Multidimensional perturbed consistency learning for semi‐supervised medical image segmentation

In this article, we propose a novel multidimensional perturbed consistency network (MPCNet) for more accurate semi‐supervised medical image segmentation. Specifically, we develop a multidimensional perturbation by considering the noise itself, the target object and the overall spatial architecture....

Full description

Saved in:
Bibliographic Details
Published in:International journal of imaging systems and technology Vol. 34; no. 3
Main Authors: Yuan, Enze, Zhao, Bin, Qin, Xiao, Ding, Shuxue
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01.05.2024
Wiley Subscription Services, Inc
Subjects:
ISSN:0899-9457, 1098-1098
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article, we propose a novel multidimensional perturbed consistency network (MPCNet) for more accurate semi‐supervised medical image segmentation. Specifically, we develop a multidimensional perturbation by considering the noise itself, the target object and the overall spatial architecture. This type of perturbation can disrupt the propagation process of features over a wide range, enabling the model to learn the distribution of comprehensive data. In addition, we design a shared encoder to extract multi‐scale features. After subjecting these features to multidimensional perturbation, a consistency constraint is applied between different results output by three independent decoders. This constraint aims to minimize the statistical differences between these results and effectively leverage unlabeled data. Experimental results on the public LA, Pancreas‐CT and ACDC datasets demonstrate that our method outperforms recent SOTA semi‐supervised learning methods in terms of various metrics. Our code is released publicly at https://github.com/yuanenze123/MPC-Net.
AbstractList In this article, we propose a novel multidimensional perturbed consistency network (MPCNet) for more accurate semi‐supervised medical image segmentation. Specifically, we develop a multidimensional perturbation by considering the noise itself, the target object and the overall spatial architecture. This type of perturbation can disrupt the propagation process of abstract features over a wide range, enabling the model to learn the distribution of comprehensive data. In addition, we design a shared encoder to extract multi‐scale features. After subjecting these features to multidimensional perturbation, a consistency constraint is applied between different results output by three independent decoders. This constraint aims to minimize the statistical differences between these results and effectively leverage unlabeled data. Experimental results on the public LA, Pancreas‐CT and ACDC datasets demonstrate that our method outperforms recent SOTA semi‐supervised learning methods in terms of various metrics. Our code is released publicly at https://github.com/yuanenze123/MPC-Net.
In this article, we propose a novel multidimensional perturbed consistency network (MPCNet) for more accurate semi‐supervised medical image segmentation. Specifically, we develop a multidimensional perturbation by considering the noise itself, the target object and the overall spatial architecture. This type of perturbation can disrupt the propagation process of features over a wide range, enabling the model to learn the distribution of comprehensive data. In addition, we design a shared encoder to extract multi‐scale features. After subjecting these features to multidimensional perturbation, a consistency constraint is applied between different results output by three independent decoders. This constraint aims to minimize the statistical differences between these results and effectively leverage unlabeled data. Experimental results on the public LA, Pancreas‐CT and ACDC datasets demonstrate that our method outperforms recent SOTA semi‐supervised learning methods in terms of various metrics. Our code is released publicly at https://github.com/yuanenze123/MPC-Net.
In this article, we propose a novel multidimensional perturbed consistency network (MPCNet) for more accurate semi‐supervised medical image segmentation. Specifically, we develop a multidimensional perturbation by considering the noise itself, the target object and the overall spatial architecture. This type of perturbation can disrupt the propagation process of abstract features over a wide range, enabling the model to learn the distribution of comprehensive data. In addition, we design a shared encoder to extract multi‐scale features. After subjecting these features to multidimensional perturbation, a consistency constraint is applied between different results output by three independent decoders. This constraint aims to minimize the statistical differences between these results and effectively leverage unlabeled data. Experimental results on the public LA, Pancreas‐CT and ACDC datasets demonstrate that our method outperforms recent SOTA semi‐supervised learning methods in terms of various metrics. Our code is released publicly at https://github.com/yuanenze123/MPC-Net .
