Assessing code readability in Python programming courses using eye‐tracking

Code readability models are typically based on the code's structural and textual features, considering code readability as an objective category. However, readability is inherently subjective and dependent on the knowledge and experience of the reader analyzing the code. This paper assesses the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer applications in engineering education Ročník 32; číslo 1
Hlavní autori: Segedinac, Milan, Savić, Goran, Zeljković, Ivana, Slivka, Jelena, Konjović, Zora
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 01.01.2024
Predmet:
ISSN:1061-3773, 1099-0542
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Code readability models are typically based on the code's structural and textual features, considering code readability as an objective category. However, readability is inherently subjective and dependent on the knowledge and experience of the reader analyzing the code. This paper assesses the readability of Python code statements commonly used in undergraduate programming courses. Our readability model is based on tracking the reader's eye movement during the while‐read phase. It uses machine learning (ML) techniques and relies on a novel set of features—observational features—that capture how the readers read the code. We experimented by tracking the eye movement of 90 undergraduate students while assessing the readability of 48 Python code snippets. We trained an ML model that predicts readability based on the collected observational data and the code snippet's structural and textual features. In our experiments, the XGBoost classifier trained using observational features exclusively achieved the best results (0.85 F‐measure). Using correlation analysis, we identified Python statements most affecting readability for undergraduate students and proposed implications for teaching Python programming. In line with findings for Java language, we found that constructs related to the code's size and complexity hurt the code's readability. Numerous comments also hindered readability, potentially due to their association with less readable code. Some Python‐specific statements (list comprehension, lambda function, and dictionary comprehension) harmed code readability, even though they were part of the curriculum. Tracking students' gaze indicated some additional factors, most notably nonlinearity introduced by if, for, while, try, and function call statements.
AbstractList Code readability models are typically based on the code's structural and textual features, considering code readability as an objective category. However, readability is inherently subjective and dependent on the knowledge and experience of the reader analyzing the code. This paper assesses the readability of Python code statements commonly used in undergraduate programming courses. Our readability model is based on tracking the reader's eye movement during the while‐read phase. It uses machine learning (ML) techniques and relies on a novel set of features—observational features—that capture how the readers read the code. We experimented by tracking the eye movement of 90 undergraduate students while assessing the readability of 48 Python code snippets. We trained an ML model that predicts readability based on the collected observational data and the code snippet's structural and textual features. In our experiments, the XGBoost classifier trained using observational features exclusively achieved the best results (0.85 F‐measure). Using correlation analysis, we identified Python statements most affecting readability for undergraduate students and proposed implications for teaching Python programming. In line with findings for Java language, we found that constructs related to the code's size and complexity hurt the code's readability. Numerous comments also hindered readability, potentially due to their association with less readable code. Some Python‐specific statements (list comprehension, lambda function, and dictionary comprehension) harmed code readability, even though they were part of the curriculum. Tracking students' gaze indicated some additional factors, most notably nonlinearity introduced by if, for, while, try, and function call statements.
Code readability models are typically based on the code's structural and textual features, considering code readability as an objective category. However, readability is inherently subjective and dependent on the knowledge and experience of the reader analyzing the code. This paper assesses the readability of Python code statements commonly used in undergraduate programming courses. Our readability model is based on tracking the reader's eye movement during the while‐read phase. It uses machine learning (ML) techniques and relies on a novel set of features—observational features—that capture how the readers read the code. We experimented by tracking the eye movement of 90 undergraduate students while assessing the readability of 48 Python code snippets. We trained an ML model that predicts readability based on the collected observational data and the code snippet's structural and textual features. In our experiments, the XGBoost classifier trained using observational features exclusively achieved the best results (0.85 F ‐measure). Using correlation analysis, we identified Python statements most affecting readability for undergraduate students and proposed implications for teaching Python programming. In line with findings for Java language, we found that constructs related to the code's size and complexity hurt the code's readability. Numerous comments also hindered readability, potentially due to their association with less readable code. Some Python‐specific statements (list comprehension, lambda function, and dictionary comprehension) harmed code readability, even though they were part of the curriculum. Tracking students' gaze indicated some additional factors, most notably nonlinearity introduced by if, for, while, try, and function call statements.
Author Zeljković, Ivana
Konjović, Zora
Slivka, Jelena
Segedinac, Milan
Savić, Goran
Author_xml – sequence: 1
  givenname: Milan
  surname: Segedinac
  fullname: Segedinac, Milan
  organization: University of Novi Sad
– sequence: 2
  givenname: Goran
  orcidid: 0000-0002-3917-5487
  surname: Savić
  fullname: Savić, Goran
  email: savicg@uns.ac.rs
  organization: University of Novi Sad
– sequence: 3
  givenname: Ivana
  surname: Zeljković
  fullname: Zeljković, Ivana
  organization: University of Novi Sad
– sequence: 4
  givenname: Jelena
  orcidid: 0000-0003-0351-1183
  surname: Slivka
  fullname: Slivka, Jelena
  organization: University of Novi Sad
– sequence: 5
  givenname: Zora
  surname: Konjović
  fullname: Konjović, Zora
  organization: Singidunum University
BookMark eNp1kE1OwzAQhS1UJNrCghtEYsUirX9iO15WVfmRimABa8u1xyWlTYqdCmXHETgjJ8ElbFnNjPS9N09vhAZ1UwNClwRPCMZ0ag1MKBUlP0FDgpXKMS_o4LgLkjMp2RkaxbjBGCvB1BA9zGKEGKt6ndnGQRbAOLOqtlXbZVWdPXXta1Nn-9Csg9nteuwQkiQ7_Iqgg-_PrzYY-5bOc3TqzTbCxd8co5ebxfP8Ll8-3t7PZ8vcUi55TpmwwksPK-EdxqbgZVkwo4iSAgsBUnrKuFNWWOU5d85JbnkpuS884BVlY3TV-6Zg7weIrd6kVHV6qakiHLOjT6Kue8qGJsYAXu9DtTOh0wTrY1s6taV_20rstGc_qi10_4N6Plv0ih_HGG5D
Cites_doi 10.1177/8756479308317006
10.2507/31st.daaam.proceedings.078
10.1109/ICPC.2015.36
10.1145/2094131.2094133
10.1109/ICPC.2016.7503707
10.1109/ASE.2017.8115654
10.1145/2578153.2578218
10.1109/ASEW52652.2021.00037
10.12700/APH.18.1.2021.1.6
10.1145/2939672.2939785
10.1109/ICPC.2019.00033
10.1109/TSE.2016.2527791
10.1002/smr.1958
10.1145/3196398.3196441
10.3758/s13428-017-0998-z
10.1109/SANER.2016.105
10.12700/APH.17.2.2020.2.4
10.1109/TSE.2007.70768
10.1109/QRS-C.2017.102
10.1109/TSE.2009.70
10.1007/s12046-022-01876-5
10.1145/1985441.1985454
ContentType Journal Article
Copyright 2023 Wiley Periodicals LLC.
2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2023 Wiley Periodicals LLC.
– notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/cae.22685
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-0542
EndPage n/a
ExternalDocumentID 10_1002_cae_22685
CAE22685
Genre researchArticle
GrantInformation_xml – fundername: Ministry of Science, Technological Development and Innovation
  funderid: 451‐03‐47/2023‐01/200156
– fundername: Science Fund of the Republic of Serbia
  funderid: 6521051
– fundername: AI‐Clean CaDET
GroupedDBID .3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAHSB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UCJ
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2575-236c6f7feb6fd00a458843a91976066e77f235d9c6c9f55ddd75c5875f4fe0b23
IEDL.DBID DRFUL
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001082885800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-3773
IngestDate Tue Aug 12 22:14:15 EDT 2025
Sat Nov 29 03:21:40 EST 2025
Wed Jan 22 16:18:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2575-236c6f7feb6fd00a458843a91976066e77f235d9c6c9f55ddd75c5875f4fe0b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0351-1183
0000-0002-3917-5487
PQID 2915037606
PQPubID 2045172
PageCount 16
ParticipantIDs proquest_journals_2915037606
crossref_primary_10_1002_cae_22685
wiley_primary_10_1002_cae_22685_CAE22685
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer applications in engineering education
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020; 7
2009; 36
2016; 3
2021; 18
2020; 17
2016; 42
2008; 34
2022; 47
2008; 24
2018; 30
2017; 18
2011; 12
2018; 50
2013; 7
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
Lemaître G. (e_1_2_9_15_1) 2017; 18
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_14_1
Subedi B. P. (e_1_2_9_28_1) 2016; 3
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
Tashtoush Y. (e_1_2_9_29_1) 2013; 7
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
Pedregosa F. (e_1_2_9_20_1) 2011; 12
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_27_1
References_xml – volume: 30
  issue: 6
  year: 2018
  article-title: A comprehensive model for code readability
  publication-title: J. Software: Evol. Process
– start-page: 154
  end-page: 164
– start-page: 231
  end-page: 234
– volume: 18
  start-page: 79
  issue: 1
  year: 2021
  end-page: 99
  article-title: Clean and dirty code comprehension by eye‐tracking based evaluation using GP3 eye tracker
  publication-title: Acta Polytech. Hungarica
– volume: 24
  start-page: 155
  issue: 3
  year: 2008
  end-page: 162
  article-title: Measures of association: how to choose?
  publication-title: J. Diagnostic Med. Sonography
– start-page: 1
  end-page: 10
– volume: 7
  issue: 1
  year: 2020
  article-title: Static code analysis tools: a systematic literature review
  publication-title: Annals of DAAAM Proc
– start-page: 314
  end-page: 318
– volume: 47
  start-page: 117
  year: 2022
  article-title: Measuring code comprehension effort using code reading pattern
  publication-title: Sādhanā
– volume: 36
  start-page: 546
  issue: 4
  year: 2009
  end-page: 558
  article-title: Learning a metric for code readability
  publication-title: IEEE Trans. Software Eng
– volume: 50
  start-page: 645
  issue: 4
  year: 2018
  end-page: 1656
  article-title: Threats to the validity of eye‐movement research in psychology
  publication-title: Behav. Res. Methods
– start-page: 579
  end-page: 580
– start-page: 470
  end-page: 481
– start-page: 138
  end-page: 139
– volume: 18
  start-page: 559
  year: 2017
  end-page: 563
  article-title: Imbalanced‐learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn. Res
– start-page: 417
  end-page: 427
– start-page: 1
  end-page: 9
– volume: 3
  start-page: 36
  issue: 2
  year: 2016
  end-page: 49
  article-title: Using Likert type data in social science research: confusion, issues and challenges
  publication-title: Int. J. Contemporary Appl. Sci
– volume: 12
  start-page: 2825
  issue: 2011
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: machine learning in Python
  publication-title: J. Mach. Learn. Res
– volume: 7
  start-page: 441
  issue: 6
  year: 2013
  end-page: 458
  article-title: Impact of programming features on code readability
  publication-title: Int J Softw Eng Appl
– start-page: 785
  end-page: 794
– start-page: 255
  end-page: 265
– volume: 34
  start-page: 287
  year: 2008
  end-page: 300
  article-title: Using the conceptual cohesion of classes for fault prediction in object‐oriented systems
  publication-title: IEEE Trans. Software Eng
– volume: 42
  start-page: 886
  issue: 9
  year: 2016
  end-page: 898
  article-title: The role of method chains and comments in software readability and comprehension—an experiment
  publication-title: IEEE Trans. Software Eng
– volume: 17
  start-page: 57
  issue: 2
  year: 2020
  end-page: 76
  article-title: Evaluation of eye‐movement metrics in a software debugging task using GP3 eye tracker
  publication-title: Acta Polytech. Hungarica
– start-page: 73
  end-page: 82
– ident: e_1_2_9_3_1
– ident: e_1_2_9_13_1
  doi: 10.1177/8756479308317006
– ident: e_1_2_9_27_1
  doi: 10.2507/31st.daaam.proceedings.078
– ident: e_1_2_9_8_1
  doi: 10.1109/ICPC.2015.36
– volume: 3
  start-page: 36
  issue: 2
  year: 2016
  ident: e_1_2_9_28_1
  article-title: Using Likert type data in social science research: confusion, issues and challenges
  publication-title: Int. J. Contemporary Appl. Sci
– ident: e_1_2_9_9_1
  doi: 10.1145/2094131.2094133
– ident: e_1_2_9_25_1
  doi: 10.1109/ICPC.2016.7503707
– volume: 12
  start-page: 2825
  issue: 2011
  year: 2011
  ident: e_1_2_9_20_1
  article-title: Scikit‐learn: machine learning in Python
  publication-title: J. Mach. Learn. Res
– ident: e_1_2_9_24_1
  doi: 10.1109/ASE.2017.8115654
– ident: e_1_2_9_31_1
  doi: 10.1145/2578153.2578218
– ident: e_1_2_9_5_1
– ident: e_1_2_9_21_1
  doi: 10.1109/ASEW52652.2021.00037
– ident: e_1_2_9_12_1
  doi: 10.12700/APH.18.1.2021.1.6
– ident: e_1_2_9_10_1
  doi: 10.1145/2939672.2939785
– ident: e_1_2_9_2_1
  doi: 10.1109/ICPC.2019.00033
– ident: e_1_2_9_6_1
  doi: 10.1109/TSE.2016.2527791
– volume: 18
  start-page: 559
  year: 2017
  ident: e_1_2_9_15_1
  article-title: Imbalanced‐learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn. Res
– volume: 7
  start-page: 441
  issue: 6
  year: 2013
  ident: e_1_2_9_29_1
  article-title: Impact of programming features on code readability
  publication-title: Int J Softw Eng Appl
– ident: e_1_2_9_26_1
  doi: 10.1002/smr.1958
– ident: e_1_2_9_30_1
  doi: 10.1145/3196398.3196441
– ident: e_1_2_9_19_1
  doi: 10.3758/s13428-017-0998-z
– ident: e_1_2_9_23_1
– ident: e_1_2_9_4_1
  doi: 10.1109/SANER.2016.105
– ident: e_1_2_9_14_1
  doi: 10.12700/APH.17.2.2020.2.4
– ident: e_1_2_9_16_1
  doi: 10.1109/TSE.2007.70768
– ident: e_1_2_9_17_1
  doi: 10.1109/QRS-C.2017.102
– ident: e_1_2_9_7_1
  doi: 10.1109/TSE.2009.70
– ident: e_1_2_9_11_1
– ident: e_1_2_9_18_1
  doi: 10.1007/s12046-022-01876-5
– ident: e_1_2_9_22_1
  doi: 10.1145/1985441.1985454
SSID ssj0009639
Score 2.3161423
Snippet Code readability models are typically based on the code's structural and textual features, considering code readability as an objective category. However,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms code readability
College students
Computer programming
Correlation analysis
empirical study
Eye movements
eye tracking
Machine learning
Programming languages
Python
Readability
Students
Tracking
Undergraduate study
Title Assessing code readability in Python programming courses using eye‐tracking
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcae.22685
https://www.proquest.com/docview/2915037606
Volume 32
WOSCitedRecordID wos001082885800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1099-0542
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009639
  issn: 1061-3773
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMeH2nrQg2-xWiWIBy-x291sNsFTqS0etBSx0FtI9gE9GKUPoTc_gp_RT-I-krYeBMHbHnZDGHayv53M_AfgCgVCEJRFPhI48wMWST9tpZmvFBaMIWVU5myzCdbvR6NRPKjAbVkL4_QhlgE34xn2e20cPM2mzZVoKE_ljWaHiG5ADet9S6tQu3vqDR9WmruhbSRmLj3ajxgphYUQbi4X_zyOVoy5Tqr2qOnt_usl92CnIEyv7bbEPlRkfgDba7qDh_DofvXqsWdK2j0NjsLpdS-8ce4NFkZQwCtSt17cNJvs4c3tIrmQXx-fs0nKTaD9CIa97nPn3i_6KvhcOyj1MQl5qJiSWagEQqktViVp3NJooglEMqYwoSLmIY8VpUIIRjnVFxsVKIkyTI6hmr_m8gS8jERSaOgjgQgCIrMIc4WoFK2ApprNWB0uS_Mmb04-I3FCyTjRtkmsberQKA2fFB40TXCsUdVk7IR1uLYm_v0BSafdtYPTv089gy2s-cRFUxpQnU3m8hw2-ftsPJ1cFFvpG4W6zMQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEMeH2grqwbdYrbqIBy9r02Sz2QUvpbZUbEuRFnpbdvOAHqzSh9CbH8HP6CcxyW4fHgTBWw7Jsgwzm19mM_8BuEGeEAQlgYsETlyPBdKNK3HiKoUFY0gZlTnbbIJ1OsFgEHZzcL-ohUn1IZYJNxMZ9nttAtwkpMsr1VAeyzsNDwHdgIKn3Uj7d-HhudFvrUR3fdtJzJx6dCAxslAWQri8XPxzP1pB5jqq2r2msfe_t9yH3YwxnWrqFAeQk6ND2FlTHjyCdvqzV48dU9TuaHQUqWL33BmOnO7cSAo42eWtl3Save7hzOwiOZdfH5_TccxNqv0Y-o16r9Z0s84KLtchSl1MfO4rpmTiK4FQbMtVSRxWNJxoBpGMKUyoCLnPQ0WpEIJRTvXRRnlKogSTE8iPXkfyFJyEBFJo7COe8DwikwBzhagUFY_Gms5YEa4X9o3eUgGNKJVKxpG2TWRtU4TSwvJRFkOTCIcaVs2dHb8It9bGvz8gqlXrdnD296lXsNXstVtR67HzdA7bWNNKmlspQX46nskL2OTv0-FkfJn51TfSB9C0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMeH2orowbdYrRrEg5fY7W42m4CXYlsUayliobeQ7AN6MJY-hN78CH5GP4m7m_ThQRC87WE3hGEn-9vJzH8ArpAnBEFJ4CKBE9djgXTjWpy4SmHBGFJGZc42m2CdTtDvh90C3M5rYTJ9iEXAzXiG_V4bB5dDoapL1VAeyxsNDwFdg5JnmsgUodR4bvXaS9Fd33YSM7ce7UiMzJWFEK4uFv88j5aQuYqq9qxp7fzvLXdhO2dMp55tij0oyHQftlaUBw_gKfvZq8eOKWp3NDqKTLF75gxSpzszkgJOnrz1mk2z6R7O1C6SM_n18TkZxdyE2g-h12q-3N27eWcFl2sXpS4mPvcVUzLxlUAotuWqJA5rGk40g0jGFCZUhNznoaJUCMEop_pqozwlUYLJERTTt1Qeg5OQQAqNfcQTnkdkEmCuEJWi5tFY0xkrw-XcvtEwE9CIMqlkHGnbRNY2ZajMLR_lPjSOcKhh1eTs-GW4tjb-_QHRXb1pByd_n3oBG91GK2o_dB5PYRNrWMlCKxUoTkZTeQbr_H0yGI_O8231DaMC0C8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+code+readability+in+Python+programming+courses+using+eye%E2%80%90tracking&rft.jtitle=Computer+applications+in+engineering+education&rft.au=Segedinac%2C+Milan&rft.au=Savi%C4%87%2C+Goran&rft.au=Zeljkovi%C4%87%2C+Ivana&rft.au=Slivka%2C+Jelena&rft.date=2024-01-01&rft.issn=1061-3773&rft.eissn=1099-0542&rft.volume=32&rft.issue=1&rft_id=info:doi/10.1002%2Fcae.22685&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cae_22685
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-3773&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-3773&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-3773&client=summon