Linear convergence of event‐triggered distributed optimization with metric subregularity condition

This paper designs a continuous‐time algorithm with event‐triggered communication (ETC) for solving a class of distributed convex optimization problems with a metric subregularity condition. First, we develop an event‐triggered continuous‐time optimization algorithm to overcome the bandwidth limitat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Asian journal of control Ročník 27; číslo 2; s. 750 - 764
Hlavní autori: Yu, Xin, Cheng, Songsong, Qiu, Jianbin, Fan, Yuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 01.03.2025
Predmet:
ISSN:1561-8625, 1934-6093
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper designs a continuous‐time algorithm with event‐triggered communication (ETC) for solving a class of distributed convex optimization problems with a metric subregularity condition. First, we develop an event‐triggered continuous‐time optimization algorithm to overcome the bandwidth limitation of multi‐agent systems. Besides, with the aid of Lyapunov theory, we prove that the distributed event‐triggered algorithm converges to the optimum set with an exact linear convergence rate, without the strongly convex condition. Moreover, we provide the discrete version of the continuous‐time algorithm and show its exact linear convergence rate. Finally, we give a comparison example to validate the effectiveness of the designed algorithm in communication resource saving.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1561-8625
1934-6093
DOI:10.1002/asjc.3467