Author Qin, Xiao
Ding, Shuxue
Zhao, Bin
Yuan, Enze
Author_xml – sequence: 1
  givenname: Enze
  surname: Yuan
  fullname: Yuan, Enze
  organization: Guangxi Colleges and Universities Key Laboratory of AI Algorithm Engineering
– sequence: 2
  givenname: Bin
  surname: Zhao
  fullname: Zhao, Bin
  email: zhaobin@guet.edu.cn
  organization: Guilin University of Electronic Technology
– sequence: 3
  givenname: Xiao
  surname: Qin
  fullname: Qin, Xiao
  organization: Guangxi Academy of Science
– sequence: 4
  givenname: Shuxue
  surname: Ding
  fullname: Ding, Shuxue
  email: sding@guet.edu.cn
  organization: Guangxi Colleges and Universities Key Laboratory of AI Algorithm Engineering
BookMark eNp1kL1OwzAQxy1UJNrCwBtEYmJIazuxm4xVxUelViwwG8c-V64Sp9gJqBuPwDPyJLiEleVOd_e7_31M0Mi1DhC6JnhGMKZz28gZzXDJztCY4LJIT2aExrgoy7TM2eICTULYY0wIw2yMXrd93VltG3DBtk7WyQF81_sKdKLamAsdOHVMapDeWbdLTOuTAI39_vwKfWTfbYhoA9qq2BzH7yDWd1Gvk11UvETnRtYBrv78FL3c3z2vHtPN08N6tdykirIFS5lSlOcUE0MkyYqMc6m5UZxXFdE5B020rrCSFIwGnRPIwCimTVnRTGfRTNHNoHvw7VsPoRP7tvfxoCAyzAleUMaKSN0OlPJtCB6MOPi4sz8KgsXpgSJG4veBkZ0P7Iet4fg_KNbb5dDxA_J0d-4
Cites_doi 10.1007/978-3-030-59710-8_55
10.1007/978-3-030-32245-8_67
10.1016/j.compmedimag.2022.102092
10.1109/TNNLS.2012.2186825
10.1007/978-3-031-16434-7_1
10.1109/TMI.2018.2845918
10.1109/CVPR.2015.7298965
10.1016/j.media.2022.102517
10.2174/157340561101150423103441
10.1007/978-3-030-59710-8_54
10.1109/TBDATA.2023.3258643
10.1109/CVPR42600.2020.01269
10.1038/s41592-020-01008-z
10.1016/j.media.2020.101832
10.1109/ISBI52829.2022.9761666
10.1016/j.compbiomed.2022.105729
10.1109/CVPR46437.2021.00264
10.1109/ICCV.2019.01077
10.1109/CVPR.2015.7298664
10.1109/CVPR.2018.00454
10.1109/3DV.2016.79
10.1016/j.media.2022.102530
10.1109/TMI.2018.2837502
10.1007/s10278-013-9622-7
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
2024 Wiley Periodicals, LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
– notice: 2024 Wiley Periodicals, LLC.
DBID AAYXX
CITATION
DOI 10.1002/ima.23095
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
EndPage n/a
ExternalDocumentID 10_1002_ima_23095
IMA23095
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62076077
– fundername: Youth Science Foundation of Guangxi Natural Science Foundation
  funderid: 2023GXNSFBA026018
– fundername: Project of Improving the Basic Scientific Research Ability of Young and Middle‐Aged Teachers in Universities of Guangxi Province
  funderid: 2023KY0223
– fundername: Guangxi Science and Technology Major Project
  funderid: AA22068057
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
ID FETCH-LOGICAL-c2575-5cc264201f1a138366ad6fc66bb1d46ed1ddb0ca2efded41e3efc5df9b23d3b23
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001226302900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0899-9457
IngestDate Sat Jul 26 00:27:04 EDT 2025
Sat Nov 29 02:46:17 EST 2025
Wed Jan 22 17:20:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2575-5cc264201f1a138366ad6fc66bb1d46ed1ddb0ca2efded41e3efc5df9b23d3b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3061072558
PQPubID 1026352
PageCount 13
ParticipantIDs proquest_journals_3061072558
crossref_primary_10_1002_ima_23095
wiley_primary_10_1002_ima_23095_IMA23095
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 35
2013; 26
2021; 67
2023
2022; 81
2022
2021
2020
2021; 18
2015; 11
2022; 80
2007; 8
2019
2018
2016
2015
2020; 33
2013
2022; 99
2012; 23
2018; 37
2022; 147
e_1_2_10_23_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
Xie Q (e_1_2_10_24_1) 2020; 33
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Sohn K (e_1_2_10_7_1) 2020; 33
Rigollet P (e_1_2_10_9_1) 2007; 8
Luo X (e_1_2_10_16_1) 2021; 35
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 67
  year: 2021
  article-title: A global benchmark of algorithms for segmenting the left atrium from late gadolinium‐enhanced cardiac magnetic resonance imaging
  publication-title: Med Image Anal
– volume: 80
  year: 2022
  article-title: Semi‐supervised medical image segmentation via uncertainty rectified pyramid consistency
  publication-title: Med Image Anal
– volume: 35
  start-page: 8801
  year: 2021
  end-page: 8809
  article-title: Semi‐supervised medical image segmentation through dual‐task consistency
  publication-title: Proceed AAAI Conf Artific Intell
– volume: 33
  start-page: 6256
  year: 2020
  end-page: 6268
  article-title: Unsupervised data augmentation for consistency training
  publication-title: Adv Neur Inform Process Syst
– volume: 37
  start-page: 2514
  year: 2018
  end-page: 2525
  article-title: Deep learning techniques for automatic mri cardiac multi‐structures segmentation and diagnosis: is the problem solved?
  publication-title: IEEE Trans Med Imaging
– volume: 18
  start-page: 203
  year: 2021
  end-page: 211
  article-title: Nnu‐net: a self‐configuring method for deep learning‐based biomedical image segmentation
  publication-title: Nat Methods
– volume: 23
  start-page: 689
  year: 2012
  end-page: 702
  article-title: New semi‐supervised classification method based on modified cluster assumption
  publication-title: IEEE Trans Neur Netw Learn Syst
– volume: 8
  year: 2007
  article-title: Generalization error bounds in semi‐supervised classification under the cluster assumption
  publication-title: J Mach Learn Res
– volume: 33
  start-page: 596
  year: 2020
  end-page: 608
  article-title: Fixmatch: simplifying semi‐supervised learning with consistency and confidence
  publication-title: Adv Neur Inform Process Syst
– year: 2022
– year: 2020
– year: 2021
– volume: 11
  start-page: 3
  year: 2015
  end-page: 14
  article-title: A survey on medical image segmentation
  publication-title: Curr Med Imag
– year: 2023
– volume: 26
  start-page: 1045
  year: 2013
  end-page: 1057
  article-title: The cancer imaging archive (tcia): maintaining and operating a public information repository
  publication-title: J Digit Imaging
– volume: 147
  year: 2022
  article-title: Pseudo‐labeling generative adversarial networks for medical image classification
  publication-title: Comput Biol Med
– volume: 81
  year: 2022
  article-title: Mutual consistency learning for semi‐supervised medical image segmentation
  publication-title: Med Image Anal
– year: 2016
– year: 2018
– year: 2019
– year: 2015
– volume: 37
  start-page: 2663
  year: 2018
  end-page: 2674
  article-title: H‐DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes
  publication-title: IEEE Trans Med Imaging
– year: 2013
– volume: 99
  year: 2022
  article-title: A contrastive consistency semi‐supervised left atrium segmentation model
  publication-title: Comput Med Imaging Graph
– ident: e_1_2_10_27_1
  doi: 10.1007/978-3-030-59710-8_55
– ident: e_1_2_10_14_1
  doi: 10.1007/978-3-030-32245-8_67
– volume: 35
  start-page: 8801
  year: 2021
  ident: e_1_2_10_16_1
  article-title: Semi‐supervised medical image segmentation through dual‐task consistency
  publication-title: Proceed AAAI Conf Artific Intell
– ident: e_1_2_10_33_1
– ident: e_1_2_10_19_1
  doi: 10.1016/j.compmedimag.2022.102092
– ident: e_1_2_10_10_1
  doi: 10.1109/TNNLS.2012.2186825
– ident: e_1_2_10_11_1
  doi: 10.1007/978-3-031-16434-7_1
– volume: 8
  year: 2007
  ident: e_1_2_10_9_1
  article-title: Generalization error bounds in semi‐supervised classification under the cluster assumption
  publication-title: J Mach Learn Res
– ident: e_1_2_10_4_1
  doi: 10.1109/TMI.2018.2845918
– ident: e_1_2_10_5_1
  doi: 10.1109/CVPR.2015.7298965
– ident: e_1_2_10_29_1
  doi: 10.1016/j.media.2022.102517
– ident: e_1_2_10_2_1
  doi: 10.2174/157340561101150423103441
– volume: 33
  start-page: 6256
  year: 2020
  ident: e_1_2_10_24_1
  article-title: Unsupervised data augmentation for consistency training
  publication-title: Adv Neur Inform Process Syst
– ident: e_1_2_10_15_1
  doi: 10.1007/978-3-030-59710-8_54
– ident: e_1_2_10_13_1
  doi: 10.1109/TBDATA.2023.3258643
– ident: e_1_2_10_20_1
– ident: e_1_2_10_23_1
  doi: 10.1109/CVPR42600.2020.01269
– ident: e_1_2_10_3_1
  doi: 10.1038/s41592-020-01008-z
– ident: e_1_2_10_12_1
– ident: e_1_2_10_25_1
  doi: 10.1016/j.media.2020.101832
– ident: e_1_2_10_32_1
  doi: 10.1109/ISBI52829.2022.9761666
– volume: 33
  start-page: 596
  year: 2020
  ident: e_1_2_10_7_1
  article-title: Fixmatch: simplifying semi‐supervised learning with consistency and confidence
  publication-title: Adv Neur Inform Process Syst
– ident: e_1_2_10_8_1
  doi: 10.1016/j.compbiomed.2022.105729
– ident: e_1_2_10_26_1
  doi: 10.1109/CVPR46437.2021.00264
– ident: e_1_2_10_30_1
  doi: 10.1109/ICCV.2019.01077
– ident: e_1_2_10_22_1
  doi: 10.1109/CVPR.2015.7298664
– ident: e_1_2_10_17_1
  doi: 10.1109/CVPR.2018.00454
– ident: e_1_2_10_21_1
  doi: 10.1109/3DV.2016.79
– ident: e_1_2_10_6_1
– ident: e_1_2_10_18_1
  doi: 10.1016/j.media.2022.102530
– ident: e_1_2_10_31_1
  doi: 10.1109/TMI.2018.2837502
– ident: e_1_2_10_28_1
  doi: 10.1007/s10278-013-9622-7
SSID ssj0011505
Score 2.3430572
Snippet In this article, we propose a novel multidimensional perturbed consistency network (MPCNet) for more accurate semi‐supervised medical image segmentation....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Consistency
consistency learning
Decoders
Image segmentation
medical image segmentation
Medical imaging
multidimensional perturbation
Perturbation
Semi-supervised learning
Supervised learning
Title Multidimensional perturbed consistency learning for semi‐supervised medical image segmentation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.23095
https://www.proquest.com/docview/3061072558
Volume 34
WOSCitedRecordID wos001226302900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-1098
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011505
  issn: 0899-9457
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qq6AHH1WxWiWIBy-h3Tw2KZ6KWhRqEbHQW8y-Sg-NpWkFb_4Ef6O_xNlN0taDIHgJCdmEZXZm55vdmW8BLjzpeq5sMpuyAAMUEjs2Q8WwA8IkQw9FmtyQuHaDXi8cDFqPJbgqamEyfojFgpu2DDNfawOPWdpYkoaONG2QiwhhDSoO6q1XhsrNU6ffXWwiINYxGYyhJqH0_KAgFmo6jcXHP93REmOuIlXjajo7_-rkLmznCNNqZyqxByWZVGFrhXewChsm75On-_BiCnCFpvjP6DmsiZyiF2JSWFznzqYaU79b-eESQwsxrpXK8ejr4zOdT_REk2LTcbbdY2FHhhLfD8d5SVNyAP3O7fP1nZ0fumBztF7f9jlHjISwQJGYYPhKaSyo4pQyRoRHpSBCsCaPHamEFB6RrlTcF6rFHFe4eDmEcvKayCOwCA441RAlVC1P4zBXURajCgjmx0r5NTgvZB9NMm6NKGNRdiJ8iozgalAvRiXKzSuNMM7BsBWjobAGl0b-v_8gun9om5vjvzc9gU0HwUuW2FiH8mw6l6ewzt9mo3R6luvZN0ll2T4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qq6gH32K1ahAPXkK7eWxa8FLU0mJbRFroLWZfpYfW0rSCN3-Cv9Ff4uwmfXgQBC8hIZuw7MzsfLM78y3AtSddz5UlZlMWYIBCIsdmqBh2QJhk6KFIiRsS12bQbpd7vcpTBm7ntTAJP8RiwU1bhpmvtYHrBenikjV0oHmDXIQIa5DzUI38LOTun2vd5mIXAcGOSWEsaxZKzw_mzEIlp7j4-Kc_WoLMVahqfE1t93-93IOdFGNa1UQp9iEjRwewvcI8eAAbJvOTx4fwYkpwhSb5Twg6rLGcoB9iUlhcZ8_GGlW_W-nxEn0LUa4Vy-Hg6-Mzno31VBNj02Gy4WNhR_oS3_eHaVHT6Ai6tYfOXd1Oj12wOdqvb_ucI0pCYKBIRDCApTQSVHFKGSPCo1IQIViJR45UQgqPSFcq7gtVYY4rXLwcQ3b0OpInYBEUOdUgpawqnkZirqIsQiUQzI-U8vNwNR_8cJywa4QJj7IT4lNoBi4PhblYwtTA4hAjHQxcMR4q5-HGCOD3H4SNVtXcnP696SVs1jutZthstB_PYMtBKJOkORYgO53M5Dms87fpIJ5cpEr3DUfq3S4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qq6IHH1WxWjWIBy-h2Ty2LXgp1mKxliIWeovZV-mhtTSt4M2f4G_0lzi7SR8eBMFLSMgmLDszO9_sznwLcOVLz_ekw2zKyhigkMi1GSqGXSZMMvRQxOGGxLVVbrcrvV61k4GbeS1Mwg-xWHDTlmHma23gcixUackaOtC8QR5ChDXI-UGVolnm6k-Nbmuxi4Bgx6QwVjQLpR-U58xCjltafPzTHy1B5ipUNb6msfu_Xu7BTooxrVqiFPuQkaM8bK8wD-Zhw2R-8vgAXkwJrtAk_wlBhzWWE_RDTAqL6-zZWKPqdys9XqJvIcq1YjkcfH18xrOxnmpibDpMNnws7Ehf4vv-MC1qGh1Ct3H3fHtvp8cu2BztN7ADzhElITBQJCIYwFIaCao4pYwR4VMpiBDM4ZErlZDCJ9KTigdCVZnrCQ8vR5AdvY7kMVgERU41SKmoqq-RmKcoi1AJBAsipYICXM4HPxwn7BphwqPshvgUmoErQHEuljA1sDjESAcDV4yHKgW4NgL4_Qdh87Fmbk7-3vQCNjv1Rthqth9OYctFJJNkORYhO53M5Bms87fpIJ6cpzr3DQfK3Kk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidimensional+perturbed+consistency+learning+for+semi%E2%80%90supervised+medical+image+segmentation&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Yuan%2C+Enze&rft.au=Zhao%2C+Bin&rft.au=Xiao%2C+Qin&rft.au=Ding%2C+Shuxue&rft.date=2024-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=34&rft.issue=3&rft_id=info:doi/10.1002%2Fima.23095&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon