A novel feature selection method based on adaptive search particle swarm optimization
As an effective method for data dimensionality reduction, feature selection could improve the classification accuracy and reduce the computational cost when dealing with high-dimensional data. Feature selection is essentially a complex optimization search problem. Among many optimization algorithms,...
Saved in:
| Published in: | Neural computing & applications Vol. 37; no. 12; pp. 7767 - 7783 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.04.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As an effective method for data dimensionality reduction, feature selection could improve the classification accuracy and reduce the computational cost when dealing with high-dimensional data. Feature selection is essentially a complex optimization search problem. Among many optimization algorithms, particle swarm optimization (PSO) has been widely used due to its good global search ability and easy to implement. However, most feature selection methods based on PSO ignore the correlations between the features of data, which may lead to more redundant features, and the feature selection methods are prone to fall into local minima. This study proposes an improved feature selection method based on adaptive search particle swarm optimization (AS-BPSO-FS). On one hand, AS-BPSO-FS is designed to consider the feature correlation according to the feature correlation information. The particle position adaptive update strategy selects features based on the correlation coefficient between features, ensuring that features with higher correlation are more likely to be culled, so as to obtain a subset of features with less redundancy. On the other hand, AS-BPSO-FS identifies particles trapped in local minima by calculating the update time of individual and global optimal positions, and uses an adaptive particle neighborhood search strategy to help particles escape from local minima. The AS-BPSO-FS has been tested on 10 UCI data and compared with some state-of-the-art feature selection methods. The results verify that the proposed method could obtain feature subsets with better classification performance and less redundancy. |
|---|---|
| AbstractList | As an effective method for data dimensionality reduction, feature selection could improve the classification accuracy and reduce the computational cost when dealing with high-dimensional data. Feature selection is essentially a complex optimization search problem. Among many optimization algorithms, particle swarm optimization (PSO) has been widely used due to its good global search ability and easy to implement. However, most feature selection methods based on PSO ignore the correlations between the features of data, which may lead to more redundant features, and the feature selection methods are prone to fall into local minima. This study proposes an improved feature selection method based on adaptive search particle swarm optimization (AS-BPSO-FS). On one hand, AS-BPSO-FS is designed to consider the feature correlation according to the feature correlation information. The particle position adaptive update strategy selects features based on the correlation coefficient between features, ensuring that features with higher correlation are more likely to be culled, so as to obtain a subset of features with less redundancy. On the other hand, AS-BPSO-FS identifies particles trapped in local minima by calculating the update time of individual and global optimal positions, and uses an adaptive particle neighborhood search strategy to help particles escape from local minima. The AS-BPSO-FS has been tested on 10 UCI data and compared with some state-of-the-art feature selection methods. The results verify that the proposed method could obtain feature subsets with better classification performance and less redundancy. As an effective method for data dimensionality reduction, feature selection could improve the classification accuracy and reduce the computational cost when dealing with high-dimensional data. Feature selection is essentially a complex optimization search problem. Among many optimization algorithms, particle swarm optimization (PSO) has been widely used due to its good global search ability and easy to implement. However, most feature selection methods based on PSO ignore the correlations between the features of data, which may lead to more redundant features, and the feature selection methods are prone to fall into local minima. This study proposes an improved feature selection method based on adaptive search particle swarm optimization (AS-BPSO-FS). On one hand, AS-BPSO-FS is designed to consider the feature correlation according to the feature correlation information. The particle position adaptive update strategy selects features based on the correlation coefficient between features, ensuring that features with higher correlation are more likely to be culled, so as to obtain a subset of features with less redundancy. On the other hand, AS-BPSO-FS identifies particles trapped in local minima by calculating the update time of individual and global optimal positions, and uses an adaptive particle neighborhood search strategy to help particles escape from local minima. The AS-BPSO-FS has been tested on 10 UCI data and compared with some state-of-the-art feature selection methods. The results verify that the proposed method could obtain feature subsets with better classification performance and less redundancy. |
| Author | Han, Fei Li, Fan-Yu Wang, Yi-Huai |
| Author_xml | – sequence: 1 givenname: Fei surname: Han fullname: Han, Fei email: hanfei@ujs.edu.cn organization: School of Computer Science and Communication Engineering, Jiangsu University – sequence: 2 givenname: Yi-Huai surname: Wang fullname: Wang, Yi-Huai organization: School of Computer Science and Communication Engineering, Jiangsu University – sequence: 3 givenname: Fan-Yu surname: Li fullname: Li, Fan-Yu organization: School of Computer Science and Communication Engineering, Jiangsu University |
| BookMark | eNp9kM1LAzEQxYNUsK3-A54Cnlcnye7s5liKX1DwYs8hm87aLftRk21F_3pTV_DmXIbhvd8beDM26fqOGLsWcCsA8rsAkEmRgEwTAShEgmdsKlKlEgVZMWFT0GmUMVUXbBbCDgBSLLIpWy941x-p4RXZ4eCJB2rIDXXf8ZaGbb_hpQ204fG2G7sf6uPJYr3b8r31Q-2aeH9Y3_I-im39ZU_sJTuvbBPo6nfP2frh_nX5lKxeHp-Xi1XiZJZjgqrQqDKdYUFF7vJS2jIOaoGKlCYncqt1WaElRJTKSZelVgnUIIGsVXN2M-buff9-oDCYXX_wXXxplCgikwoJ0SVHl_N9CJ4qs_d1a_2nEWBO9ZmxPhPrMz_1GYyQGqEQzd0b-b_of6hvPlp0KA |
| Cites_doi | 10.1007/s11227-018-2512-5 10.1016/j.asoc.2017.11.006 10.1016/j.asoc.2013.09.018 10.1016/j.eswa.2018.07.013 10.1016/j.eswa.2019.03.039 10.1016/j.asoc.2016.01.044 10.1007/s10489-022-03465-9 10.1109/TCYB.2020.3042243 10.1016/j.swevo.2020.100663 10.1016/j.eswa.2020.114072 10.1016/j.ins.2010.05.037 10.1109/ICNN.1995.488968 10.1109/TCYB.2021.3061152 10.1109/TCYB.2021.3075986 10.1007/s13369-019-04064-6 10.1016/j.eswa.2011.04.057 10.1016/j.eswa.2020.113691 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Apr 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Apr 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-024-10611-6 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 7783 |
| ExternalDocumentID | 10_1007_s00521_024_10611_6 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61976108; 61572241 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZT PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX ABBRH ABFSG ABRTQ ACSTC AEZWR AFFHD AFHIU AFOHR AGQPQ AHWEU AIXLP ATHPR CITATION PHGZM PQGLB |
| ID | FETCH-LOGICAL-c2576-63896359568e87c7b2abbbb69163e39ec17a99bf6ae66623c2c54a3169020eaa3 |
| IEDL.DBID | RSV |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 08:56:24 EST 2025 Sat Nov 29 08:05:49 EST 2025 Sun Apr 06 01:10:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Adaptive search Feature selection Feature correlation Particle swarm optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2576-63896359568e87c7b2abbbb69163e39ec17a99bf6ae66623c2c54a3169020eaa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3186664120 |
| PQPubID | 2043988 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3186664120 crossref_primary_10_1007_s00521_024_10611_6 springer_journals_10_1007_s00521_024_10611_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20250400 2025-04-00 20250401 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 4 year: 2025 text: 20250400 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | BH Nguyen (10611_CR2) 2020; 54 K Chen (10611_CR1) 2020; 52 MG Gafar (10611_CR8) 2020; 76 F Amini (10611_CR6) 2021; 166 X-F Song (10611_CR10) 2021; 52 G Ansari (10611_CR5) 2019; 44 F Han (10611_CR11) 2023; 53 M Mafarja (10611_CR4) 2018; 62 B Xue (10611_CR13) 2014; 18 A Unler (10611_CR14) 2011; 181 K Chen (10611_CR17) 2019; 128 Y Yoon (10611_CR7) 2021; 52 L-Y Chuang (10611_CR12) 2011; 38 10611_CR18 P Moradi (10611_CR15) 2016; 43 MG Gafar (10611_CR9) 2020; 76 R Cekik (10611_CR3) 2020; 160 M Amoozegar (10611_CR16) 2018; 113 |
| References_xml | – volume: 76 start-page: 2339 year: 2020 ident: 10611_CR8 publication-title: J Supercomput doi: 10.1007/s11227-018-2512-5 – volume: 76 start-page: 2339 year: 2020 ident: 10611_CR9 publication-title: J Supercomput doi: 10.1007/s11227-018-2512-5 – volume: 62 start-page: 441 year: 2018 ident: 10611_CR4 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.11.006 – volume: 18 start-page: 261 year: 2014 ident: 10611_CR13 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.09.018 – volume: 113 start-page: 499 year: 2018 ident: 10611_CR16 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.07.013 – volume: 128 start-page: 140 year: 2019 ident: 10611_CR17 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.03.039 – volume: 43 start-page: 117 year: 2016 ident: 10611_CR15 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.01.044 – volume: 53 start-page: 3545 issue: 3 year: 2023 ident: 10611_CR11 publication-title: Appl Intell doi: 10.1007/s10489-022-03465-9 – volume: 52 start-page: 7172 issue: 7 year: 2020 ident: 10611_CR1 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.3042243 – volume: 54 start-page: 100663 year: 2020 ident: 10611_CR2 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100663 – volume: 166 start-page: 114072 year: 2021 ident: 10611_CR6 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114072 – volume: 181 start-page: 4625 issue: 20 year: 2011 ident: 10611_CR14 publication-title: Inf Sci doi: 10.1016/j.ins.2010.05.037 – ident: 10611_CR18 doi: 10.1109/ICNN.1995.488968 – volume: 52 start-page: 9573 issue: 9 year: 2021 ident: 10611_CR10 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2021.3061152 – volume: 52 start-page: 6531 issue: 7 year: 2021 ident: 10611_CR7 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2021.3075986 – volume: 44 start-page: 9191 year: 2019 ident: 10611_CR5 publication-title: Arab J Sci Eng doi: 10.1007/s13369-019-04064-6 – volume: 38 start-page: 12699 issue: 10 year: 2011 ident: 10611_CR12 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.057 – volume: 160 start-page: 113691 year: 2020 ident: 10611_CR3 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113691 |
| SSID | ssj0004685 |
| Score | 2.3830721 |
| Snippet | As an effective method for data dimensionality reduction, feature selection could improve the classification accuracy and reduce the computational cost when... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 7767 |
| SubjectTerms | Adaptive search techniques Algorithms Artificial Intelligence Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Correlation coefficients Data Mining and Knowledge Discovery Feature selection Image Processing and Computer Vision Minima Optimization Particle swarm optimization Probability and Statistics in Computer Science Redundancy S.I.: From Theory to Practice: Real-World Applications of AI in Data Science Search methods Special Issue on From Theory to Practice: Real-World Applications of AI in Data Science |
| Title | A novel feature selection method based on adaptive search particle swarm optimization |
| URI | https://link.springer.com/article/10.1007/s00521-024-10611-6 https://www.proquest.com/docview/3186664120 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9ODF-YnTKTl408CWdEl7HOLwIEPUjd1Kmr6C4LrRzvnvm6TppqIH7a2kPMp7yftI8ns_gMtAyyBTvZQiRowGWiENNdpNHJGZciFC4VD843s5HIaTSfTgQWFlfdu9PpJ0nnoFdrM7mKb0ZQG1ZUyXik3YMuEutIQNj0_jT2hIR8Rp6hZ7pyfgHirzs4yv4WidY347FnXRZtD833_uwa7PLkm_mg77sIH5ATRr5gbiF_IhjPokny3xlWToGnuS0tHhGBuRilKa2OiWEvOuUjW3LpFUa4LM_Vwj5bsqpmRmBqcey3kEo8Ht880d9QQLVNs6g9psRVhkrggxlFomTCXmESZl5Mgj1F2poijJhEJT5TCume4FituTNdZBpfgxNPJZjidAepKHLJGyY2xv4h1aogU0ziBJE61U2mnBVa3neF710YhXHZOdxmKjsdhpLBYtaNemiP2aKmNue_OJoMuMsOta9evh36Wd_u3zM9hhluTXXc9pQ2NRvOE5bOvl4qUsLtxc-wD-DM1r |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8UTfQifkYUtQdv2gTa0W5HYiQYkRgFwq3pukdiIoMwxH_ftutAjR50t6XLy_Je-z7a_t4PoctAi2CkGgkBiCgJtAISarCbOHxkyoUIuEPxDzqi2w2Hw-jRg8Ky4rZ7cSTpPPUS7GZ3ME3pSwNiy5g64etoIzARy3bMf3oefEJDOiJOU7fYOz0B81CZn2V8DUerHPPbsaiLNq3y__5zF-347BI38-mwh9Yg3UflgrkB-4V8gPpNnE4W8IpH4Bp74szR4Rgb4ZxSGtvolmDzrhI1tS4R52sCT_1cw9m7mo3xxAyOPZbzEPVbt72bNvEEC0TbOoPYbIVbZC4PIRRaxFTF5uEmZWTAItB1oaIoHnEFpsqhTFPdCBSzJ2u0BkqxI1RKJykcI9wQLKSxEDVjexPvwBItgHEGcRJrpZJaBV0VepbTvI-GXHZMdhqTRmPSaUzyCqoWppB-TWWS2d58PKhTI-y6UP1q-HdpJ3_7_AJttXsPHdm5696fom1qCX_dVZ0qKs1nb3CGNvVi_pLNzt28-wCo69BP |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwEA46RXxx_sTp1Dz4psUtyZL2cahDcYyBbuwtpOkVBNeVdc5_3yRttyn6IPatpIRyueTucvfdh9Al04LFqhV5AAHxmFbg-RrsJQ6PTbgQAHco_mFX9Hr-aBT0V1D8rtq9TEnmmAbbpSmZ3aRRfLMAvtnbTBMGE-bZkKbp8XW0wWwhvY3Xn4cryEhHymliGFvfw2gBm_l5jq-maelvfkuROsvTqf7_n3fRTuF14nauJntoDZJ9VC0ZHXCxwQ_QoI2TyRzecAyu4SfOHE2OWTucU01ja_UibN5VpFJ7VOJ8r-C00EGcfajpGE_M4LjAeB6iQef-5fbBK4gXPG3jD896MdwidrkPvtAiJCo0DzeuJAUagG4KFQRhzBWY6IdQTXSLKWozbqQBStEjVEkmCRwj3BLUJ6EQDaMTxg6CJWAAc0iEUaiViho1dFXKXKZ5fw256KTsJCaNxKSTmOQ1VC-XRRZ7LZPU9uzjrEnMZNflMiyHf5_t5G-fX6Ct_l1Hdh97T6dom1geYFfBU0eV2fQdztCmns9es-m5U8FPdb7ZMw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+feature+selection+method+based+on+adaptive+search+particle+swarm+optimization&rft.jtitle=Neural+computing+%26+applications&rft.au=Han%2C+Fei&rft.au=Wang%2C+Yi-Huai&rft.au=Li%2C+Fan-Yu&rft.date=2025-04-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=12&rft.spage=7767&rft.epage=7783&rft_id=info:doi/10.1007%2Fs00521-024-10611-6&rft.externalDocID=10_1007_s00521_024_10611_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |