SMFS‐GAN: Style‐Guided Multi‐class Freehand Sketch‐to‐Image Synthesis

Freehand sketch‐to‐image (S2I) is a challenging task due to the individualized lines and the random shape of freehand sketches. The multi‐class freehand sketch‐to‐image synthesis task, in turn, presents new challenges for this research area. This task requires not only the consideration of the probl...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 43; číslo 6
Hlavní autori: Cheng, Zhenwei, Wu, Lei, Li, Xiang, Meng, Xiangxu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.09.2024
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Freehand sketch‐to‐image (S2I) is a challenging task due to the individualized lines and the random shape of freehand sketches. The multi‐class freehand sketch‐to‐image synthesis task, in turn, presents new challenges for this research area. This task requires not only the consideration of the problems posed by freehand sketches but also the analysis of multi‐class domain differences in the conditions of a single model. However, existing methods often have difficulty learning domain differences between multiple classes, and cannot generate controllable and appropriate textures while maintaining shape stability. In this paper, we propose a style‐guided multi‐class freehand sketch‐to‐image synthesis model, SMFS‐GAN, which can be trained using only unpaired data. To this end, we introduce a contrast‐based style encoder that optimizes the network's perception of domain disparities by explicitly modelling the differences between classes and thus extracting style information across domains. Further, to optimize the fine‐grained texture of the generated results and the shape consistency with freehand sketches, we propose a local texture refinement discriminator and a Shape Constraint Module, respectively. In addition, to address the imbalance of data classes in the QMUL‐Sketch dataset, we add 6K images by drawing manually and obtain QMUL‐Sketch+ dataset. Extensive experiments on SketchyCOCO Object dataset, QMUL‐Sketch+ dataset and Pseudosketches dataset demonstrate the effectiveness as well as the superiority of our proposed method. We propose SMFS‐GAN, a style‐guided multiclass freehand sketch‐to‐image synthesis model. We optimize image generation from both style and shape perspectives, enabling the model to generate high‐quality images with controllable style and stable shape from multiclass freehand sketches and style reference images.
AbstractList Freehand sketch‐to‐image (S2I) is a challenging task due to the individualized lines and the random shape of freehand sketches. The multi‐class freehand sketch‐to‐image synthesis task, in turn, presents new challenges for this research area. This task requires not only the consideration of the problems posed by freehand sketches but also the analysis of multi‐class domain differences in the conditions of a single model. However, existing methods often have difficulty learning domain differences between multiple classes, and cannot generate controllable and appropriate textures while maintaining shape stability. In this paper, we propose a style‐guided multi‐class freehand sketch‐to‐image synthesis model, SMFS‐GAN, which can be trained using only unpaired data. To this end, we introduce a contrast‐based style encoder that optimizes the network's perception of domain disparities by explicitly modelling the differences between classes and thus extracting style information across domains. Further, to optimize the fine‐grained texture of the generated results and the shape consistency with freehand sketches, we propose a local texture refinement discriminator and a Shape Constraint Module, respectively. In addition, to address the imbalance of data classes in the QMUL‐Sketch dataset, we add 6K images by drawing manually and obtain QMUL‐Sketch+ dataset. Extensive experiments on SketchyCOCO Object dataset, QMUL‐Sketch+ dataset and Pseudosketches dataset demonstrate the effectiveness as well as the superiority of our proposed method.
Freehand sketch‐to‐image (S2I) is a challenging task due to the individualized lines and the random shape of freehand sketches. The multi‐class freehand sketch‐to‐image synthesis task, in turn, presents new challenges for this research area. This task requires not only the consideration of the problems posed by freehand sketches but also the analysis of multi‐class domain differences in the conditions of a single model. However, existing methods often have difficulty learning domain differences between multiple classes, and cannot generate controllable and appropriate textures while maintaining shape stability. In this paper, we propose a style‐guided multi‐class freehand sketch‐to‐image synthesis model, SMFS‐GAN, which can be trained using only unpaired data. To this end, we introduce a contrast‐based style encoder that optimizes the network's perception of domain disparities by explicitly modelling the differences between classes and thus extracting style information across domains. Further, to optimize the fine‐grained texture of the generated results and the shape consistency with freehand sketches, we propose a local texture refinement discriminator and a Shape Constraint Module, respectively. In addition, to address the imbalance of data classes in the QMUL‐Sketch dataset, we add 6K images by drawing manually and obtain QMUL‐Sketch+ dataset. Extensive experiments on SketchyCOCO Object dataset, QMUL‐Sketch+ dataset and Pseudosketches dataset demonstrate the effectiveness as well as the superiority of our proposed method. We propose SMFS‐GAN, a style‐guided multiclass freehand sketch‐to‐image synthesis model. We optimize image generation from both style and shape perspectives, enabling the model to generate high‐quality images with controllable style and stable shape from multiclass freehand sketches and style reference images.
Freehand sketch‐to‐image (S2I) is a challenging task due to the individualized lines and the random shape of freehand sketches. The multi‐class freehand sketch‐to‐image synthesis task, in turn, presents new challenges for this research area. This task requires not only the consideration of the problems posed by freehand sketches but also the analysis of multi‐class domain differences in the conditions of a single model. However, existing methods often have difficulty learning domain differences between multiple classes, and cannot generate controllable and appropriate textures while maintaining shape stability. In this paper, we propose a style‐guided multi‐class freehand sketch‐to‐image synthesis model, SMFS‐GAN, which can be trained using only unpaired data. To this end, we introduce a contrast‐based style encoder that optimizes the network's perception of domain disparities by explicitly modelling the differences between classes and thus extracting style information across domains. Further, to optimize the fine‐grained texture of the generated results and the shape consistency with freehand sketches, we propose a local texture refinement discriminator and a Shape Constraint Module, respectively. In addition, to address the imbalance of data classes in the QMUL‐Sketch dataset, we add 6K images by drawing manually and obtain QMUL‐Sketch+ dataset. Extensive experiments on SketchyCOCO Object dataset, QMUL‐Sketch+ dataset and Pseudosketches dataset demonstrate the effectiveness as well as the superiority of our proposed method.
Author Li, Xiang
Cheng, Zhenwei
Meng, Xiangxu
Wu, Lei
Author_xml – sequence: 1
  givenname: Zhenwei
  orcidid: 0009-0008-6838-8634
  surname: Cheng
  fullname: Cheng, Zhenwei
  email: 202135253@mail.sdu.edu.cn
  organization: Shandong University
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-3872-9062
  surname: Wu
  fullname: Wu, Lei
  email: i_lily@sdu.edu.cn
  organization: Shandong University
– sequence: 3
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  email: xiangli_@mail.sdu.edu.cn
  organization: Shandong University
– sequence: 4
  givenname: Xiangxu
  surname: Meng
  fullname: Meng, Xiangxu
  email: mxx@sdu.edu.cn
  organization: Shandong University
BookMark eNp1kM9Og0AQxjemJrbVg29A4skD7S7sH_DWNIJNWntAz5uFHVoqhcpCDDcfwWf0SdyKV-cwM9_kNzPJN0Gjqq4AoVuCZ8TGPNvlM8JIiC_QmFAu3ICzcITGmNheYMau0MSYA8aYCs7GaJtsouT78ytePD84SduXcBZdoUE7m65sCyuzUhnjRA3AXlXaSd6gzfZ23tY2rY5qB07SV-0eTGGu0WWuSgM3f3WKXqPHl-WTu97Gq-Vi7WYeE9jlmQhyij0_FTiFjHKf5TnVIfWBelT7oQgFSRULeBrgkAeBJprmHlUpVkR74E_R3XD31NTvHZhWHuquqexL6RMcCEEx9yx1P1BZUxvTQC5PTXFUTS8Jlme_pPVL_vpl2fnAfhQl9P-DchlHw8YP1-NwtA
Cites_doi 10.1145/3394171.3413684
10.1609/aaai.v38i5.28226
10.1609/aaai.v35i3.16368
10.1145/1618452.1618470
10.1109/MCG.2011.67
10.1109/TMM.2020.3015015
10.1109/ICCV51070.2023.00355
10.1145/3343031.3350854
10.1007/978-3-030-01270-0_13
10.1007/978-3-030-58580-8_3
10.1109/ACCESS.2019.2913178
10.1145/3503161.3548415
10.1016/j.neucom.2021.07.029
10.1007/978-3-031-19787-1_36
10.1109/ICASSP43922.2022.9747480
10.1145/3588432.3591560
10.1609/aaai.v35i3.16304
ContentType Journal Article
Copyright 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.15190
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage n/a
ExternalDocumentID 10_1111_cgf_15190
CGF15190
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2570-6c78f4023b70bec4635ff4d943e424d397971ba586b809688d1d4f24ab0a1d2e3
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001284990100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sat Jul 26 01:35:55 EDT 2025
Sat Nov 29 03:41:23 EST 2025
Wed Jan 22 17:14:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2570-6c78f4023b70bec4635ff4d943e424d397971ba586b809688d1d4f24ab0a1d2e3
Notes Corresponding author
i_lily@sdu.edu.cn
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3872-9062
0009-0008-6838-8634
PQID 3108774062
PQPubID 30877
PageCount 13
ParticipantIDs proquest_journals_3108774062
crossref_primary_10_1111_cgf_15190
wiley_primary_10_1111_cgf_15190_CGF15190
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2021; 35
2019; 7
2020; 4
2023
2022
2021
2020
2014; 27
2019
2018
2017
2016
2020; 23
2021; 460
2009; 5
2020; 33
2014
2016; 29
2011; 6
2024; 38
Baek K. (e_1_2_7_3_2) 2021
e_1_2_7_9_2
Ghosh A. (e_1_2_7_10_2) 2019
Zhao B. (e_1_2_7_46_2) 2019
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_15_2
Karras T. (e_1_2_7_18_2) 2020
e_1_2_7_14_2
Singh S. (e_1_2_7_33_2) 2020
Wang S.‐Y. (e_1_2_7_39_2) 2021
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_12_2
e_1_2_7_44_2
e_1_2_7_45_2
Zhu J.‐Y. (e_1_2_7_47_2) 2017
Koley S. (e_1_2_7_17_2) 2023
e_1_2_7_27_2
e_1_2_7_28_2
Isola P. (e_1_2_7_16_2) 2017
Chen T. (e_1_2_7_4_2) 2009; 5
Song J. (e_1_2_7_35_2) 2020
Reed S. (e_1_2_7_31_2) 2016
An Z. (e_1_2_7_2_2) 2023
Sun W. (e_1_2_7_36_2) 2019
He K. (e_1_2_7_11_2) 2020
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_22_2
Xian W. (e_1_2_7_43_2) 2018
e_1_2_7_21_2
Sangkloy P. (e_1_2_7_34_2) 2017
e_1_2_7_20_2
e_1_2_7_37_2
Mirza M. (e_1_2_7_26_2) 2014
e_1_2_7_38_2
Gao C. (e_1_2_7_8_2) 2020
Qin C. (e_1_2_7_29_2) 2023
Rombach R. (e_1_2_7_32_2) 2022
Xiang X. (e_1_2_7_42_2) 2022
Chen S.‐Y. (e_1_2_7_6_2) 2020; 4
Chen W. (e_1_2_7_5_2) 2018
References_xml – start-page: 632
  year: 2022
  end-page: 650
  article-title: CoGS: Controllable generation and search from sketch and style
– volume: 33
  start-page: 7198
  year: 2020
  end-page: 7211
  article-title: Swapping autoencoder for deep image manipulation
– start-page: 205
  year: 2018
  end-page: 220
  article-title: Image generation from sketch constraint using contextual GAN
– start-page: 1171
  year: 2019
  end-page: 1180
  article-title: Interactive sketch & fill: Multiclass sketch‐to‐image translation
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 5400
  year: 2017
  end-page: 5409
  article-title: Scribbler: Controlling deep image synthesis with sketch and color
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 6
  start-page: 56
  year: 2011
  end-page: 66
  article-title: Photosketcher: interactive sketch‐based image synthesis
  publication-title: IEEE Computer Graphics and Applications
– start-page: 42961
  year: 2023
  end-page: 42992
– volume: 29
  start-page: 1
  year: 2016
  end-page: 9
  article-title: Learning what and where to draw
– volume: 5
  start-page: 1
  year: 2009
  end-page: 10
  article-title: Sketch2Photo: Internet image montage
  publication-title: ACM Transactions on Graphics (TOG)
– start-page: 2223
  year: 2017
  end-page: 2232
  article-title: Unpaired image‐to‐image translation using cycle‐consistent adversarial networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 36
  year: 2020
  end-page: 52
  article-title: Unsupervised sketch to photo synthesis
– start-page: 4319
  year: 2023
  end-page: 4329
  article-title: SketchInverter: Multi‐class sketch‐based image generation via GAN inversion
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– start-page: 9416
  year: 2018
  end-page: 9425
  article-title: SketchyGAN: Towards diverse and realistic sketch to image synthesis
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 14154
  year: 2021
  end-page: 14163
  article-title: Rethinking the truly unsupervised image‐to‐image translation
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 1125
  year: 2017
  end-page: 1134
  article-title: Image‐to‐image translation with conditional adversarial networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 6850
  year: 2023
  end-page: 6861
  article-title: Picture that sketch: Photorealistic image generation from abstract sketches
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 14050
  year: 2021
  end-page: 14060
  article-title: Sketch your own GAN
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 5174
  year: 2020
  end-page: 5183
  article-title: SketchyCOCO: Image generation from freehand scene sketches
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 10684
  year: 2022
  end-page: 10695
  article-title: High‐resolution image synthesis with latent diffusion models
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2022
  end-page: 14
  article-title: DifFSketching: Sketch control image synthesis with diffusion models
– volume: 38
  start-page: 4296
  issue: 5
  year: 2024
  end-page: 4304
  article-title: T2I‐Adapter: Learning Adapters to Dig Out More Controllable Ability for Text‐to‐Image Diffusion Models
– start-page: 10531
  year: 2019
  end-page: 10540
  article-title: Image synthesis from reconfigurable layout and style
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 991
  year: 2020
  end-page: 999
  article-title: DeepFacePencil: Creating face images from freehand sketches
  publication-title: Proceedings of the 28th ACM International Conference on Multimedia
– start-page: 8456
  year: 2018
  end-page: 8465
  article-title: TextureGAN: Controlling deep image synthesis with texture patches
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  article-title: Denoising diffusion probabilistic models
– volume: 35
  start-page: 2647
  year: 2021
  end-page: 2655
  article-title: Object‐centric image generation from layouts
– start-page: 1
  end-page: 11
  article-title: Sketch‐guided text‐to‐image diffusion models
– start-page: 1060
  year: 2016
  end-page: 1069
  article-title: Generative adversarial text to image synthesis
  publication-title: International Conference on Machine Learning
– start-page: 8110
  year: 2020
  end-page: 8119
  article-title: Analyzing and improving the image quality of StyleGAN
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 11237
  year: 2020
  end-page: 11246
  article-title: Filter response normalization layer: Eliminating batch dependence in the training of deep neural networks
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 1
  end-page: 11
– start-page: 9729
  year: 2020
  end-page: 9738
  article-title: Momentum contrast for unsupervised visual representation learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 3836
  year: 2023
  end-page: 3847
  article-title: Adding conditional control to text‐to‐image diffusion models
– start-page: 1
  year: 2020
  end-page: 22
– volume: 4
  start-page: 72:1
  year: 2020
  end-page: 72:16
  article-title: DeepFaceDrawing: Deep generation of face images from sketches
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 23
  start-page: 2694
  year: 2020
  end-page: 2705
  article-title: Staged sketch‐to‐image synthesis via semi‐supervised generative adversarial networks
  publication-title: IEEE Transactions on Multimedia
– start-page: 2073
  year: 2021
  end-page: 2081
  article-title: Self‐supervised sketch‐to‐image synthesis
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 2323
  year: 2019
  end-page: 2331
  article-title: LinesToFacePhoto: Face photo generation from lines with conditional self‐attention generative adversarial networks
  publication-title: Proceedings of the 27th ACM International Conference on Multimedia
– start-page: 8584
  year: 2019
  end-page: 8593
  article-title: Image generation from layout
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2014
  end-page: 7
  article-title: Conditional generative adversarial nets
  publication-title: arXiv preprint arXiv:1411.1784
– start-page: 3723
  year: 2022
  end-page: 3727
  article-title: Natural‐looking adversarial examples from freehand sketches
– volume: 7
  start-page: 56683
  year: 2019
  end-page: 56693
  article-title: Multi‐instance sketch to image synthesis with progressive generative adversarial networks
  publication-title: IEEE Access
– start-page: 1434
  year: 2022
  end-page: 1444
  article-title: Adversarial open domain adaptation for sketch‐to‐photo synthesis
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– volume: 27
  year: 2014
  article-title: Generative adversarial nets
– start-page: 2229
  year: 2022
  end-page: 2238
  article-title: Customizing GAN using few‐shot sketches
  publication-title: Proceedings of the 30th ACM International Conference on Multimedia
– volume: 460
  start-page: 256
  year: 2021
  end-page: 265
  article-title: Cali‐Sketch: Stroke calibration and completion for high‐quality face image generation from human‐like sketches
  publication-title: Neurocomputing
– ident: e_1_2_7_21_2
  doi: 10.1145/3394171.3413684
– start-page: 1
  year: 2014
  ident: e_1_2_7_26_2
  article-title: Conditional generative adversarial nets
  publication-title: arXiv preprint arXiv:1411.1784
– ident: e_1_2_7_13_2
– start-page: 5174
  year: 2020
  ident: e_1_2_7_8_2
  article-title: SketchyCOCO: Image generation from freehand scene sketches
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– ident: e_1_2_7_30_2
– start-page: 9416
  year: 2018
  ident: e_1_2_7_5_2
  article-title: SketchyGAN: Towards diverse and realistic sketch to image synthesis
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– ident: e_1_2_7_27_2
  doi: 10.1609/aaai.v38i5.28226
– start-page: 10684
  year: 2022
  ident: e_1_2_7_32_2
  article-title: High‐resolution image synthesis with latent diffusion models
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 4319
  year: 2023
  ident: e_1_2_7_2_2
  article-title: SketchInverter: Multi‐class sketch‐based image generation via GAN inversion
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– start-page: 8110
  year: 2020
  ident: e_1_2_7_18_2
  article-title: Analyzing and improving the image quality of StyleGAN
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– ident: e_1_2_7_37_2
  doi: 10.1609/aaai.v35i3.16368
– start-page: 6850
  year: 2023
  ident: e_1_2_7_17_2
  article-title: Picture that sketch: Photorealistic image generation from abstract sketches
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 5
  start-page: 1
  year: 2009
  ident: e_1_2_7_4_2
  article-title: Sketch2Photo: Internet image montage
  publication-title: ACM Transactions on Graphics (TOG)
  doi: 10.1145/1618452.1618470
– volume: 4
  start-page: 72:1
  year: 2020
  ident: e_1_2_7_6_2
  article-title: DeepFaceDrawing: Deep generation of face images from sketches
  publication-title: ACM Transactions on Graphics (TOG)
– start-page: 14050
  year: 2021
  ident: e_1_2_7_39_2
  article-title: Sketch your own GAN
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– ident: e_1_2_7_7_2
  doi: 10.1109/MCG.2011.67
– ident: e_1_2_7_24_2
  doi: 10.1109/TMM.2020.3015015
– ident: e_1_2_7_45_2
  doi: 10.1109/ICCV51070.2023.00355
– ident: e_1_2_7_20_2
  doi: 10.1145/3343031.3350854
– ident: e_1_2_7_9_2
– ident: e_1_2_7_12_2
– start-page: 1171
  year: 2019
  ident: e_1_2_7_10_2
  article-title: Interactive sketch & fill: Multiclass sketch‐to‐image translation
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– ident: e_1_2_7_22_2
  doi: 10.1007/978-3-030-01270-0_13
– ident: e_1_2_7_23_2
  doi: 10.1007/978-3-030-58580-8_3
– ident: e_1_2_7_41_2
  doi: 10.1109/ACCESS.2019.2913178
– start-page: 10531
  year: 2019
  ident: e_1_2_7_36_2
  article-title: Image synthesis from reconfigurable layout and style
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 14154
  year: 2021
  ident: e_1_2_7_3_2
  article-title: Rethinking the truly unsupervised image‐to‐image translation
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 1060
  year: 2016
  ident: e_1_2_7_31_2
  article-title: Generative adversarial text to image synthesis
  publication-title: International Conference on Machine Learning
– start-page: 1434
  year: 2022
  ident: e_1_2_7_42_2
  article-title: Adversarial open domain adaptation for sketch‐to‐photo synthesis
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– ident: e_1_2_7_15_2
  doi: 10.1145/3503161.3548415
– start-page: 42961
  volume-title: Proceedings of the 37th International Conference on Neural Information Processing Systems
  year: 2023
  ident: e_1_2_7_29_2
– start-page: 1
  volume-title: International Conference on Learning Representations
  year: 2020
  ident: e_1_2_7_35_2
– start-page: 1125
  year: 2017
  ident: e_1_2_7_16_2
  article-title: Image‐to‐image translation with conditional adversarial networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– ident: e_1_2_7_44_2
  doi: 10.1016/j.neucom.2021.07.029
– start-page: 2223
  year: 2017
  ident: e_1_2_7_47_2
  article-title: Unpaired image‐to‐image translation using cycle‐consistent adversarial networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 9729
  year: 2020
  ident: e_1_2_7_11_2
  article-title: Momentum contrast for unsupervised visual representation learning
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– ident: e_1_2_7_14_2
  doi: 10.1007/978-3-031-19787-1_36
– start-page: 8584
  year: 2019
  ident: e_1_2_7_46_2
  article-title: Image generation from layout
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– ident: e_1_2_7_19_2
  doi: 10.1109/ICASSP43922.2022.9747480
– ident: e_1_2_7_40_2
– ident: e_1_2_7_38_2
  doi: 10.1145/3588432.3591560
– start-page: 8456
  year: 2018
  ident: e_1_2_7_43_2
  article-title: TextureGAN: Controlling deep image synthesis with texture patches
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 5400
  year: 2017
  ident: e_1_2_7_34_2
  article-title: Scribbler: Controlling deep image synthesis with sketch and color
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– ident: e_1_2_7_25_2
  doi: 10.1609/aaai.v35i3.16304
– ident: e_1_2_7_28_2
– start-page: 11237
  year: 2020
  ident: e_1_2_7_33_2
  article-title: Filter response normalization layer: Eliminating batch dependence in the training of deep neural networks
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
SSID ssj0004765
Score 2.4147308
Snippet Freehand sketch‐to‐image (S2I) is a challenging task due to the individualized lines and the random shape of freehand sketches. The multi‐class freehand...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Controllability
Datasets
image and video processing
Image contrast
image generation
Sketches
Synthesis
Texture
Title SMFS‐GAN: Style‐Guided Multi‐class Freehand Sketch‐to‐Image Synthesis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.15190
https://www.proquest.com/docview/3108774062
Volume 43
WOSCitedRecordID wos001284990100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5K60EPvsVqlSAevESSzTYPPZVqqlCrGCu9hWyyK0VNpUmF3vwJ_kZ_ibN5tPUgCF5CNiRhmZ3HN7s73wIcE6aRSMsNiaqUhJbKzEBg1srQ-QmiGxnZ82PX6vXswcC5q8B5WQuT80PMJtykZWT-Whp4wJIFIw-fxCmGKwfz9RpBvW1WoXZx7_a787JIy2yW1N6SNKYgFpIbeWYf_wxHc4y5iFSzUOOu_auT67BaIEyllavEBlR4vAkrC7yDW3Dr3bje18dnp9U7U7x0-sJlYzKMeKRkFbnYDCWsVtwx53JuXfGe5fji83SEl-tXdEOKN40RPibDZBv67uVD-0otTlZQQ3lqnWqGli0wczSYpeEgUkQdQtDIoQanhEZyrc_SWdC0TWZjjmPbkR5RQWjAtECPCDd2oBqPYr4LisMMHtBQYA8DqlvCCZgIHS4QpjFuEr0OR6WA_becQMMvEw-Ujp9Jpw6NUvR-YUOJj8DTRnCqmaQOJ5mQf_-B3-642c3e31_dh2WCCCXfMNaAajqe8ANYCt_TYTI-LJTpG24sz5o
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KK6gH32K1ahAPXiLJZpuHeCnV2GJbxbTSW8gmu1LUVvoQevMn-Bv9Jc7m0daDIHgJ2ZCEZXYe38zufgtwSphGIi0xJKpSEloqMwOBWStD5yeIbsRkz48Nq9Wyu13nPgeX2V6YhB9iVnCTlhH7a2ngsiC9YOXhkzjHeOVgwl6gqEao34WrB7fTmO-LtMxyxu0tWWNSZiG5kmf28c94NAeZi1A1jjXu-v96uQFrKcZUKolSbEKO97dgdYF5cBvuvKbrfX183lRaF4o3nr5w2Zj0Ih4p8Z5cbIYSWCvukHNZXVe8ZznC-Hw8wEv9FR2R4k37CCBHvdEOdNzrdrWmpmcrqKE8t041Q8sWmDsazNJwGFF-ZSFo5FCDU0IjOdtn6Swo2yazMcux7UiPqCA0YFqgR4Qbu5DvD_p8DxSHGTygocAeBlS3hBMwETpcIFBj3CR6EU4yCftvCYWGn6UeKB0_lk4RSpns_dSKRj5CTxvhqWaSIpzFUv79B371xo1v9v_-6jEs19rNht-ot24PYIUgXkmWj5UgPx5O-CEshe_j3mh4lGrWN9xV04o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KK6IH32K1ahAPXiLJZpuHeCmtqWKtxVjpLWSzu1LUKn0IvfkT_I3-Emfz0HoQBC8hG5KwzO7MfLO78w3AIWEG4UaqSFSnJHZ0ZkcSo1aGxk8S00rInu9aTrvt9npepwCneS5Myg_xteCmNCOx10rBxQuXM1oe38tj9FceBuwlqorIFKHUuPG7re-8SMeu5tzeijUmYxZSJ3m-Pv7pj75B5ixUTXyNv_y_Xq7AUoYxtVo6KVahIAZrsDjDPLgO18GVH3y8vTdr7RMtGE8fhWpM-lxwLcnJxWasgLXmD4VQq-ta8KBGGJ-Pn_Fy8YSGSAumAwSQo_5oA7r-2W39XM9qK-ixqlun27HjSowdLeYYOIwUcYeUlHvUEpRQrnb7HJNFVddmLkY5rstNTiWhETMikxNhbUJx8DwQW6B5zBIRjSX2MKKmI72IydgTEoEaEzYxy3CQSzh8SSk0wjz0QOmEiXTKUMllH2ZaNAoReroITw2blOEokfLvPwjrTT-52f77q_sw32n4YeuifbkDCwThSnp6rALF8XAidmEufh33R8O9bGJ9Aqow0wU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SMFS%E2%80%90GAN%3A+Style%E2%80%90Guided+Multi%E2%80%90class+Freehand+Sketch%E2%80%90to%E2%80%90Image+Synthesis&rft.jtitle=Computer+graphics+forum&rft.au=Cheng%2C+Zhenwei&rft.au=Wu%2C+Lei&rft.au=Li%2C+Xiang&rft.au=Meng%2C+Xiangxu&rft.date=2024-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=43&rft.issue=6&rft_id=info:doi/10.1111%2Fcgf.15190&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon