A novel feature selection method based on adaptive search particle swarm optimization

As an effective method for data dimensionality reduction, feature selection could improve the classification accuracy and reduce the computational cost when dealing with high-dimensional data. Feature selection is essentially a complex optimization search problem. Among many optimization algorithms,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 37; číslo 12; s. 7767 - 7783
Hlavní autoři: Han, Fei, Wang, Yi-Huai, Li, Fan-Yu
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.04.2025
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As an effective method for data dimensionality reduction, feature selection could improve the classification accuracy and reduce the computational cost when dealing with high-dimensional data. Feature selection is essentially a complex optimization search problem. Among many optimization algorithms, particle swarm optimization (PSO) has been widely used due to its good global search ability and easy to implement. However, most feature selection methods based on PSO ignore the correlations between the features of data, which may lead to more redundant features, and the feature selection methods are prone to fall into local minima. This study proposes an improved feature selection method based on adaptive search particle swarm optimization (AS-BPSO-FS). On one hand, AS-BPSO-FS is designed to consider the feature correlation according to the feature correlation information. The particle position adaptive update strategy selects features based on the correlation coefficient between features, ensuring that features with higher correlation are more likely to be culled, so as to obtain a subset of features with less redundancy. On the other hand, AS-BPSO-FS identifies particles trapped in local minima by calculating the update time of individual and global optimal positions, and uses an adaptive particle neighborhood search strategy to help particles escape from local minima. The AS-BPSO-FS has been tested on 10 UCI data and compared with some state-of-the-art feature selection methods. The results verify that the proposed method could obtain feature subsets with better classification performance and less redundancy.
AbstractList As an effective method for data dimensionality reduction, feature selection could improve the classification accuracy and reduce the computational cost when dealing with high-dimensional data. Feature selection is essentially a complex optimization search problem. Among many optimization algorithms, particle swarm optimization (PSO) has been widely used due to its good global search ability and easy to implement. However, most feature selection methods based on PSO ignore the correlations between the features of data, which may lead to more redundant features, and the feature selection methods are prone to fall into local minima. This study proposes an improved feature selection method based on adaptive search particle swarm optimization (AS-BPSO-FS). On one hand, AS-BPSO-FS is designed to consider the feature correlation according to the feature correlation information. The particle position adaptive update strategy selects features based on the correlation coefficient between features, ensuring that features with higher correlation are more likely to be culled, so as to obtain a subset of features with less redundancy. On the other hand, AS-BPSO-FS identifies particles trapped in local minima by calculating the update time of individual and global optimal positions, and uses an adaptive particle neighborhood search strategy to help particles escape from local minima. The AS-BPSO-FS has been tested on 10 UCI data and compared with some state-of-the-art feature selection methods. The results verify that the proposed method could obtain feature subsets with better classification performance and less redundancy.
As an effective method for data dimensionality reduction, feature selection could improve the classification accuracy and reduce the computational cost when dealing with high-dimensional data. Feature selection is essentially a complex optimization search problem. Among many optimization algorithms, particle swarm optimization (PSO) has been widely used due to its good global search ability and easy to implement. However, most feature selection methods based on PSO ignore the correlations between the features of data, which may lead to more redundant features, and the feature selection methods are prone to fall into local minima. This study proposes an improved feature selection method based on adaptive search particle swarm optimization (AS-BPSO-FS). On one hand, AS-BPSO-FS is designed to consider the feature correlation according to the feature correlation information. The particle position adaptive update strategy selects features based on the correlation coefficient between features, ensuring that features with higher correlation are more likely to be culled, so as to obtain a subset of features with less redundancy. On the other hand, AS-BPSO-FS identifies particles trapped in local minima by calculating the update time of individual and global optimal positions, and uses an adaptive particle neighborhood search strategy to help particles escape from local minima. The AS-BPSO-FS has been tested on 10 UCI data and compared with some state-of-the-art feature selection methods. The results verify that the proposed method could obtain feature subsets with better classification performance and less redundancy.
Author Han, Fei
Li, Fan-Yu
Wang, Yi-Huai
Author_xml – sequence: 1
  givenname: Fei
  surname: Han
  fullname: Han, Fei
  email: hanfei@ujs.edu.cn
  organization: School of Computer Science and Communication Engineering, Jiangsu University
– sequence: 2
  givenname: Yi-Huai
  surname: Wang
  fullname: Wang, Yi-Huai
  organization: School of Computer Science and Communication Engineering, Jiangsu University
– sequence: 3
  givenname: Fan-Yu
  surname: Li
  fullname: Li, Fan-Yu
  organization: School of Computer Science and Communication Engineering, Jiangsu University
BookMark eNp9kM1LAzEQxYNUsK3-A54Cnlcnye7s5liKX1DwYs8hm87aLftRk21F_3pTV_DmXIbhvd8beDM26fqOGLsWcCsA8rsAkEmRgEwTAShEgmdsKlKlEgVZMWFT0GmUMVUXbBbCDgBSLLIpWy941x-p4RXZ4eCJB2rIDXXf8ZaGbb_hpQ204fG2G7sf6uPJYr3b8r31Q-2aeH9Y3_I-im39ZU_sJTuvbBPo6nfP2frh_nX5lKxeHp-Xi1XiZJZjgqrQqDKdYUFF7vJS2jIOaoGKlCYncqt1WaElRJTKSZelVgnUIIGsVXN2M-buff9-oDCYXX_wXXxplCgikwoJ0SVHl_N9CJ4qs_d1a_2nEWBO9ZmxPhPrMz_1GYyQGqEQzd0b-b_of6hvPlp0KA
Cites_doi 10.1007/s11227-018-2512-5
10.1016/j.asoc.2017.11.006
10.1016/j.asoc.2013.09.018
10.1016/j.eswa.2018.07.013
10.1016/j.eswa.2019.03.039
10.1016/j.asoc.2016.01.044
10.1007/s10489-022-03465-9
10.1109/TCYB.2020.3042243
10.1016/j.swevo.2020.100663
10.1016/j.eswa.2020.114072
10.1016/j.ins.2010.05.037
10.1109/ICNN.1995.488968
10.1109/TCYB.2021.3061152
10.1109/TCYB.2021.3075986
10.1007/s13369-019-04064-6
10.1016/j.eswa.2011.04.057
10.1016/j.eswa.2020.113691
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Apr 2025
DBID AAYXX
CITATION
DOI 10.1007/s00521-024-10611-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 7783
ExternalDocumentID 10_1007_s00521_024_10611_6
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61976108; 61572241
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZT
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AFOHR
AGQPQ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
ID FETCH-LOGICAL-c2576-63896359568e87c7b2abbbb69163e39ec17a99bf6ae66623c2c54a3169020eaa3
IEDL.DBID RSV
ISSN 0941-0643
IngestDate Wed Nov 05 08:56:24 EST 2025
Sat Nov 29 08:05:49 EST 2025
Sun Apr 06 01:10:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Adaptive search
Feature selection
Feature correlation
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2576-63896359568e87c7b2abbbb69163e39ec17a99bf6ae66623c2c54a3169020eaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3186664120
PQPubID 2043988
PageCount 17
ParticipantIDs proquest_journals_3186664120
crossref_primary_10_1007_s00521_024_10611_6
springer_journals_10_1007_s00521_024_10611_6
PublicationCentury 2000
PublicationDate 20250400
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 4
  year: 2025
  text: 20250400
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References BH Nguyen (10611_CR2) 2020; 54
K Chen (10611_CR1) 2020; 52
MG Gafar (10611_CR8) 2020; 76
F Amini (10611_CR6) 2021; 166
X-F Song (10611_CR10) 2021; 52
G Ansari (10611_CR5) 2019; 44
F Han (10611_CR11) 2023; 53
M Mafarja (10611_CR4) 2018; 62
B Xue (10611_CR13) 2014; 18
A Unler (10611_CR14) 2011; 181
K Chen (10611_CR17) 2019; 128
Y Yoon (10611_CR7) 2021; 52
L-Y Chuang (10611_CR12) 2011; 38
10611_CR18
P Moradi (10611_CR15) 2016; 43
MG Gafar (10611_CR9) 2020; 76
R Cekik (10611_CR3) 2020; 160
M Amoozegar (10611_CR16) 2018; 113
References_xml – volume: 76
  start-page: 2339
  year: 2020
  ident: 10611_CR8
  publication-title: J Supercomput
  doi: 10.1007/s11227-018-2512-5
– volume: 76
  start-page: 2339
  year: 2020
  ident: 10611_CR9
  publication-title: J Supercomput
  doi: 10.1007/s11227-018-2512-5
– volume: 62
  start-page: 441
  year: 2018
  ident: 10611_CR4
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.11.006
– volume: 18
  start-page: 261
  year: 2014
  ident: 10611_CR13
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.09.018
– volume: 113
  start-page: 499
  year: 2018
  ident: 10611_CR16
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.07.013
– volume: 128
  start-page: 140
  year: 2019
  ident: 10611_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.03.039
– volume: 43
  start-page: 117
  year: 2016
  ident: 10611_CR15
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.01.044
– volume: 53
  start-page: 3545
  issue: 3
  year: 2023
  ident: 10611_CR11
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03465-9
– volume: 52
  start-page: 7172
  issue: 7
  year: 2020
  ident: 10611_CR1
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.3042243
– volume: 54
  start-page: 100663
  year: 2020
  ident: 10611_CR2
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100663
– volume: 166
  start-page: 114072
  year: 2021
  ident: 10611_CR6
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114072
– volume: 181
  start-page: 4625
  issue: 20
  year: 2011
  ident: 10611_CR14
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2010.05.037
– ident: 10611_CR18
  doi: 10.1109/ICNN.1995.488968
– volume: 52
  start-page: 9573
  issue: 9
  year: 2021
  ident: 10611_CR10
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2021.3061152
– volume: 52
  start-page: 6531
  issue: 7
  year: 2021
  ident: 10611_CR7
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2021.3075986
– volume: 44
  start-page: 9191
  year: 2019
  ident: 10611_CR5
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-019-04064-6
– volume: 38
  start-page: 12699
  issue: 10
  year: 2011
  ident: 10611_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.057
– volume: 160
  start-page: 113691
  year: 2020
  ident: 10611_CR3
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113691
SSID ssj0004685
Score 2.3831599
Snippet As an effective method for data dimensionality reduction, feature selection could improve the classification accuracy and reduce the computational cost when...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 7767
SubjectTerms Adaptive search techniques
Algorithms
Artificial Intelligence
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Correlation coefficients
Data Mining and Knowledge Discovery
Feature selection
Image Processing and Computer Vision
Minima
Optimization
Particle swarm optimization
Probability and Statistics in Computer Science
Redundancy
S.I.: From Theory to Practice: Real-World Applications of AI in Data Science
Search methods
Special Issue on From Theory to Practice: Real-World Applications of AI in Data Science
Title A novel feature selection method based on adaptive search particle swarm optimization
URI https://link.springer.com/article/10.1007/s00521-024-10611-6
https://www.proquest.com/docview/3186664120
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46PXhx_sTplBy8aSBt0qQ5DnF4kCHqxm4lSVMQXDfWOf99kzTdVPSgvZWUUF7ey3sved_7ALgUXCQFwzmKKeeIap4j6wUJYkqJwhQ4x_4ccnTPB4N0PBYPARRWNdXuzZWk36lXYDd3gmlT35gil8ZEiG2CLevuUkfY8Pg0-oSG9EScNm9xNT2UBKjMz3N8dUfrGPPbtaj3Nv32__5zD-yG6BL2anXYBxumPADthrkBBkM-BMMeLKdL8woL4xt7wsrT4dg1gjWlNHTeLYf2XeZy5rZEWNsEnAVdg9W7nE_g1A5OApbzCAz7t883dygQLCDt8gzkohXmkLksNSnXXMVS2YfZkJEYIoyOuBRCFUwam-XERMc6oZK4m7UYGynJMWiV09KcAKgSXSiR6DTSmEbYKE15jhURrn-zIqQDrho5Z7O6j0a26pjsJZZZiWVeYhnrgG6zFFmwqSojrjcfo1GMO-C6Ef16-PfZTv_2-RnYiR3Jry_P6YLWYv5mzsG2Xi5eqvmF17UPp4bNLg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1Dz4poG2yZLlcYhj4hyi29hbSdIUBPfBOue_b5K1m4o-aN9KSiiXu9xdcvf7AVwKLmopCxIcUc4x1TzB1gsSzJQSqUmDJPDnkP0273Tqg4F4zJvCsqLavbiS9Dv1stnNnWDa1Dei2KUxIWbrsEGtx3KI-U_P_U_dkJ6I0-YtrqaHkrxV5uc5vrqjVYz57VrUe5tm-X__uQs7eXSJGgt12IM1M9qHcsHcgHJDPoBeA43Gc_OKUuOBPVHm6XDsGqEFpTRy3i1B9l0mcuK2RLSwCTTJdQ1l73I6RGM7OMx7OQ-h17zt3rRwTrCAtcszsItWmOvMZXVT55qrSCr7MBsyEkOE0SGXQqiUSWOznIjoSNeoJO5mLQqMlOQISqPxyBwDUjWdKlHT9VAHNAyM0pQngSLC4TcrQipwVcg5nixwNOIlYrKXWGwlFnuJxawC1WIp4tymspg4bD5GwyiowHUh-tXw77Od_O3zC9hqdR_acfuuc38K25Ej_PWlOlUozaZv5gw29Xz2kk3Pvd59AE-J0BI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1Dz4psGu6ZLmcahDcYyBbuytJGkKguvKNue_b5K22xR9EPtWEkK5j95d7n53AJec8WZCvRj7AWM4UCzGxgoSTKXkiU682HP3kIMO63bD4ZD3VlD8rtq9TEnmmAbbpSmd3WRxcrMAvtnbTBMG-wG2IU0D03XYCGwhvY3XnwcryEg3lNPEMLa-JyAFbObnM76apqW_-S1F6ixPu_r_b96FncLrRK1cTPZgTaf7UC0nOqBCwQ-g30LpeK7fUKJdw080dWNyDO9QPmoaWasXI_MuYpHZXyXKdQVlhQyi6YeYjNDYLI4KjOch9Nv3L7cPuBi8gJWNP7D1YqhF7NJQh0wx6QtpHmpcSaIJ16rBBOcyoUKb6McnylfNQBCbcfM9LQQ5gko6TvUxINlUieRNFTaUZxikpQpY7EnCbV9nSUgNrkqaR1neXyNadFJ2FIsMxSJHsYjWoF6yJSp0bRoR27OPBg3fq8F1yYbl8u-nnfxt-wVs9e7aUeex-3QK276dA-wqeOpQmU3e9RlsqvnsdTo5dyL4CQ6J2PY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+feature+selection+method+based+on+adaptive+search+particle+swarm+optimization&rft.jtitle=Neural+computing+%26+applications&rft.date=2025-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=12&rft.spage=7767&rft.epage=7783&rft_id=info:doi/10.1007%2Fs00521-024-10611-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon