The Completion Numbers of Hamiltonicity and Pancyclicity in Random Graphs
ABSTRACT Let μ(G)$$ \mu (G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a Hamiltonian graph, and let μ^(G)$$ \hat{\mu}(G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a pancyclic graph. We study the distributions of μ(G),μ^(G)$$ \mu (G),...
Saved in:
| Published in: | Random structures & algorithms Vol. 66; no. 2 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
John Wiley & Sons, Inc
01.03.2025
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 1042-9832, 1098-2418 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | ABSTRACT
Let μ(G)$$ \mu (G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a Hamiltonian graph, and let μ^(G)$$ \hat{\mu}(G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a pancyclic graph. We study the distributions of μ(G),μ^(G)$$ \mu (G),\hat{\mu}(G) $$ in the context of binomial random graphs. Letting d=d(n):=n·p$$ d=d(n):= n\cdotp p $$, we prove that there exists a function f:ℝ+→[0,1]$$ f:{\mathbb{R}}^{+}\to \left[0,1\right] $$ of order f(d)=12de−d+e−d+O(d6e−3d)$$ f(d)=\frac{1}{2}d{e}^{-d}+{e}^{-d}+O\left({d}^6{e}^{-3d}\right) $$ such that, if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ with 20≤d(n)≤0.4logn$$ 20\le d(n)\le 0.4\log n $$, then with high probability μ(G)=(1+o(1))·f(d)·n$$ \mu (G)=\left(1+o(1)\right)\cdotp f(d)\cdotp n $$. Let ni(G)$$ {n}_i(G) $$ denote the number of degree i$$ i $$ vertices in G$$ G $$. A trivial lower bound on μ(G)$$ \mu (G) $$ is given by the expression n0(G)+⌈12n1(G)⌉$$ {n}_0(G)+\left\lceil \frac{1}{2}{n}_1(G)\right\rceil $$. We show that in the random graph process {Gt}t=0n2$$ {\left\{{G}_t\right\}}_{t=0}^{\left(\genfrac{}{}{0ex}{}{n}{2}\right)} $$ with high probability there exist times t1,t2$$ {t}_1,{t}_2 $$, both of order (1+o(1))n·16logn+loglogn$$ \left(1+o(1)\right)n\cdotp \left(\frac{1}{6}\log n+\mathrm{loglog}n\right) $$, such that μ(Gt)=n0(Gt)+⌈12n1(Gt)⌉$$ \mu \left({G}_t\right)={n}_0\left({G}_t\right)+\left\lceil \frac{1}{2}{n}_1\left({G}_t\right)\right\rceil $$ for every t≥t1$$ t\ge {t}_1 $$ and μ(Gt)>n0(Gt)+⌈12n1(Gt)⌉$$ \mu \left({G}_t\right)>{n}_0\left({G}_t\right)+\left\lceil \frac{1}{2}{n}_1\left({G}_t\right)\right\rceil $$ for every t≤t2$$ t\le {t}_2 $$. The time ti$$ {t}_i $$ can be characterized as the smallest t$$ t $$ for which Gt$$ {G}_t $$ contains less than i$$ i $$ copies of a certain problematic subgraph. In particular, this implies that the hitting time for the existence of a Hamilton path is equal to the hitting time of n1(G)≤2$$ {n}_1(G)\le 2 $$ with high probability. For the binomial random graph, this implies that if np−13logn−2loglogn→∞$$ np-\frac{1}{3}\log n-2\mathrm{loglog}n\to \infty $$ and G∼G(n,p)$$ G\sim G\left(n,p\right) $$, then, with high probability, μ(G)=n0(G)+⌈12n1(G)⌉$$ \mu (G)={n}_0(G)+\left\lceil \frac{1}{2}{n}_1(G)\right\rceil $$. For completion to pancyclicity, we show that if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ and np≥20$$ np\ge 20 $$, then, with high probability, μ^(G)=μ(G)$$ \hat{\mu}(G)=\mu (G) $$. Finally, we present a polynomial time algorithm such that, if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ and np≥20$$ np\ge 20 $$, then, with high probability, the algorithm returns a set of edges of size μ(G)$$ \mu (G) $$ whose addition to G$$ G $$ results in a pancyclic (and therefore also Hamiltonian) graph. |
|---|---|
| AbstractList | Let denote the minimum number of edges whose addition to results in a Hamiltonian graph, and let denote the minimum number of edges whose addition to results in a pancyclic graph. We study the distributions of in the context of binomial random graphs. Letting , we prove that there exists a function of order such that, if with , then with high probability . Let denote the number of degree vertices in . A trivial lower bound on is given by the expression . We show that in the random graph process with high probability there exist times , both of order , such that for every and for every . The time can be characterized as the smallest for which contains less than copies of a certain problematic subgraph. In particular, this implies that the hitting time for the existence of a Hamilton path is equal to the hitting time of with high probability. For the binomial random graph, this implies that if and , then, with high probability, . For completion to pancyclicity, we show that if and , then, with high probability, . Finally, we present a polynomial time algorithm such that, if and , then, with high probability, the algorithm returns a set of edges of size whose addition to results in a pancyclic (and therefore also Hamiltonian) graph. Let μ(G)$$ \mu (G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a Hamiltonian graph, and let μ^(G)$$ \hat{\mu}(G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a pancyclic graph. We study the distributions of μ(G),μ^(G)$$ \mu (G),\hat{\mu}(G) $$ in the context of binomial random graphs. Letting d=d(n):=n·p$$ d=d(n):= n\cdotp p $$, we prove that there exists a function f:ℝ+→[0,1]$$ f:{\mathbb{R}}^{+}\to \left[0,1\right] $$ of order f(d)=12de−d+e−d+O(d6e−3d)$$ f(d)=\frac{1}{2}d{e}^{-d}+{e}^{-d}+O\left({d}^6{e}^{-3d}\right) $$ such that, if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ with 20≤d(n)≤0.4logn$$ 20\le d(n)\le 0.4\log n $$, then with high probability μ(G)=(1+o(1))·f(d)·n$$ \mu (G)=\left(1+o(1)\right)\cdotp f(d)\cdotp n $$. Let ni(G)$$ {n}_i(G) $$ denote the number of degree i$$ i $$ vertices in G$$ G $$. A trivial lower bound on μ(G)$$ \mu (G) $$ is given by the expression n0(G)+⌈12n1(G)⌉$$ {n}_0(G)+\left\lceil \frac{1}{2}{n}_1(G)\right\rceil $$. We show that in the random graph process {Gt}t=0n2$$ {\left\{{G}_t\right\}}_{t=0}^{\left(\genfrac{}{}{0ex}{}{n}{2}\right)} $$ with high probability there exist times t1,t2$$ {t}_1,{t}_2 $$, both of order (1+o(1))n·16logn+loglogn$$ \left(1+o(1)\right)n\cdotp \left(\frac{1}{6}\log n+\mathrm{loglog}n\right) $$, such that μ(Gt)=n0(Gt)+⌈12n1(Gt)⌉$$ \mu \left({G}_t\right)={n}_0\left({G}_t\right)+\left\lceil \frac{1}{2}{n}_1\left({G}_t\right)\right\rceil $$ for every t≥t1$$ t\ge {t}_1 $$ and μ(Gt)>n0(Gt)+⌈12n1(Gt)⌉$$ \mu \left({G}_t\right)>{n}_0\left({G}_t\right)+\left\lceil \frac{1}{2}{n}_1\left({G}_t\right)\right\rceil $$ for every t≤t2$$ t\le {t}_2 $$. The time ti$$ {t}_i $$ can be characterized as the smallest t$$ t $$ for which Gt$$ {G}_t $$ contains less than i$$ i $$ copies of a certain problematic subgraph. In particular, this implies that the hitting time for the existence of a Hamilton path is equal to the hitting time of n1(G)≤2$$ {n}_1(G)\le 2 $$ with high probability. For the binomial random graph, this implies that if np−13logn−2loglogn→∞$$ np-\frac{1}{3}\log n-2\mathrm{loglog}n\to \infty $$ and G∼G(n,p)$$ G\sim G\left(n,p\right) $$, then, with high probability, μ(G)=n0(G)+⌈12n1(G)⌉$$ \mu (G)={n}_0(G)+\left\lceil \frac{1}{2}{n}_1(G)\right\rceil $$. For completion to pancyclicity, we show that if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ and np≥20$$ np\ge 20 $$, then, with high probability, μ^(G)=μ(G)$$ \hat{\mu}(G)=\mu (G) $$. Finally, we present a polynomial time algorithm such that, if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ and np≥20$$ np\ge 20 $$, then, with high probability, the algorithm returns a set of edges of size μ(G)$$ \mu (G) $$ whose addition to G$$ G $$ results in a pancyclic (and therefore also Hamiltonian) graph. ABSTRACT Let μ(G)$$ \mu (G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a Hamiltonian graph, and let μ^(G)$$ \hat{\mu}(G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a pancyclic graph. We study the distributions of μ(G),μ^(G)$$ \mu (G),\hat{\mu}(G) $$ in the context of binomial random graphs. Letting d=d(n):=n·p$$ d=d(n):= n\cdotp p $$, we prove that there exists a function f:ℝ+→[0,1]$$ f:{\mathbb{R}}^{+}\to \left[0,1\right] $$ of order f(d)=12de−d+e−d+O(d6e−3d)$$ f(d)=\frac{1}{2}d{e}^{-d}+{e}^{-d}+O\left({d}^6{e}^{-3d}\right) $$ such that, if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ with 20≤d(n)≤0.4logn$$ 20\le d(n)\le 0.4\log n $$, then with high probability μ(G)=(1+o(1))·f(d)·n$$ \mu (G)=\left(1+o(1)\right)\cdotp f(d)\cdotp n $$. Let ni(G)$$ {n}_i(G) $$ denote the number of degree i$$ i $$ vertices in G$$ G $$. A trivial lower bound on μ(G)$$ \mu (G) $$ is given by the expression n0(G)+⌈12n1(G)⌉$$ {n}_0(G)+\left\lceil \frac{1}{2}{n}_1(G)\right\rceil $$. We show that in the random graph process {Gt}t=0n2$$ {\left\{{G}_t\right\}}_{t=0}^{\left(\genfrac{}{}{0ex}{}{n}{2}\right)} $$ with high probability there exist times t1,t2$$ {t}_1,{t}_2 $$, both of order (1+o(1))n·16logn+loglogn$$ \left(1+o(1)\right)n\cdotp \left(\frac{1}{6}\log n+\mathrm{loglog}n\right) $$, such that μ(Gt)=n0(Gt)+⌈12n1(Gt)⌉$$ \mu \left({G}_t\right)={n}_0\left({G}_t\right)+\left\lceil \frac{1}{2}{n}_1\left({G}_t\right)\right\rceil $$ for every t≥t1$$ t\ge {t}_1 $$ and μ(Gt)>n0(Gt)+⌈12n1(Gt)⌉$$ \mu \left({G}_t\right)>{n}_0\left({G}_t\right)+\left\lceil \frac{1}{2}{n}_1\left({G}_t\right)\right\rceil $$ for every t≤t2$$ t\le {t}_2 $$. The time ti$$ {t}_i $$ can be characterized as the smallest t$$ t $$ for which Gt$$ {G}_t $$ contains less than i$$ i $$ copies of a certain problematic subgraph. In particular, this implies that the hitting time for the existence of a Hamilton path is equal to the hitting time of n1(G)≤2$$ {n}_1(G)\le 2 $$ with high probability. For the binomial random graph, this implies that if np−13logn−2loglogn→∞$$ np-\frac{1}{3}\log n-2\mathrm{loglog}n\to \infty $$ and G∼G(n,p)$$ G\sim G\left(n,p\right) $$, then, with high probability, μ(G)=n0(G)+⌈12n1(G)⌉$$ \mu (G)={n}_0(G)+\left\lceil \frac{1}{2}{n}_1(G)\right\rceil $$. For completion to pancyclicity, we show that if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ and np≥20$$ np\ge 20 $$, then, with high probability, μ^(G)=μ(G)$$ \hat{\mu}(G)=\mu (G) $$. Finally, we present a polynomial time algorithm such that, if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ and np≥20$$ np\ge 20 $$, then, with high probability, the algorithm returns a set of edges of size μ(G)$$ \mu (G) $$ whose addition to G$$ G $$ results in a pancyclic (and therefore also Hamiltonian) graph. |
| Author | Alon, Yahav Anastos, Michael |
| Author_xml | – sequence: 1 givenname: Yahav orcidid: 0009-0001-0955-0469 surname: Alon fullname: Alon, Yahav email: yahavalo@tauex.tau.ac.il organization: Tel Aviv University – sequence: 2 givenname: Michael orcidid: 0000-0001-5475-6522 surname: Anastos fullname: Anastos, Michael organization: Institute of Science and Technology Austria |
| BookMark | eNp1kF1LwzAUhoNMcJte-A8CXnnRLV9t08sxdBsMlTmvQ5KlLKNNatIh_ffrrLdencPL854DzwSMnHcGgEeMZhghMg9RzggmPLsBY4wKnhCG-ei6M5IUnJI7MInxhBDKKaFjsNkfDVz6uqlMa72Db-damRChL-Fa1rZqvbPath2U7gA_pNOdrobAOrjrQ1_DVZDNMd6D21JW0Tz8zSn4en3ZL9fJ9n21WS62iSZpniVFKpFCimqJCKZ5yrikGWM8xYoVKuNKGWxyLTHHJGcHXJQlzpmRlBpNjJJ0Cp6Gu03w32cTW3Hy5-D6l4JiTgjiiNOeeh4oHXyMwZSiCbaWoRMYiasp0ZsSv6Z6dj6wP7Yy3f-g2H0uhsYF4pprKQ |
| Cites_doi | 10.1007/978-3-319-31951-3 10.1137/1.9781611977554.ch88 10.1017/CBO9781316339831 10.37236/11471 10.1002/rsa.21030 10.4153/CJM-1954-033-3 10.1007/BF02579321 10.1017/S0963548315000103 10.1002/rsa.20918 10.1016/j.ejc.2024.103934 10.1016/0012-365X(91)90379-G 10.1016/0012-365X(83)90021-3 10.1016/j.jctb.2021.01.001 10.1002/rsa.21067 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by Wiley Periodicals LLC. 2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). published by Wiley Periodicals LLC. – notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/rsa.21286 |
| DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1098-2418 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_rsa_21286 RSA21286 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: Horizon 2020 Framework Programme |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XSW XV2 ZZTAW ~IA ~WT AAYXX AIQQE CITATION O8X 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2576-95a0b0b3ca02137548a3644851b49b68bbe1e7ca181274d19ff174ea33ec2eba3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001420226800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1042-9832 |
| IngestDate | Tue Sep 16 14:50:57 EDT 2025 Sat Nov 29 07:30:53 EST 2025 Sun Jul 06 04:45:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2576-95a0b0b3ca02137548a3644851b49b68bbe1e7ca181274d19ff174ea33ec2eba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-0955-0469 0000-0001-5475-6522 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.21286 |
| PQID | 3182208083 |
| PQPubID | 1016429 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_3182208083 crossref_primary_10_1002_rsa_21286 wiley_primary_10_1002_rsa_21286_RSA21286 |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Hoboken |
| PublicationTitle | Random structures & algorithms |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2023; 30 2023 2022; 60 2021; 148 1991; 98 2022; 61 2024; 118 1987; 7 1987 1983; 43 1954; 6 1984 2016 2020; 57 2015 2016; 25 e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 Cooper C. (e_1_2_12_5_1) 1987 Bollobás B. (e_1_2_12_3_1) 1984 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
| References_xml | – volume: 30 issue: 2 year: 2023 article-title: A Note on Long Cycles in Sparse Random Graphs publication-title: Electronic Journal of Combinatorics – start-page: 35 year: 1984 end-page: 57 – volume: 148 start-page: 184 year: 2021 end-page: 208 article-title: A Scaling Limit for the Length of the Longest Cycle in a Sparse Random Graph publication-title: Journal of Combinatorial Theory Series B – volume: 25 start-page: 269 year: 2016 end-page: 299 article-title: On the Method of Typical Bounded Differences publication-title: Combinatorics, Probability and Computing – volume: 7 start-page: 327 year: 1987 end-page: 341 article-title: An Algorithm for Finding Hamilton Paths and Cycles in Random Graphs publication-title: Combinatorica – volume: 61 start-page: 444 year: 2022 end-page: 461 article-title: Cycle Lengths in Sparse Random Graphs publication-title: Random Structures & Algorithms – year: 2023 – volume: 98 start-page: 231 year: 1991 end-page: 236 article-title: Cycles in Random Graphs publication-title: Discrete Mathematics – volume: 6 start-page: 347 year: 1954 end-page: 352 article-title: A Short Proof of the Factor Theorem for Finite Graphs publication-title: Canadian Journal of Mathematics – volume: 43 start-page: 55 year: 1983 end-page: 63 article-title: Limit Distributions for the Existence of Hamilton Circuits in a Random Graph publication-title: Discrete Mathematics – volume: 57 start-page: 32 issue: 1 year: 2020 end-page: 46 article-title: Finding a Hamilton Cycle Fast on Average Using Rotations and Extensions publication-title: Random Structures & Algorithms – volume: 60 start-page: 3 year: 2022 end-page: 24 article-title: A Scaling Limit for the Length of the Longest Cycle in a Sparse Random Digraph publication-title: Random Structures & Algorithms – start-page: 29 year: 1987 end-page: 39 – year: 2016 – volume: 118 year: 2024 article-title: Hamilton Completion and the Path Cover Number of Sparse Random Graphs publication-title: European Journal of Combinatorics – year: 2015 – ident: e_1_2_12_6_1 doi: 10.1007/978-3-319-31951-3 – ident: e_1_2_12_8_1 doi: 10.1137/1.9781611977554.ch88 – start-page: 35 volume-title: Graph Theory and Combinatorics year: 1984 ident: e_1_2_12_3_1 – ident: e_1_2_12_10_1 doi: 10.1017/CBO9781316339831 – ident: e_1_2_12_11_1 doi: 10.37236/11471 – ident: e_1_2_12_16_1 doi: 10.1002/rsa.21030 – ident: e_1_2_12_15_1 doi: 10.4153/CJM-1954-033-3 – ident: e_1_2_12_9_1 doi: 10.1007/BF02579321 – ident: e_1_2_12_14_1 doi: 10.1017/S0963548315000103 – ident: e_1_2_12_7_1 doi: 10.1002/rsa.20918 – ident: e_1_2_12_4_1 doi: 10.1016/j.ejc.2024.103934 – ident: e_1_2_12_13_1 doi: 10.1016/0012-365X(91)90379-G – ident: e_1_2_12_2_1 doi: 10.1016/0012-365X(83)90021-3 – ident: e_1_2_12_12_1 doi: 10.1016/j.jctb.2021.01.001 – start-page: 29 volume-title: Proceedings 3rd Annual Conference on Random Graphs year: 1987 ident: e_1_2_12_5_1 – ident: e_1_2_12_17_1 doi: 10.1002/rsa.21067 |
| SSID | ssj0007323 |
| Score | 2.3885756 |
| Snippet | ABSTRACT
Let μ(G)$$ \mu (G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a Hamiltonian graph, and let μ^(G)$$ \hat{\mu}(G) $$... Let denote the minimum number of edges whose addition to results in a Hamiltonian graph, and let denote the minimum number of edges whose addition to results... Let μ(G)$$ \mu (G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a Hamiltonian graph, and let μ^(G)$$ \hat{\mu}(G) $$ denote the... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Apexes Graph theory Graphs Hamilton cycles Lower bounds pancyclic graphs Polynomials random graph process random graphs |
| Title | The Completion Numbers of Hamiltonicity and Pancyclicity in Random Graphs |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.21286 https://www.proquest.com/docview/3182208083 |
| Volume | 66 |
| WOSCitedRecordID | wos001420226800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1098-2418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007323 issn: 1042-9832 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7MzYMe_C1O5wjiwUu1-dE1xdNQ54Q5xnSyW0nSFAbayTr9-03SddODIHgrIS3l5b3vfS8k3wM4j6IUK1-mniYt4bGWWQsZcOrRhEpu1psyd0PupRf2-3w8jgYVuC7vwhT6EMsNNxsZDq9tgAuZX61EQ2e5uDS4y1trUMOYhtalCRssYTikpDhdz4gXGb8tZYV8crV89WcyWjHM7zzVJZrO9r9-cQe2FvwStQuH2IWKzvZg83Epzprvw4NxDWRxwOpuTzPUd01BcjRNUddud8ytWq4h50hkCRpY9FWvxcAkQ0MzOH1D91bnOj-AUefu-abrLToqeMoWFl4UCF_6kiphUrttfssFtQVagCWLZItLqbEOlbBpP2QJjtLUVCxaUKoV0VLQQ6hm00wfAdIKs0Rw4VOaMDOHp0FCMcMpD0OqQlaHs9K08XshnBEXEskkNnaJnV3q0CiNHi9iJ48NyhBiiCyndbhw5v39A_Hwqe0ejv8-9QQ2iG3i6w6SNaA6n33oU1hXn_NJPms6J2pC7XbYGfW-ACG7yZs |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_MTVAPfovTqUE8eKlrk3RNwctQ54bbGHOT3UqSpjDQTtbp32_Sj00PguCthCSUl_d-74Pk9wCufD9ypC0iS-EGt2hDn4VwGbFISATT501o-kLupev1-2wy8QcluC3ewmT8EMuCm7GMFK-NgZuCdH3FGjpP-I0GXtZYgwrV27plqNwPW-PuEok9grML9hRbvlbdglnIxvXl4p_-aBVkfg9VU1_T2vnfX-7Cdh5jomamFHtQUvE-bPWWBK3JAXS0eiCDBYZ7exajftoYJEGzCLVNyWNhGHN1gI54HKKBQWD5mg1MYzTUg7M39Gi4rpNDGLceRndtK--qYEmTXFi-y21hCyK5du-mAS7jxCRpriOoLxpMCOUoT3Lj-j0aOn4U6axFcUKUxEpwcgTleBarY0BKOjTkjNuEhFTPYZEbEoc6EfM8Ij1ahctCtsF7Rp4RZDTJONByCVK5VKFWSD3I7ScJNNJgrINZRqpwncr39w2C4XMz_Tj5-9QL2GiPet2g2-k_ncImNk1904tlNSgv5h_qDNbl52KazM9znfoCkTrNeA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7MKaIHf4vTqUE8eKlrk3RNwctQ54ZzjPkDbyVJUxhoN9bp32-Srp0eBMFbCWkpL-9973sh-R7AeRgmnnRF4ijc5A5t6rUQPiMOiYlger0JtTfkXnpBv89eX8NBBa6KuzC5PkS54WYiw-K1CXA1iZPGQjV0mvFLDbysuQTL1NcYa3Sd6aDE4YDg_Hg9xU6oHbfQFXJxo3z1ZzZaUMzvRNVmmvbm__5xCzbmDBO1cpfYhopKd2D9oZRnzXahq50DGSQwytvjFPVtW5AMjRPUMRseM6OXq-k54mmMBgZ_5Vs-MErRUA-O39GdUbrO9uC5fft03XHmPRUcaUoLJ_S5K1xBJNfJ3bS_ZZyYEs33BA1FkwmhPBVIbhJ_QGMvTBJdsyhOiJJYCU72oZqOU3UASEmPxpxxl5CY6jks8WPiUS9hQUBkQGtwVtg2muTSGVEukowjbZfI2qUG9cLq0Tx6skjjDMaayjJSgwtr398_EA0fW_bh8O9TT2F1cNOOet3-_RGsYdPR154qq0N1Nv1Qx7AiP2ejbHpiHeoLtIbLYQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Completion+Numbers+of+Hamiltonicity+and+Pancyclicity+in+Random+Graphs&rft.jtitle=Random+structures+%26+algorithms&rft.au=Alon%2C+Yahav&rft.au=Anastos%2C+Michael&rft.date=2025-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=66&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Frsa.21286&rft.externalDBID=10.1002%252Frsa.21286&rft.externalDocID=RSA21286 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon |