The Completion Numbers of Hamiltonicity and Pancyclicity in Random Graphs

ABSTRACT Let μ(G)$$ \mu (G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a Hamiltonian graph, and let μ^(G)$$ \hat{\mu}(G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a pancyclic graph. We study the distributions of μ(G),μ^(G)$$ \mu (G),...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Random structures & algorithms Ročník 66; číslo 2
Hlavní autoři: Alon, Yahav, Anastos, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York John Wiley & Sons, Inc 01.03.2025
Wiley Subscription Services, Inc
Témata:
ISSN:1042-9832, 1098-2418
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT Let μ(G)$$ \mu (G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a Hamiltonian graph, and let μ^(G)$$ \hat{\mu}(G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a pancyclic graph. We study the distributions of μ(G),μ^(G)$$ \mu (G),\hat{\mu}(G) $$ in the context of binomial random graphs. Letting d=d(n):=n·p$$ d=d(n):= n\cdotp p $$, we prove that there exists a function f:ℝ+→[0,1]$$ f:{\mathbb{R}}^{+}\to \left[0,1\right] $$ of order f(d)=12de−d+e−d+O(d6e−3d)$$ f(d)=\frac{1}{2}d{e}^{-d}+{e}^{-d}+O\left({d}^6{e}^{-3d}\right) $$ such that, if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ with 20≤d(n)≤0.4logn$$ 20\le d(n)\le 0.4\log n $$, then with high probability μ(G)=(1+o(1))·f(d)·n$$ \mu (G)=\left(1+o(1)\right)\cdotp f(d)\cdotp n $$. Let ni(G)$$ {n}_i(G) $$ denote the number of degree i$$ i $$ vertices in G$$ G $$. A trivial lower bound on μ(G)$$ \mu (G) $$ is given by the expression n0(G)+⌈12n1(G)⌉$$ {n}_0(G)+\left\lceil \frac{1}{2}{n}_1(G)\right\rceil $$. We show that in the random graph process {Gt}t=0n2$$ {\left\{{G}_t\right\}}_{t=0}^{\left(\genfrac{}{}{0ex}{}{n}{2}\right)} $$ with high probability there exist times t1,t2$$ {t}_1,{t}_2 $$, both of order (1+o(1))n·16logn+loglogn$$ \left(1+o(1)\right)n\cdotp \left(\frac{1}{6}\log n+\mathrm{loglog}n\right) $$, such that μ(Gt)=n0(Gt)+⌈12n1(Gt)⌉$$ \mu \left({G}_t\right)={n}_0\left({G}_t\right)+\left\lceil \frac{1}{2}{n}_1\left({G}_t\right)\right\rceil $$ for every t≥t1$$ t\ge {t}_1 $$ and μ(Gt)>n0(Gt)+⌈12n1(Gt)⌉$$ \mu \left({G}_t\right)>{n}_0\left({G}_t\right)+\left\lceil \frac{1}{2}{n}_1\left({G}_t\right)\right\rceil $$ for every t≤t2$$ t\le {t}_2 $$. The time ti$$ {t}_i $$ can be characterized as the smallest t$$ t $$ for which Gt$$ {G}_t $$ contains less than i$$ i $$ copies of a certain problematic subgraph. In particular, this implies that the hitting time for the existence of a Hamilton path is equal to the hitting time of n1(G)≤2$$ {n}_1(G)\le 2 $$ with high probability. For the binomial random graph, this implies that if np−13logn−2loglogn→∞$$ np-\frac{1}{3}\log n-2\mathrm{loglog}n\to \infty $$ and G∼G(n,p)$$ G\sim G\left(n,p\right) $$, then, with high probability, μ(G)=n0(G)+⌈12n1(G)⌉$$ \mu (G)={n}_0(G)+\left\lceil \frac{1}{2}{n}_1(G)\right\rceil $$. For completion to pancyclicity, we show that if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ and np≥20$$ np\ge 20 $$, then, with high probability, μ^(G)=μ(G)$$ \hat{\mu}(G)=\mu (G) $$. Finally, we present a polynomial time algorithm such that, if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ and np≥20$$ np\ge 20 $$, then, with high probability, the algorithm returns a set of edges of size μ(G)$$ \mu (G) $$ whose addition to G$$ G $$ results in a pancyclic (and therefore also Hamiltonian) graph.
AbstractList Let denote the minimum number of edges whose addition to results in a Hamiltonian graph, and let denote the minimum number of edges whose addition to results in a pancyclic graph. We study the distributions of in the context of binomial random graphs. Letting , we prove that there exists a function of order such that, if with , then with high probability . Let denote the number of degree vertices in . A trivial lower bound on is given by the expression . We show that in the random graph process with high probability there exist times , both of order , such that for every and for every . The time can be characterized as the smallest for which contains less than copies of a certain problematic subgraph. In particular, this implies that the hitting time for the existence of a Hamilton path is equal to the hitting time of with high probability. For the binomial random graph, this implies that if and , then, with high probability, . For completion to pancyclicity, we show that if and , then, with high probability, . Finally, we present a polynomial time algorithm such that, if and , then, with high probability, the algorithm returns a set of edges of size whose addition to results in a pancyclic (and therefore also Hamiltonian) graph.
Let μ(G)$$ \mu (G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a Hamiltonian graph, and let μ^(G)$$ \hat{\mu}(G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a pancyclic graph. We study the distributions of μ(G),μ^(G)$$ \mu (G),\hat{\mu}(G) $$ in the context of binomial random graphs. Letting d=d(n):=n·p$$ d=d(n):= n\cdotp p $$, we prove that there exists a function f:ℝ+→[0,1]$$ f:{\mathbb{R}}^{+}\to \left[0,1\right] $$ of order f(d)=12de−d+e−d+O(d6e−3d)$$ f(d)=\frac{1}{2}d{e}^{-d}+{e}^{-d}+O\left({d}^6{e}^{-3d}\right) $$ such that, if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ with 20≤d(n)≤0.4logn$$ 20\le d(n)\le 0.4\log n $$, then with high probability μ(G)=(1+o(1))·f(d)·n$$ \mu (G)=\left(1+o(1)\right)\cdotp f(d)\cdotp n $$. Let ni(G)$$ {n}_i(G) $$ denote the number of degree i$$ i $$ vertices in G$$ G $$. A trivial lower bound on μ(G)$$ \mu (G) $$ is given by the expression n0(G)+⌈12n1(G)⌉$$ {n}_0(G)+\left\lceil \frac{1}{2}{n}_1(G)\right\rceil $$. We show that in the random graph process {Gt}t=0n2$$ {\left\{{G}_t\right\}}_{t=0}^{\left(\genfrac{}{}{0ex}{}{n}{2}\right)} $$ with high probability there exist times t1,t2$$ {t}_1,{t}_2 $$, both of order (1+o(1))n·16logn+loglogn$$ \left(1+o(1)\right)n\cdotp \left(\frac{1}{6}\log n+\mathrm{loglog}n\right) $$, such that μ(Gt)=n0(Gt)+⌈12n1(Gt)⌉$$ \mu \left({G}_t\right)={n}_0\left({G}_t\right)+\left\lceil \frac{1}{2}{n}_1\left({G}_t\right)\right\rceil $$ for every t≥t1$$ t\ge {t}_1 $$ and μ(Gt)>n0(Gt)+⌈12n1(Gt)⌉$$ \mu \left({G}_t\right)>{n}_0\left({G}_t\right)+\left\lceil \frac{1}{2}{n}_1\left({G}_t\right)\right\rceil $$ for every t≤t2$$ t\le {t}_2 $$. The time ti$$ {t}_i $$ can be characterized as the smallest t$$ t $$ for which Gt$$ {G}_t $$ contains less than i$$ i $$ copies of a certain problematic subgraph. In particular, this implies that the hitting time for the existence of a Hamilton path is equal to the hitting time of n1(G)≤2$$ {n}_1(G)\le 2 $$ with high probability. For the binomial random graph, this implies that if np−13logn−2loglogn→∞$$ np-\frac{1}{3}\log n-2\mathrm{loglog}n\to \infty $$ and G∼G(n,p)$$ G\sim G\left(n,p\right) $$, then, with high probability, μ(G)=n0(G)+⌈12n1(G)⌉$$ \mu (G)={n}_0(G)+\left\lceil \frac{1}{2}{n}_1(G)\right\rceil $$. For completion to pancyclicity, we show that if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ and np≥20$$ np\ge 20 $$, then, with high probability, μ^(G)=μ(G)$$ \hat{\mu}(G)=\mu (G) $$. Finally, we present a polynomial time algorithm such that, if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ and np≥20$$ np\ge 20 $$, then, with high probability, the algorithm returns a set of edges of size μ(G)$$ \mu (G) $$ whose addition to G$$ G $$ results in a pancyclic (and therefore also Hamiltonian) graph.
ABSTRACT Let μ(G)$$ \mu (G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a Hamiltonian graph, and let μ^(G)$$ \hat{\mu}(G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a pancyclic graph. We study the distributions of μ(G),μ^(G)$$ \mu (G),\hat{\mu}(G) $$ in the context of binomial random graphs. Letting d=d(n):=n·p$$ d=d(n):= n\cdotp p $$, we prove that there exists a function f:ℝ+→[0,1]$$ f:{\mathbb{R}}^{+}\to \left[0,1\right] $$ of order f(d)=12de−d+e−d+O(d6e−3d)$$ f(d)=\frac{1}{2}d{e}^{-d}+{e}^{-d}+O\left({d}^6{e}^{-3d}\right) $$ such that, if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ with 20≤d(n)≤0.4logn$$ 20\le d(n)\le 0.4\log n $$, then with high probability μ(G)=(1+o(1))·f(d)·n$$ \mu (G)=\left(1+o(1)\right)\cdotp f(d)\cdotp n $$. Let ni(G)$$ {n}_i(G) $$ denote the number of degree i$$ i $$ vertices in G$$ G $$. A trivial lower bound on μ(G)$$ \mu (G) $$ is given by the expression n0(G)+⌈12n1(G)⌉$$ {n}_0(G)+\left\lceil \frac{1}{2}{n}_1(G)\right\rceil $$. We show that in the random graph process {Gt}t=0n2$$ {\left\{{G}_t\right\}}_{t=0}^{\left(\genfrac{}{}{0ex}{}{n}{2}\right)} $$ with high probability there exist times t1,t2$$ {t}_1,{t}_2 $$, both of order (1+o(1))n·16logn+loglogn$$ \left(1+o(1)\right)n\cdotp \left(\frac{1}{6}\log n+\mathrm{loglog}n\right) $$, such that μ(Gt)=n0(Gt)+⌈12n1(Gt)⌉$$ \mu \left({G}_t\right)={n}_0\left({G}_t\right)+\left\lceil \frac{1}{2}{n}_1\left({G}_t\right)\right\rceil $$ for every t≥t1$$ t\ge {t}_1 $$ and μ(Gt)>n0(Gt)+⌈12n1(Gt)⌉$$ \mu \left({G}_t\right)>{n}_0\left({G}_t\right)+\left\lceil \frac{1}{2}{n}_1\left({G}_t\right)\right\rceil $$ for every t≤t2$$ t\le {t}_2 $$. The time ti$$ {t}_i $$ can be characterized as the smallest t$$ t $$ for which Gt$$ {G}_t $$ contains less than i$$ i $$ copies of a certain problematic subgraph. In particular, this implies that the hitting time for the existence of a Hamilton path is equal to the hitting time of n1(G)≤2$$ {n}_1(G)\le 2 $$ with high probability. For the binomial random graph, this implies that if np−13logn−2loglogn→∞$$ np-\frac{1}{3}\log n-2\mathrm{loglog}n\to \infty $$ and G∼G(n,p)$$ G\sim G\left(n,p\right) $$, then, with high probability, μ(G)=n0(G)+⌈12n1(G)⌉$$ \mu (G)={n}_0(G)+\left\lceil \frac{1}{2}{n}_1(G)\right\rceil $$. For completion to pancyclicity, we show that if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ and np≥20$$ np\ge 20 $$, then, with high probability, μ^(G)=μ(G)$$ \hat{\mu}(G)=\mu (G) $$. Finally, we present a polynomial time algorithm such that, if G∼G(n,p)$$ G\sim G\left(n,p\right) $$ and np≥20$$ np\ge 20 $$, then, with high probability, the algorithm returns a set of edges of size μ(G)$$ \mu (G) $$ whose addition to G$$ G $$ results in a pancyclic (and therefore also Hamiltonian) graph.
Author Alon, Yahav
Anastos, Michael
Author_xml – sequence: 1
  givenname: Yahav
  orcidid: 0009-0001-0955-0469
  surname: Alon
  fullname: Alon, Yahav
  email: yahavalo@tauex.tau.ac.il
  organization: Tel Aviv University
– sequence: 2
  givenname: Michael
  orcidid: 0000-0001-5475-6522
  surname: Anastos
  fullname: Anastos, Michael
  organization: Institute of Science and Technology Austria
BookMark eNp1kF1LwzAUhoNMcJte-A8CXnnRLV9t08sxdBsMlTmvQ5KlLKNNatIh_ffrrLdencPL854DzwSMnHcGgEeMZhghMg9RzggmPLsBY4wKnhCG-ei6M5IUnJI7MInxhBDKKaFjsNkfDVz6uqlMa72Db-damRChL-Fa1rZqvbPath2U7gA_pNOdrobAOrjrQ1_DVZDNMd6D21JW0Tz8zSn4en3ZL9fJ9n21WS62iSZpniVFKpFCimqJCKZ5yrikGWM8xYoVKuNKGWxyLTHHJGcHXJQlzpmRlBpNjJJ0Cp6Gu03w32cTW3Hy5-D6l4JiTgjiiNOeeh4oHXyMwZSiCbaWoRMYiasp0ZsSv6Z6dj6wP7Yy3f-g2H0uhsYF4pprKQ
Cites_doi 10.1007/978-3-319-31951-3
10.1137/1.9781611977554.ch88
10.1017/CBO9781316339831
10.37236/11471
10.1002/rsa.21030
10.4153/CJM-1954-033-3
10.1007/BF02579321
10.1017/S0963548315000103
10.1002/rsa.20918
10.1016/j.ejc.2024.103934
10.1016/0012-365X(91)90379-G
10.1016/0012-365X(83)90021-3
10.1016/j.jctb.2021.01.001
10.1002/rsa.21067
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC.
2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC.
– notice: 2025. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/rsa.21286
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2418
EndPage n/a
ExternalDocumentID 10_1002_rsa_21286
RSA21286
Genre researchArticle
GrantInformation_xml – fundername: Horizon 2020 Framework Programme
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XSW
XV2
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2576-95a0b0b3ca02137548a3644851b49b68bbe1e7ca181274d19ff174ea33ec2eba3
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001420226800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1042-9832
IngestDate Tue Sep 16 14:50:57 EDT 2025
Sat Nov 29 07:30:53 EST 2025
Sun Jul 06 04:45:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2576-95a0b0b3ca02137548a3644851b49b68bbe1e7ca181274d19ff174ea33ec2eba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-0955-0469
0000-0001-5475-6522
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.21286
PQID 3182208083
PQPubID 1016429
PageCount 18
ParticipantIDs proquest_journals_3182208083
crossref_primary_10_1002_rsa_21286
wiley_primary_10_1002_rsa_21286_RSA21286
PublicationCentury 2000
PublicationDate March 2025
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Hoboken
PublicationTitle Random structures & algorithms
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2023; 30
2023
2022; 60
2021; 148
1991; 98
2022; 61
2024; 118
1987; 7
1987
1983; 43
1954; 6
1984
2016
2020; 57
2015
2016; 25
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
Cooper C. (e_1_2_12_5_1) 1987
Bollobás B. (e_1_2_12_3_1) 1984
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 30
  issue: 2
  year: 2023
  article-title: A Note on Long Cycles in Sparse Random Graphs
  publication-title: Electronic Journal of Combinatorics
– start-page: 35
  year: 1984
  end-page: 57
– volume: 148
  start-page: 184
  year: 2021
  end-page: 208
  article-title: A Scaling Limit for the Length of the Longest Cycle in a Sparse Random Graph
  publication-title: Journal of Combinatorial Theory Series B
– volume: 25
  start-page: 269
  year: 2016
  end-page: 299
  article-title: On the Method of Typical Bounded Differences
  publication-title: Combinatorics, Probability and Computing
– volume: 7
  start-page: 327
  year: 1987
  end-page: 341
  article-title: An Algorithm for Finding Hamilton Paths and Cycles in Random Graphs
  publication-title: Combinatorica
– volume: 61
  start-page: 444
  year: 2022
  end-page: 461
  article-title: Cycle Lengths in Sparse Random Graphs
  publication-title: Random Structures & Algorithms
– year: 2023
– volume: 98
  start-page: 231
  year: 1991
  end-page: 236
  article-title: Cycles in Random Graphs
  publication-title: Discrete Mathematics
– volume: 6
  start-page: 347
  year: 1954
  end-page: 352
  article-title: A Short Proof of the Factor Theorem for Finite Graphs
  publication-title: Canadian Journal of Mathematics
– volume: 43
  start-page: 55
  year: 1983
  end-page: 63
  article-title: Limit Distributions for the Existence of Hamilton Circuits in a Random Graph
  publication-title: Discrete Mathematics
– volume: 57
  start-page: 32
  issue: 1
  year: 2020
  end-page: 46
  article-title: Finding a Hamilton Cycle Fast on Average Using Rotations and Extensions
  publication-title: Random Structures & Algorithms
– volume: 60
  start-page: 3
  year: 2022
  end-page: 24
  article-title: A Scaling Limit for the Length of the Longest Cycle in a Sparse Random Digraph
  publication-title: Random Structures & Algorithms
– start-page: 29
  year: 1987
  end-page: 39
– year: 2016
– volume: 118
  year: 2024
  article-title: Hamilton Completion and the Path Cover Number of Sparse Random Graphs
  publication-title: European Journal of Combinatorics
– year: 2015
– ident: e_1_2_12_6_1
  doi: 10.1007/978-3-319-31951-3
– ident: e_1_2_12_8_1
  doi: 10.1137/1.9781611977554.ch88
– start-page: 35
  volume-title: Graph Theory and Combinatorics
  year: 1984
  ident: e_1_2_12_3_1
– ident: e_1_2_12_10_1
  doi: 10.1017/CBO9781316339831
– ident: e_1_2_12_11_1
  doi: 10.37236/11471
– ident: e_1_2_12_16_1
  doi: 10.1002/rsa.21030
– ident: e_1_2_12_15_1
  doi: 10.4153/CJM-1954-033-3
– ident: e_1_2_12_9_1
  doi: 10.1007/BF02579321
– ident: e_1_2_12_14_1
  doi: 10.1017/S0963548315000103
– ident: e_1_2_12_7_1
  doi: 10.1002/rsa.20918
– ident: e_1_2_12_4_1
  doi: 10.1016/j.ejc.2024.103934
– ident: e_1_2_12_13_1
  doi: 10.1016/0012-365X(91)90379-G
– ident: e_1_2_12_2_1
  doi: 10.1016/0012-365X(83)90021-3
– ident: e_1_2_12_12_1
  doi: 10.1016/j.jctb.2021.01.001
– start-page: 29
  volume-title: Proceedings 3rd Annual Conference on Random Graphs
  year: 1987
  ident: e_1_2_12_5_1
– ident: e_1_2_12_17_1
  doi: 10.1002/rsa.21067
SSID ssj0007323
Score 2.3885756
Snippet ABSTRACT Let μ(G)$$ \mu (G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a Hamiltonian graph, and let μ^(G)$$ \hat{\mu}(G) $$...
Let denote the minimum number of edges whose addition to results in a Hamiltonian graph, and let denote the minimum number of edges whose addition to results...
Let μ(G)$$ \mu (G) $$ denote the minimum number of edges whose addition to G$$ G $$ results in a Hamiltonian graph, and let μ^(G)$$ \hat{\mu}(G) $$ denote the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Apexes
Graph theory
Graphs
Hamilton cycles
Lower bounds
pancyclic graphs
Polynomials
random graph process
random graphs
Title The Completion Numbers of Hamiltonicity and Pancyclicity in Random Graphs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.21286
https://www.proquest.com/docview/3182208083
Volume 66
WOSCitedRecordID wos001420226800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1098-2418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007323
  issn: 1042-9832
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7MzYMe_C1O5wjiwUu1TdI2wdNQ54Q5xnSyW0naFAbayjr9-03SddODIHgroQ3l8b3vfQnJ9wDONSTSICXckS5VDpUqdVigsUxZKgJfERlYt8-XfjgYsMmED2twXd2FKf0hlhtuJjMsX5sEF7K4WpmGzgpxqXmXBWvQ8DwSGkhjOlzScEhwebqeYodr3Fa2Qi6-Wn76sxitFOZ3nWoLTXf7X7-4A1sLfYk6JSB2oaayPdh8XJqzFvvwoKGBDA8Y3-08QwPbFKRAeYp6ZrtjbtxytThHIkvQ0LBv_FoOTDM00oP5G7o3PtfFAYy7d883PWfRUcGJzcLC4b5wpStJLHRpN81vmSBmgeZ7knIZMCmVp8JYmLIf0sTjaapXLEoQomKspCCHUM_yTB0BSrjAPMYuZ0zQMAw59lNBRaIUT7RqIU04q0IbvZfGGVFpkYwjHZfIxqUJrSro0SJ3ikizDMZayDI9x4UN7-8TRKOnjn04_vurJ7CBTRNfe5CsBfX57EOdwnr8OZ8Ws7YFURsat6PuuP8FJUvKCQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED7mJqgP_hanU4P44Etdl6RtAr4MdW64lTE32VtJ2hQG2sk6_ftN2q3TB0HwrYQ2lOO7u--O5DuAKw2J2I0Jt6RNlUWlii3maixTFgvXUUS6mdrnS9fzfTYe834Jbpd3YXJ9iKLhZjwji9fGwU1Dur5SDZ2l4kYHXuauQYVqGDllqNwPWqNuEYk9gvMD9hRbXEN3qSxk43rx8c98tCKZ36lqlmtaO__7y13YXnBM1MxBsQcllezDVq8QaE0PoKPhgUwsMNrb0wT52WCQFE1j1DYtj7lRzNUEHYkkQn0TgcPXfGGSoIFenL6hR6N1nR7CqPUwvGtbi6kKVmiKC4s7wpa2JKHQ6d0MwGWCmCLNaUjKpcukVA3lhcKkfo9GDR7HumpRghAVYiUFOYJyMk3UMaCIC8xDbHPGBPU8j2MnFlRESvFIMxdShculbYP3XDwjyGWScaDtEmR2qUJtafVg4T9poCMNxprMMr3HdWbf3zcIBs_N7OHk769ewEZ72OsG3Y7_dAqb2Az1zQ6W1aA8n32oM1gPP-eTdHa-wNQXmOLN5g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3MKaIPfovTqUF88KWuS9I2AV-GOjecY8wPfCtJm8BAu7FOf79Jug99EATfSmhDuZx77klIzgU4N5DQoSbckz5VHpVKeyw0WKZMizBQRIbO7fOlE3W77PWV90pwNbsLU_hDzDfcbGY4vrYJrkapri1cQ8e5uDTEy8IlWKaB4Vjr60x7cx6OCC6O11PscQPcma-Qj2vzT39Wo4XE_C5UXaVpbv7vH7dgY6owUaOAxDaUVLYD6w9ze9Z8F9oGHMgygXXeHmao69qC5GioUctueEysX66R50hkKepZ_k3eioFBhvpmcPiO7qzTdb4Hz83bp-uWN-2p4CV2aeHxQPjSlyQRprjb9rdMELtEC-qSchkyKVVdRYmwhT-iaZ1rbdYsShCiEqykIPtQzoaZOgCUcoF5gn3OmKBRFHEcaEFFqhRPjW4hFTibxTYeFdYZcWGSjGMTl9jFpQLVWdTjafbkseEZjI2UZWaOCxff3yeI-48N93D491dPYbV304w77e79Eaxh29HXnSqrQnky_lDHsJJ8Tgb5-MQB6gu6IsvP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Completion+Numbers+of+Hamiltonicity+and+Pancyclicity+in+Random+Graphs&rft.jtitle=Random+structures+%26+algorithms&rft.au=Alon%2C+Yahav&rft.au=Anastos%2C+Michael&rft.date=2025-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=66&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Frsa.21286&rft.externalDBID=10.1002%252Frsa.21286&rft.externalDocID=RSA21286
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon