf2NgF2_Yd6GznP617y959sN_eZaaPNhWInd3JbpDGh2xrHciQKe-SUaZGZ71TELqks3iIHeziOTo1chvh4q9O0fru9nX5kK-e7x-Xi1WuSMV4XhEGHEoDlVTANdWt5C1lBlPMtAbWlLqWRDaSS6mZbk3DWkKNUappFYOWTtHVce4--I8-HSo2vg8urRS0ICVhJWNNoq6PlAo-xgBG7EP6KBxEgcWQmhhSE0NqiZ0f2S-7hcP_oFi8PC1_HT-5jXRH
Cites_doi 10.1109/JSEN.2018.2808330
10.1109/TAC.2019.2897887
10.1016/j.automatica.2016.01.015
10.1016/j.automatica.2013.08.028
10.1109/TCNS.2017.2763756
10.1109/9.935054
10.1109/TCST.2017.2715849
10.1002/asjc.34
10.1109/TCST.2012.2228652
10.1109/ACCESS.2021.3050198
10.1109/JSEN.2015.2416511
10.1016/j.compchemeng.2008.10.008
10.1016/j.automatica.2015.08.016
10.1016/j.inffus.2020.01.009
10.1016/j.automatica.2010.02.010
10.1137/090762798
10.1016/S0005-1098(01)00115-7
10.1016/j.automatica.2012.09.009
10.1016/j.compchemeng.2010.07.012
10.1109/TAC.2018.2879598
10.1109/TAC.2004.834121
10.1109/BSN.2017.7936006
10.1109/TAC.2005.858684
10.3182/20070822-3-ZA-2920.00173
10.1109/TIM.2021.3094593
10.1002/rnc.1676
10.1109/ICRA.2014.6906889
10.1109/TSMC.2022.3146182
10.3724/SP.J.1004.2010.00767
10.1109/TRO.2015.2463671
ContentType Journal Article
Copyright 2024 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd
Copyright_xml – notice: 2024 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd
DBID AAYXX
CITATION
JQ2
DOI 10.1002/asjc.3388
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef

ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1934-6093
EndPage 3039
ExternalDocumentID 10_1002_asjc_3388
ASJC3388
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2017M612205
– fundername: National Natural Science Foundation of China
  funderid: 61603205
GroupedDBID .4S
.DC
05W
0R~
1L6
1OC
23N
31~
33P
3SF
4.4
52U
5DZ
5GY
8-0
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
I-F
J9A
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
RWI
SUPJJ
TUS
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
JQ2
ID FETCH-LOGICAL-c2578-527e8e4fe5ace8d3dba8b37f0307dde794d6a2a9a8aad7dbf97b23ffcc9bc7eb3
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001202808900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1561-8625
IngestDate Fri Jul 25 12:18:31 EDT 2025
Sat Nov 29 04:00:08 EST 2025
Wed Jan 22 17:15:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2578-527e8e4fe5ace8d3dba8b37f0307dde794d6a2a9a8aad7dbf97b23ffcc9bc7eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5400-9826
0000-0001-7560-5491
PQID 3124274779
PQPubID 866359
PageCount 13
ParticipantIDs proquest_journals_3124274779
crossref_primary_10_1002_asjc_3388
wiley_primary_10_1002_asjc_3388_ASJC3388
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Asian journal of control
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 47
2021; 9
2015; 15
2010; 36
2013; 49
2013; 21
2004; 49
2020; 60
2015; 31
2008; 10
2016; 2016
2011; 35
2001; 46
2018; 26
2021; 70
2012; 50
2009; 33
2018; 18
2018; 5
2010; 46
2019; 64
2015; 61
2008; 23
2013; 60
2017
2022; 52
2001; 37
2014
2007; 40
2005; 50
2012; 22
2021; 2021
2016; 67
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_16_1
e_1_2_12_20_1
Zhao G. R. (e_1_2_12_8_1) 2016; 2016
e_1_2_12_21_1
e_1_2_12_22_1
e_1_2_12_23_1
e_1_2_12_24_1
e_1_2_12_25_1
Zhao H. Y. (e_1_2_12_17_1) 2008; 23
Liu L. (e_1_2_12_11_1) 2021; 2021
e_1_2_12_27_1
e_1_2_12_28_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_31_1
He D. (e_1_2_12_35_1) 2021; 70
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
e_1_2_12_36_1
Ma J. (e_1_2_12_10_1) 2021; 47
e_1_2_12_15_1
Liu A. (e_1_2_12_26_1) 2013; 60
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_7_1
e_1_2_12_9_1
References_xml – volume: 49
  start-page: 193
  issue: 1
  year: 2013
  end-page: 199
  article-title: A combined moving horizon and direct virtual sensor approach for constrained nonlinear estimation
  publication-title: Automatica
– start-page: 409
  year: 2014
  end-page: 416
– volume: 5
  start-page: 1841
  issue: 4
  year: 2018
  end-page: 1851
  article-title: Fully distributed dynamic state estimation with uncertain process models
  publication-title: IEEE Trans. Control Netw. Syst.
– volume: 22
  start-page: 123
  issue: 2
  year: 2012
  end-page: 143
  article-title: Distributed moving horizon estimation for nonlinear constrained systems
  publication-title: Int. J. Robust Nonlinear Control
– volume: 64
  start-page: 4396
  issue: 10
  year: 2019
  end-page: 4403
  article-title: Distributed Kalman filtering and control through embedded average consensus information fusion
  publication-title: IEEE Trans. Autom. Control
– volume: 50
  start-page: 1736
  issue: 11
  year: 2005
  end-page: 1748
  article-title: Receding‐horizon estimation for switching discrete‐time linear systems
  publication-title: IEEE Trans. Autom. Control
– volume: 60
  start-page: 1
  year: 2020
  end-page: 10
  article-title: Moving horizon estimation meets multi‐sensor information fusion: development, opportunities and challenges
  publication-title: Inform. Fusion
– volume: 18
  start-page: 3780
  issue: 9
  year: 2018
  end-page: 3788
  article-title: Consistent EKF‐based visual‐inertial odometry on matrix Lie group
  publication-title: IEEE Sensors J.
– volume: 36
  start-page: 767
  issue: 5
  year: 2010
  end-page: 772
  article-title: Robust Kalman filtering for uncertain discrete‐time systems with multiple packet dropouts
  publication-title: Acta Autom. Sin.
– volume: 26
  start-page: 1300
  issue: 4
  year: 2018
  end-page: 1316
  article-title: On the convergence conditions of distributed dynamic state estimation using sensor networks: a unified framework
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 49
  start-page: 1453
  issue: 9
  year: 2004
  end-page: 1464
  article-title: Kalman filtering with intermittent observations
  publication-title: IEEE Trans. Autom. Control
– volume: 9
  start-page: 10328
  year: 2021
  end-page: 10337
  article-title: Distributed robust dimensionality reduction fusion estimation under DoS attacks and uncertain covariances
  publication-title: IEEE Access
– volume: 10
  start-page: 277
  year: 2008
  end-page: 290
  article-title: Multi‐sensor track‐to‐track fusion via linear minimum variance sense estimators
  publication-title: Asian J. Control
– volume: 67
  start-page: 85
  year: 2016
  end-page: 93
  article-title: Moving‐horizon estimation with guaranteed robustness for discrete‐time linear systems and measurements subject to outliers
  publication-title: Automatica
– volume: 70
  start-page: 1
  year: 2021
  end-page: 12
  article-title: Moving horizon estimation of constrained multisensor systems with uncertainties and fading channels
  publication-title: IEEE Trans. Instrument. Meas.
– volume: 2016
  start-page: 1413
  year: 2016
  end-page: 1418
  article-title: Fusion estimator with stochastic sensor gain degradation for uncertain systems
  publication-title: Control Dec.
– start-page: 2017
  year: 2017
– volume: 23
  start-page: 217
  issue: 2
  year: 2008
  end-page: 220
  article-title: Moving horizon estimation approach to constrained systems with uncertain noise covariance
  publication-title: Control Dec.
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 13
  article-title: Distributed fusion estimation for stochastic uncertain systems with network‐induced complexity and multiple noise
  publication-title: IEEE Trans. Cybern.
– volume: 49
  start-page: 3270
  issue: 11
  year: 2013
  end-page: 3281
  article-title: Moving horizon estimation for switching nonlinear systems
  publication-title: Automatica
– volume: 46
  start-page: 910
  issue: 5
  year: 2010
  end-page: 918
  article-title: Moving‐horizon partition‐based state estimation of large‐scale systems
  publication-title: Automatica
– volume: 61
  start-page: 302
  year: 2015
  end-page: 307
  article-title: An iterative partition‐based moving horizon estimator with coupled inequality constraints
  publication-title: Automatica
– volume: 47
  start-page: 1
  year: 2021
  end-page: 13
  article-title: Distributed fusion estimation for multi‐sensor systems with time‐correlated multiplicative noises
  publication-title: Acta Autom. Sin.
– volume: 50
  start-page: 1439
  issue: 3
  year: 2012
  end-page: 1465
  article-title: Min‐max moving‐horizon estimation for uncertain discrete‐time systems
  publication-title: SIAM J. Control Optim.
– volume: 15
  start-page: 4346
  issue: 8
  year: 2015
  end-page: 4354
  article-title: Fusion predictors for multisensor stochastic uncertain systems with missing measurements and unknown measurement disturbances
  publication-title: IEEE Sensors J.
– volume: 40
  start-page: 1040
  issue: 12
  year: 2007
  end-page: 1045
  article-title: Moving horizon estimation and control for an industrial gas phase polymerization reactor
  publication-title: IFAC Proc. Volumes
– volume: 60
  start-page: 1823
  issue: 7
  year: 2013
  end-page: 1834
  article-title: Moving horizon estimation for networked systems with quantized measurements and packet dropouts
  publication-title: IEEE Trans. Circ. Syst.
– volume: 35
  start-page: 71
  issue: 1
  year: 2011
  end-page: 83
  article-title: A real‐time algorithm for moving horizon state and parameter estimation
  publication-title: Comput. Chem. Eng.
– volume: 21
  start-page: 2114
  issue: 6
  year: 2013
  end-page: 2128
  article-title: Regularized nonlinear moving‐horizon observer with robustness to delayed and lost data
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 46
  start-page: 998
  issue: 7
  year: 2001
  end-page: 1013
  article-title: A framework for state‐space estimation with uncertain models
  publication-title: IEEE Trans. Autom. Control
– volume: 33
  start-page: 379
  issue: 1
  year: 2009
  end-page: 390
  article-title: Optimization‐based strategies for the operation of low‐density polyethylene tubular reactors: Moving horizon estimation
  publication-title: Comput. Chem. Eng.
– volume: 37
  start-page: 1619
  issue: 10
  year: 2001
  end-page: 1628
  article-title: Constrained linear state estimation‐a moving horizon approach
  publication-title: Automatica
– volume: 31
  start-page: 1147
  issue: 5
  year: 2015
  end-page: 1163
  article-title: Orb‐slam: a versatile and accurate monocular slam system
  publication-title: IEEE Trans. Robot.
– volume: 52
  start-page: 6439
  issue: 10
  year: 2022
  end-page: 6451
  article-title: Event‐triggered distributed moving horizon state estimation of linear systems
  publication-title: IEEE Trans. Syst. Man, Cybern.: Syst.
– volume: 64
  start-page: 3316
  issue: 8
  year: 2019
  end-page: 3323
  article-title: Distributed moving‐horizon estimation with arrival‐cost consensus
  publication-title: IEEE Trans. Autom. Control
– ident: e_1_2_12_3_1
  doi: 10.1109/JSEN.2018.2808330
– ident: e_1_2_12_36_1
  doi: 10.1109/TAC.2019.2897887
– ident: e_1_2_12_30_1
  doi: 10.1016/j.automatica.2016.01.015
– ident: e_1_2_12_22_1
  doi: 10.1016/j.automatica.2013.08.028
– ident: e_1_2_12_12_1
  doi: 10.1109/TCNS.2017.2763756
– ident: e_1_2_12_15_1
  doi: 10.1109/9.935054
– ident: e_1_2_12_34_1
  doi: 10.1109/TCST.2017.2715849
– ident: e_1_2_12_5_1
  doi: 10.1002/asjc.34
– ident: e_1_2_12_29_1
  doi: 10.1109/TCST.2012.2228652
– ident: e_1_2_12_13_1
  doi: 10.1109/ACCESS.2021.3050198
– ident: e_1_2_12_14_1
  doi: 10.1109/JSEN.2015.2416511
– ident: e_1_2_12_19_1
  doi: 10.1016/j.compchemeng.2008.10.008
– ident: e_1_2_12_25_1
  doi: 10.1016/j.automatica.2015.08.016
– ident: e_1_2_12_2_1
  doi: 10.1016/j.inffus.2020.01.009
– volume: 60
  start-page: 1823
  issue: 7
  year: 2013
  ident: e_1_2_12_26_1
  article-title: Moving horizon estimation for networked systems with quantized measurements and packet dropouts
  publication-title: IEEE Trans. Circ. Syst.
– ident: e_1_2_12_23_1
  doi: 10.1016/j.automatica.2010.02.010
– ident: e_1_2_12_27_1
  doi: 10.1137/090762798
– ident: e_1_2_12_32_1
  doi: 10.1016/S0005-1098(01)00115-7
– ident: e_1_2_12_28_1
  doi: 10.1016/j.automatica.2012.09.009
– ident: e_1_2_12_18_1
  doi: 10.1016/j.compchemeng.2010.07.012
– ident: e_1_2_12_31_1
  doi: 10.1109/TAC.2018.2879598
– ident: e_1_2_12_33_1
  doi: 10.1109/TAC.2004.834121
– ident: e_1_2_12_7_1
  doi: 10.1109/BSN.2017.7936006
– ident: e_1_2_12_21_1
  doi: 10.1109/TAC.2005.858684
– ident: e_1_2_12_20_1
  doi: 10.3182/20070822-3-ZA-2920.00173
– volume: 2016
  start-page: 1413
  year: 2016
  ident: e_1_2_12_8_1
  article-title: Fusion estimator with stochastic sensor gain degradation for uncertain systems
  publication-title: Control Dec.
– volume: 2021
  start-page: 1
  year: 2021
  ident: e_1_2_12_11_1
  article-title: Distributed fusion estimation for stochastic uncertain systems with network‐induced complexity and multiple noise
  publication-title: IEEE Trans. Cybern.
– volume: 47
  start-page: 1
  year: 2021
  ident: e_1_2_12_10_1
  article-title: Distributed fusion estimation for multi‐sensor systems with time‐correlated multiplicative noises
  publication-title: Acta Autom. Sin.
– volume: 23
  start-page: 217
  issue: 2
  year: 2008
  ident: e_1_2_12_17_1
  article-title: Moving horizon estimation approach to constrained systems with uncertain noise covariance
  publication-title: Control Dec.
– volume: 70
  start-page: 1
  year: 2021
  ident: e_1_2_12_35_1
  article-title: Moving horizon h∞$$ {h}_{\infty } $$ estimation of constrained multisensor systems with uncertainties and fading channels
  publication-title: IEEE Trans. Instrument. Meas.
  doi: 10.1109/TIM.2021.3094593
– ident: e_1_2_12_16_1
  doi: 10.1002/rnc.1676
– ident: e_1_2_12_6_1
  doi: 10.1109/ICRA.2014.6906889
– ident: e_1_2_12_24_1
  doi: 10.1109/TSMC.2022.3146182
– ident: e_1_2_12_9_1
  doi: 10.3724/SP.J.1004.2010.00767
– ident: e_1_2_12_4_1
  doi: 10.1109/TRO.2015.2463671
SSID ssj0061385
Score 2.35765
Snippet In this paper, the distributed moving horizon fusion estimation of uncertain systems with constraints of system noise and state variables is studied. Firstly,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 3027
SubjectTerms Algorithms
consensus algorithm
Cost function
Error analysis
moving horizon estimation
Noise prediction
Observability (systems)
Optimization
Parameter uncertainty
performance index
Performance indices
Regularization
regularization method
stability analysis
State estimation
uncertain parameters
Title Distributed moving horizon fusion estimation for linear constrained uncertain systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasjc.3388
https://www.proquest.com/docview/3124274779
Volume 26
WOSCitedRecordID wos001202808900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1934-6093
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061385
  issn: 1561-8625
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5q60EPvsVqlUU8eIk12SSb4Km0FpFSRK30FjabXaxgKknrwV_vTjZp60EQvOWQDcPsPL7Z7HwDcOEnNlWJG1rSpr7l2viTUPrCspVggnKXquK2xcuADYfBeBw-1OCm6oUx_BCLAzf0jCJeo4PzOG8vSUN5_iaudIEVrEHD0Xbr1qHRe-yPBlUg1omqmMipKxTb0sDdq4iFrp32YvHPdLTEmKtItUg1_e1_CbkDWyXCJB1jErtQk-kebK7wDu7DqId0uTjpSibkvThTIK_TbPI1TYma4_kZQfIN09VINKwlKAnPiEA0iUMl9DqdEM11AmLYoPMDGPVvn7t3VjlfwRLoqLoGZTKQrpIeFzJIaBLzIKZMod_rqKc9NfG5w0MecJ6wJFYhix2qlBBhLJiuwg-hnk5TeQTED6QGmoJ6eotdZCGMmaccQYXvI4Cxm3BeqTn6MDQakSFMdiLUUYQ6akKr2oCo9KQ8ohqAYOXMwiZcFqr-_QNR5-m-iw_Hf3_1BDYcLbBpL2xBfZbN5Smsi8_ZJM_OSpP6Bga20vo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qK6gH32K16iIevMSabJJNwEtpLVVrEW2lt7DZ7GIFW0laD_56d_Jo9SAI3nLIhmV2Ht9Mdr4BOHMjk6rI9g1pUtewTfxJKF1hmEowQblNVXrb4rnLej1vOPQfSnBV9MJk_BDzghtaRuqv0cCxIF1fsIby5FVc6AzLW4KKrdXIKUOl9dgedAtPrCNVOpJTpyimoZG7UzALXVr1-eKf8WgBMr9D1TTWtDf-t8tNWM8xJmlkSrEFJTnehrVvzIM7MGghYS7OupIReUurCuRlEo8-J2OiZlhBI0i_kfU1Eg1sCW6Fx0QgnsSxEnqdDonZhQKS8UEnuzBoX_ebHSOfsGAINFWdhTLpSVtJhwvpRTQKuRdSptDytd_Tthq53OI-9ziPWBQqn4UWVUoIPxRM5-F7UB5PxnIfiOtJDTUFdfQh28hDGDJHWYIK10UIY1bhtJBz8J4RaQQZZbIVoIwClFEVasUJBLktJQHVEARzZ-ZX4TyV9e8fCBpPt018OPj7qyew0unfd4PuTe_uEFYtvfms2bAG5Wk8k0ewLD6moyQ-zvXrC6W01uo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gGKMH30YUdWM8eKnYbtttEy8EJD4IISqGW7PdR8REIAU8-OvdaSngwcTEWw_dZjO73843051vAC58aVMt3dBSNvUt18afhMoXlq0FE5S7VKe3LV5brN0Oer2wU4CbvBYm04eYJ9wQGel5jQBXI6mrC9VQPn4XVybCClag5Hqhb2BZajw1u638JDaeKm3JaUIU2zLM3cuVha6d6nzwT3-0IJnLVDX1Nc2t_81yGzZnHJPUsk2xAwU12IWNJeXBPeg2UDAXe10pST7SrAJ5Gyb9r-GA6Clm0AjKb2R1jcQQW4JT4QkRyCexrYQZZ1xidqGAZHrQ433oNm9f6nfWrMOCJRCqJgplKlCuVh4XKpBUxjyIKdOIfHPuGaxKnzs85AHnkslYhyx2qNZChLFgJg4_gOJgOFCHQPxAGaopqGcW2UUdwph52hFU-D5SGLsM57mdo1EmpBFlkslOhDaK0EZlqOQrEM2wNI6ooSAYO7OwDJeprX__QFR7fqjjw9HfXz2DtU6jGbXu24_HsO6YuWe1hhUoTpKpOoFV8Tnpj5PT2fb6Bm8y1mU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+moving+horizon+fusion+estimation+for+linear+constrained+uncertain+systems&rft.jtitle=Asian+journal+of+control&rft.au=Wang%2C+Shoudong&rft.au=Xue%2C+Binqiang&rft.date=2024-11-01&rft.issn=1561-8625&rft.eissn=1934-6093&rft.volume=26&rft.issue=6&rft.spage=3027&rft.epage=3039&rft_id=info:doi/10.1002%2Fasjc.3388&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_asjc_3388
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1561-8625&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1561-8625&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1561-8625&client=summon