Approximately counting independent sets in bipartite graphs via graph containers
By implementing algorithmic versions of Sapozhenko's graph container methods, we give new algorithms for approximating the number of independent sets in bipartite graphs. Our first algorithm applies to d$$ d $$‐regular, bipartite graphs satisfying a weak expansion condition: when d$$ d $$ is co...
Uložené v:
| Vydané v: | Random structures & algorithms Ročník 63; číslo 1; s. 215 - 241 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
John Wiley & Sons, Inc
01.08.2023
Wiley Subscription Services, Inc |
| Predmet: | |
| ISSN: | 1042-9832, 1098-2418 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | By implementing algorithmic versions of Sapozhenko's graph container methods, we give new algorithms for approximating the number of independent sets in bipartite graphs. Our first algorithm applies to d$$ d $$‐regular, bipartite graphs satisfying a weak expansion condition: when d$$ d $$ is constant, and the graph is a bipartite Ω(log2d/d)$$ \Omega \left({\log}^2d/d\right) $$‐expander, we obtain an FPTAS for the number of independent sets. Previously such a result for d>5$$ d>5 $$ was known only for graphs satisfying the much stronger expansion conditions of random bipartite graphs. The algorithm also applies to weighted independent sets: for a d$$ d $$‐regular, bipartite α$$ \alpha $$‐expander, with α>0$$ \alpha >0 $$ fixed, we give an FPTAS for the hard‐core model partition function at fugacity λ=Ω(logd/d1/4)$$ \lambda =\Omega \left(\log d/{d}^{1/4}\right) $$. Finally we present an algorithm that applies to all d$$ d $$‐regular, bipartite graphs, runs in time expOn·log3dd$$ \exp \left(O\left(n\cdotp \frac{\log^3d}{d}\right)\right) $$, and outputs a (1+o(1))$$ \left(1+o(1)\right) $$‐approximation to the number of independent sets. |
|---|---|
| Bibliografia: | Funding information NSF,Grant/Award Numbers: DMS‐1847451;CCF‐1934915 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1042-9832 1098-2418 |
| DOI: | 10.1002/rsa.21145 |