Exploring Fast and Flexible Zero‐Shot Low‐Light Image/Video Enhancement

Low‐light image/video enhancement is a challenging task when images or video are captured under harsh lighting conditions. Existing methods mostly formulate this task as an image‐to‐image conversion task via supervised or unsupervised learning. However, such conversion methods require an extremely l...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 43; číslo 7
Hlavní autori: Han, Xianjun, Bao, Taoli, Yang, Hongyu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.10.2024
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Low‐light image/video enhancement is a challenging task when images or video are captured under harsh lighting conditions. Existing methods mostly formulate this task as an image‐to‐image conversion task via supervised or unsupervised learning. However, such conversion methods require an extremely large amount of data for training, whether paired or unpaired. In addition, these methods are restricted to specific training data, making it difficult for the trained model to enhance other types of images or video. In this paper, we explore a novel, fast and flexible, zero‐shot, low‐light image or video enhancement framework. Without relying on prior training or relationships among neighboring frames, we are committed to estimating the illumination of the input image/frame by a well‐designed network. The proposed zero‐shot, low‐light image/video enhancement architecture includes illumination estimation and residual correction modules. The network architecture is very concise and does not require any paired or unpaired data during training, which allows low‐light enhancement to be performed with several simple iterations. Despite its simplicity, we show that the method is fast and generalizes well to diverse lighting conditions. Many experiments on various images and videos qualitatively and quantitatively demonstrate the advantages of our method over state‐of‐the‐art methods.
AbstractList Low‐light image/video enhancement is a challenging task when images or video are captured under harsh lighting conditions. Existing methods mostly formulate this task as an image‐to‐image conversion task via supervised or unsupervised learning. However, such conversion methods require an extremely large amount of data for training, whether paired or unpaired. In addition, these methods are restricted to specific training data, making it difficult for the trained model to enhance other types of images or video. In this paper, we explore a novel, fast and flexible, zero‐shot, low‐light image or video enhancement framework. Without relying on prior training or relationships among neighboring frames, we are committed to estimating the illumination of the input image/frame by a well‐designed network. The proposed zero‐shot, low‐light image/video enhancement architecture includes illumination estimation and residual correction modules. The network architecture is very concise and does not require any paired or unpaired data during training, which allows low‐light enhancement to be performed with several simple iterations. Despite its simplicity, we show that the method is fast and generalizes well to diverse lighting conditions. Many experiments on various images and videos qualitatively and quantitatively demonstrate the advantages of our method over state‐of‐the‐art methods.
Author Yang, Hongyu
Bao, Taoli
Han, Xianjun
Author_xml – sequence: 1
  givenname: Xianjun
  orcidid: 0000-0001-7674-1428
  surname: Han
  fullname: Han, Xianjun
  email: hxj@ahu.edu.cn
  organization: Anhui University
– sequence: 2
  givenname: Taoli
  surname: Bao
  fullname: Bao, Taoli
  organization: Anhui University
– sequence: 3
  givenname: Hongyu
  surname: Yang
  fullname: Yang, Hongyu
  organization: Sichuan University
BookMark eNp1kL9OwzAQhy1UJNrCwBtEYmJIYyexk4yoakpFJAb-DCyWHV_SVKldnFRtNx6BZ-RJMISVW-43fHen-yZopI0GhK4JnhFXQVlXM0JDgs_QmMQs8VNGsxEaY-Jygim9QJOu22CM44TRMXpYHHetsY2uvVx0vSe08vIWjo1swXsDa74-Pp_WpvcKc3CxaOp17622oobgtVFgvIVeC13CFnR_ic4r0XZw9den6CVfPM_v_eJxuZrfFX4Z0gT7DKpKCSGVZALHqZQhZEJkWcoUi0qiQlJCqZIsJlIBhI6uZKQojWUcZUyyaIpuhr07a9730PV8Y_ZWu5M8ImHqnqQUO-p2oEprus5CxXe22Qp74gTzH1fcueK_rhwbDOyhaeH0P8jny3yY-Aarc27U
Cites_doi 10.1109/CVPR52688.2022.01710
10.1007/s11263-018-01144-2
10.24963/ijcai.2022/128
10.1016/j.patcog.2016.06.008
10.1109/WACVW54805.2022.00064
10.1117/1.1636183
10.1109/TIP.2018.2810539
10.1109/TIP.2013.2261309
10.1109/FG.2018.00118
10.1145/954339.954342
10.1109/LSP.2012.2227726
10.1109/TCSVT.2021.3073371
10.1109/ICCV48922.2021.00956
10.1016/S0734-189X(87)80186-X
10.1609/aaai.v36i2.20046
10.1109/CVPR.2016.304
10.1109/ICPR.2010.579
10.1109/TIP.2018.2794218
10.1007/s11263-020-01407-x
10.1109/83.597272
10.1109/ICASSP43922.2022.9746255
10.1109/CVPR.2019.00387
10.1109/83.557356
10.1109/CVPR.2018.00347
10.1109/TIP.2015.2474701
10.1016/j.patcog.2021.108234
10.1109/CVPRW.2019.00247
10.1109/TIP.2021.3051462
10.1109/TBC.2008.2000733
10.1145/3272127.3275081
ContentType Journal Article
Copyright 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
2024 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
– notice: 2024 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.15210
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage n/a
ExternalDocumentID 10_1111_cgf_15210
CGF15210
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62106005
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2570-6effdaabdb6a048bb2e9aa9986d63c1d21cecd7941bdee2efffb3d554b4396b63
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001341432300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sat Jul 26 00:06:20 EDT 2025
Sat Nov 29 03:41:24 EST 2025
Wed Jan 22 17:12:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2570-6effdaabdb6a048bb2e9aa9986d63c1d21cecd7941bdee2efffb3d554b4396b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7674-1428
PQID 3128055550
PQPubID 30877
PageCount 17
ParticipantIDs proquest_journals_3128055550
crossref_primary_10_1111_cgf_15210
wiley_primary_10_1111_cgf_15210_CGF15210
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017; 61
2018; 220
2013; 22
2010
2021; 129
2003; 35
2019; 127
2008; 54
2024
1997; 6
2021; 30
2018; 27
1987; 39
2015; 24
2017; 30
2022; 121
2021; 32
2023
2022
2021
2020
2004; 13
2019
2018
2022; 36
2017
2016
2018; 37
2012; 20
e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
Vaswani A. (e_1_2_8_31_2) 2017; 30
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_30_2
e_1_2_8_11_2
e_1_2_8_32_2
Zhang S. (e_1_2_8_51_2) 2020
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_46_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_2
Lv F. (e_1_2_8_23_2) 2018; 220
e_1_2_8_42_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_50_2
References_xml – start-page: 4106
  year: 2021
  end-page: 4115
– volume: 37
  start-page: 1
  issue: 6
  year: 2018
  end-page: 14
  article-title: Image smoothing via unsupervised learning
  publication-title: ACM Transactions on Graphics (TOG)
– start-page: 581
  year: 2022
  end-page: 590
– start-page: 17622
  year: 2022
  end-page: 17631
– start-page: 2782
  year: 2016
  end-page: 2790
– start-page: 751
  year: 2018
  end-page: 755
  article-title: Gladnet: Low‐light enhancement network with global awareness
– volume: 54
  start-page: 660
  issue: 3
  year: 2008
  end-page: 668
  article-title: The evolution of video quality measurement: From psnr to hybrid metrics
  publication-title: IEEE transactions on Broadcasting
– start-page: 3523
  year: 2021
  end-page: 3532
– start-page: 3185
  year: 2019
  end-page: 3194
– volume: 6
  start-page: 965
  issue: 7
  year: 1997
  end-page: 976
  article-title: A multiscale retinex for bridging the gap between color images and the human observation of scenes
  publication-title: IEEE Transactions on Image processing
– year: 2021
– year: 2024
– volume: 36
  start-page: 1555
  year: 2022
  end-page: 1563
  article-title: Semantically contrastive learning for low‐light image enhancement
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 2366
  year: 2010
  end-page: 2369
  article-title: Image quality metrics: Psnr vs. ssim
– volume: 61
  start-page: 650
  year: 2017
  end-page: 662
  article-title: Llnet: A deep autoencoder approach to natural low‐light image enhancement
  publication-title: Pattern Recognition
– volume: 22
  start-page: 3538
  issue: 9
  year: 2013
  end-page: 3548
  article-title: Naturalness preserved enhancement algorithm for non‐uniform illumination images
  publication-title: IEEE transactions on image processing
– year: 2018
– volume: 127
  start-page: 1106
  issue: 8
  year: 2019
  end-page: 1125
  article-title: Video enhancement with task‐oriented flow
  publication-title: International Journal of Computer Vision
– start-page: 10561
  year: 2021
  end-page: 10570
– start-page: 3753
  year: 2019
  end-page: 3761
– volume: 32
  start-page: 1076
  issue: 3
  year: 2021
  end-page: 1088
  article-title: Retinexdip: A unified deep framework for low‐light image enhancement
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 20
  start-page: 209
  issue: 3
  year: 2012
  end-page: 212
  article-title: Making a “completely blind” image quality analyzer
  publication-title: IEEE Signal processing letters
– volume: 30
  year: 2017
  article-title: Attention is all you need
  publication-title: Advances in neural information processing systems
– volume: 30
  start-page: 2340
  year: 2021
  end-page: 2349
  article-title: Enlightengan: Deep light enhancement without paired supervision
  publication-title: IEEE Transactions on Image Processing
– year: 2022
– volume: 6
  start-page: 451
  issue: 3
  year: 1997
  end-page: 462
  article-title: Properties and performance of a center/surround retinex
  publication-title: IEEE transactions on image processing
– volume: 35
  start-page: 399
  issue: 4
  year: 2003
  end-page: 458
  article-title: Face recognition: A literature survey
  publication-title: ACM computing surveys (CSUR)
– start-page: 5637
  year: 2022
  end-page: 5646
– start-page: 0
  year: 2019
  end-page: 0
– start-page: 666
  year: 2020
  end-page: 682
  article-title: Learning to see in the dark with events
– volume: 27
  start-page: 2049
  issue: 4
  year: 2018
  end-page: 2062
  article-title: Learning a deep single image contrast enhancer from multi‐exposure images
  publication-title: IEEE Transactions on Image Processing
– start-page: 1780
  year: 2020
  end-page: 1789
– start-page: 9700
  year: 2021
  end-page: 9709
– volume: 39
  start-page: 355
  issue: 3
  year: 1987
  end-page: 368
  article-title: Adaptive histogram equalization and its variations
  publication-title: Computer vision, graphics, and image processing
– start-page: 5901
  year: 2022
  end-page: 5910
– volume: 220
  start-page: 4
  year: 2018
  article-title: Mbllen: Low‐light image/video enhancement using cnns
  publication-title: BMVC
– start-page: 2100
  year: 2022
  end-page: 2104
  article-title: Learning to fuse heterogeneous features for low‐light image enhancement
– volume: 129
  start-page: 1013
  issue: 4
  year: 2021
  end-page: 1037
  article-title: Beyond brightening low‐light images
  publication-title: International Journal of Computer Vision
– volume: 24
  start-page: 4965
  issue: 12
  year: 2015
  end-page: 4977
  article-title: A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation
  publication-title: IEEE Transactions on Image Processing
– volume: 13
  start-page: 100
  year: 2004
  article-title: Retinex processing for automatic image enhancement
  publication-title: Journal of Electronic Imaging
– volume: 27
  start-page: 2828
  issue: 6
  year: 2018
  end-page: 2841
  article-title: Structure‐revealing low‐light image enhancement via robust retinex model
  publication-title: IEEE Transactions on Image Processing
– start-page: 7324
  year: 2019
  end-page: 7333
– start-page: 4967
  year: 2021
  end-page: 4976
– year: 2020
– year: 2023
– volume: 121
  year: 2022
  article-title: Deep anomaly detection with self‐supervised learning and adversarial training
  publication-title: Pattern Recognition
– year: 2017
– start-page: 1125
  year: 2017
  end-page: 1134
– start-page: 3291
  year: 2018
  end-page: 3300
– ident: e_1_2_8_6_2
  doi: 10.1109/CVPR52688.2022.01710
– ident: e_1_2_8_2_2
– ident: e_1_2_8_41_2
  doi: 10.1007/s11263-018-01144-2
– ident: e_1_2_8_11_2
  doi: 10.24963/ijcai.2022/128
– ident: e_1_2_8_20_2
  doi: 10.1016/j.patcog.2016.06.008
– ident: e_1_2_8_44_2
  doi: 10.1109/WACVW54805.2022.00064
– volume: 220
  start-page: 4
  year: 2018
  ident: e_1_2_8_23_2
  article-title: Mbllen: Low‐light image/video enhancement using cnns
  publication-title: BMVC
– ident: e_1_2_8_15_2
  doi: 10.1117/1.1636183
– ident: e_1_2_8_19_2
– ident: e_1_2_8_24_2
  doi: 10.1109/TIP.2018.2810539
– ident: e_1_2_8_40_2
  doi: 10.1109/TIP.2013.2261309
– ident: e_1_2_8_35_2
  doi: 10.1109/FG.2018.00118
– ident: e_1_2_8_43_2
  doi: 10.1145/954339.954342
– ident: e_1_2_8_34_2
– ident: e_1_2_8_18_2
– ident: e_1_2_8_26_2
– ident: e_1_2_8_27_2
  doi: 10.1109/LSP.2012.2227726
– ident: e_1_2_8_50_2
  doi: 10.1109/TCSVT.2021.3073371
– ident: e_1_2_8_39_2
  doi: 10.1109/ICCV48922.2021.00956
– start-page: 666
  volume-title: European Conference on Computer Vision
  year: 2020
  ident: e_1_2_8_51_2
– volume: 30
  year: 2017
  ident: e_1_2_8_31_2
  article-title: Attention is all you need
  publication-title: Advances in neural information processing systems
– ident: e_1_2_8_25_2
– ident: e_1_2_8_36_2
– ident: e_1_2_8_28_2
  doi: 10.1016/S0734-189X(87)80186-X
– ident: e_1_2_8_22_2
  doi: 10.1609/aaai.v36i2.20046
– ident: e_1_2_8_9_2
  doi: 10.1109/CVPR.2016.304
– ident: e_1_2_8_12_2
  doi: 10.1109/ICPR.2010.579
– ident: e_1_2_8_4_2
  doi: 10.1109/TIP.2018.2794218
– ident: e_1_2_8_47_2
– ident: e_1_2_8_5_2
– ident: e_1_2_8_45_2
  doi: 10.1007/s11263-020-01407-x
– ident: e_1_2_8_16_2
  doi: 10.1109/83.597272
– ident: e_1_2_8_30_2
  doi: 10.1109/ICASSP43922.2022.9746255
– ident: e_1_2_8_21_2
  doi: 10.1109/CVPR.2019.00387
– ident: e_1_2_8_17_2
  doi: 10.1109/83.557356
– ident: e_1_2_8_38_2
– ident: e_1_2_8_46_2
– ident: e_1_2_8_3_2
  doi: 10.1109/CVPR.2018.00347
– ident: e_1_2_8_7_2
  doi: 10.1109/TIP.2015.2474701
– ident: e_1_2_8_29_2
– ident: e_1_2_8_37_2
– ident: e_1_2_8_49_2
  doi: 10.1016/j.patcog.2021.108234
– ident: e_1_2_8_42_2
– ident: e_1_2_8_48_2
– ident: e_1_2_8_32_2
  doi: 10.1109/CVPRW.2019.00247
– ident: e_1_2_8_14_2
  doi: 10.1109/TIP.2021.3051462
– ident: e_1_2_8_33_2
  doi: 10.1109/TBC.2008.2000733
– ident: e_1_2_8_8_2
  doi: 10.1145/3272127.3275081
– ident: e_1_2_8_13_2
– ident: e_1_2_8_10_2
SSID ssj0004765
Score 2.4167464
Snippet Low‐light image/video enhancement is a challenging task when images or video are captured under harsh lighting conditions. Existing methods mostly formulate...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms CCS Concepts
Computational photography
Computing methodologies → Image processing
Estimation
Illumination
Image enhancement
Light
Lighting
Unsupervised learning
Video data
Title Exploring Fast and Flexible Zero‐Shot Low‐Light Image/Video Enhancement
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.15210
https://www.proquest.com/docview/3128055550
Volume 43
WOSCitedRecordID wos001341432300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5K60EPvsVqlUU8eAk22WSb4klqo2IpolaKl7BPW9BEmqhXf4K_0V_ibh5tPQiCt4XshjDMN4_NzDcAh9rsC6Wa2FJCYMulRENKNdsWczlVtMU8QVQ2bKLV7_vDYfu6AidlL0zODzG9cDPIyOy1AThlyRzI-aMyw3tMe1XN0XrrVqF2dhMMerO2yBbxSmpvQxpTEAuZQp7p4Z_uaBZjzkeqmasJVv71kauwXESY6DRXiTWoyGgdluZ4Bzfgalp5hwKapIhGAgWGGZM9SfQgJ_HXx-ftKE5RL37Xy55J4NHlszY9x_djIWPUjUZGW8zN4iYMgu5d58IqpipY3Eyss4hUSlDKBCNUw5cxR7Yp1VkXEQRzWzg2l1xomNpMSOno3YphoaMOpmMXwgjegmoUR3IbkMuF4hITbn5m-gr7LsNeU2BlM4Wp79XhoBRu-JKTZ4Rl0qElE2aSqUOjFHtY4CcJsXabhorM04-PMgH__oKwcx5ki52_b92FRUeraV6V14BqOnmVe7DA39JxMtkvFOkb937OMw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KK6gH32K16iIevATbbrJNwYvUxkpjEW2leAn7tAVNpI169Sf4G_0l7qZJWw-C4G0huyEM881jM_MNwLE2-0KpMraUENiyKdGQUuW6xWxOFa0xRxCVDJuodTpuv1-_ycFZ1gsz4YeYXrgZZCT22gDcXEjPoZw_KjO9x_RXFWytRk4eChe3Xs-f9UXWiJNxexvWmJRZyFTyTA__9EezIHM-VE18jbf6v69cg5U0xkTnE6VYh5wMN2B5jnlwE9rT2jvk0XGMaCiQZ7gx2ZNED3IUfX183g2iGPnRu176JoVHV8_a-JzeD4WMUDMcGH0xd4tb0POa3UbLSucqWNzMrLOIVEpQygQjVAOYsaqsU6rzLiII5hVRrXDJhQZqhQkpq3q3YljouIPp6IUwgrchH0ah3AFkc6G4xISb35muwq7NsFMWWFWYwtR1inCUSTd4mdBnBFnaoSUTJJIpQimTe5AiaBxg7TgNGZmjH58kEv79BUHj0ksWu3_fegiLre61H_hXnfYeLFW10k5q9EqQj0evch8W-Fs8HI8OUq36BlQ90iM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KK6IH32K16iIevASbbLJNwIu0jUpDKWqleAn7tAVNShv16k_wN_pL3M2jrQdB8LaQ3RCG-eaxmfkGgFNl9rmUdWRIzpFhE6wgJeueQW1GJGlQh2OZDptodLvuYOD1SuCi6IXJ-CFmF24aGam91gAXYy4XUM6epJ7eo_urKrbjYQXLSuvW7wfzvsgGdgpub80akzML6Uqe2eGf_mgeZC6Gqqmv8df_95UbYC2PMeFlphSboCSiLbC6wDy4DTqz2jvok2kCScShr7kx6bOAj2ISf3183g3jBAbxu1oGOoWHNy_K-Jw_jLiIYTsaan3Rd4s7oO-375vXRj5XwWB6Zp2BhZScEMopJgrAlFrCI0TlXZhjxExumUwwroBqUi6EpXZLiriKO6iKXjDFaBeUozgSewDajEsmEGb6d6YrkWtT5NQ5kiaViLhOFZwU0g3HGX1GWKQdSjJhKpkqqBVyD3METUOkHKcmI3PU47NUwr-_IGxe-eli_-9bj8Fyr-WHwU23cwBWLKWzWYleDZSTyas4BEvsLRlNJ0e5Un0DJBvRng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Fast+and+Flexible+Zero%E2%80%90Shot+Low%E2%80%90Light+Image%2FVideo+Enhancement&rft.jtitle=Computer+graphics+forum&rft.au=Han%2C+Xianjun&rft.au=Bao%2C+Taoli&rft.au=Yang%2C+Hongyu&rft.date=2024-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=43&rft.issue=7&rft_id=info:doi/10.1111%2Fcgf.15210&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon