Approximately counting independent sets in bipartite graphs via graph containers
By implementing algorithmic versions of Sapozhenko's graph container methods, we give new algorithms for approximating the number of independent sets in bipartite graphs. Our first algorithm applies to d$$ d $$‐regular, bipartite graphs satisfying a weak expansion condition: when d$$ d $$ is co...
Saved in:
| Published in: | Random structures & algorithms Vol. 63; no. 1; pp. 215 - 241 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
John Wiley & Sons, Inc
01.08.2023
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 1042-9832, 1098-2418 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | By implementing algorithmic versions of Sapozhenko's graph container methods, we give new algorithms for approximating the number of independent sets in bipartite graphs. Our first algorithm applies to d$$ d $$‐regular, bipartite graphs satisfying a weak expansion condition: when d$$ d $$ is constant, and the graph is a bipartite Ω(log2d/d)$$ \Omega \left({\log}^2d/d\right) $$‐expander, we obtain an FPTAS for the number of independent sets. Previously such a result for d>5$$ d>5 $$ was known only for graphs satisfying the much stronger expansion conditions of random bipartite graphs. The algorithm also applies to weighted independent sets: for a d$$ d $$‐regular, bipartite α$$ \alpha $$‐expander, with α>0$$ \alpha >0 $$ fixed, we give an FPTAS for the hard‐core model partition function at fugacity λ=Ω(logd/d1/4)$$ \lambda =\Omega \left(\log d/{d}^{1/4}\right) $$. Finally we present an algorithm that applies to all d$$ d $$‐regular, bipartite graphs, runs in time expOn·log3dd$$ \exp \left(O\left(n\cdotp \frac{\log^3d}{d}\right)\right) $$, and outputs a (1+o(1))$$ \left(1+o(1)\right) $$‐approximation to the number of independent sets. |
|---|---|
| Bibliography: | Funding information NSF,Grant/Award Numbers: DMS‐1847451;CCF‐1934915 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1042-9832 1098-2418 |
| DOI: | 10.1002/rsa.21145 |