Molecular Chains: Arranging and Programming Logic Gates
One particularly fascinating vision for charge-operated devices is the controlled assembly of structures from single surface-deposited molecules. Here, we report on the assembly of linear clusters that consist of phthalocyanine (H Pc) molecules on a Ag(111) surface. The molecules are imaged as well...
Gespeichert in:
| Veröffentlicht in: | Nano letters Jg. 21; H. 1; S. 550 - 555 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
13.01.2021
|
| Schlagworte: | |
| ISSN: | 1530-6984, 1530-6992, 1530-6992 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | One particularly fascinating vision for charge-operated devices is the controlled assembly of structures from single surface-deposited molecules. Here, we report on the assembly of linear clusters that consist of phthalocyanine (H
Pc) molecules on a Ag(111) surface. The molecules are imaged as well as manipulated with a low-temperature scanning tunneling microscope (STM). Upon deprotonation of every second H
Pc, the resulting HPc molecule exhibits an isomeric bistability which can be used as inputs in logic gates. Combining our STM measurements with density functional theory calculations we show that the HPc isomers exhibit a repulsive electrostatic interaction with adjacent H
Pc molecules which, due to the asymmetric charge distribution on HPc, results in a counterclockwise or clockwise molecule tilt of the latter, thereby defining the logic 0 and 1 of the output. It is shown that information can be relayed along molecule chains over distances equivalent to at least nine molecules. |
|---|---|
| AbstractList | One particularly fascinating vision for charge-operated devices is the controlled assembly of structures from single surface-deposited molecules. Here, we report on the assembly of linear clusters that consist of phthalocyanine (H2Pc) molecules on a Ag(111) surface. The molecules are imaged as well as manipulated with a low-temperature scanning tunneling microscope (STM). Upon deprotonation of every second H2Pc, the resulting HPc molecule exhibits an isomeric bistability which can be used as inputs in logic gates. Combining our STM measurements with density functional theory calculations we show that the HPc isomers exhibit a repulsive electrostatic interaction with adjacent H2Pc molecules which, due to the asymmetric charge distribution on HPc, results in a counterclockwise or clockwise molecule tilt of the latter, thereby defining the logic 0 and 1 of the output. It is shown that information can be relayed along molecule chains over distances equivalent to at least nine molecules.One particularly fascinating vision for charge-operated devices is the controlled assembly of structures from single surface-deposited molecules. Here, we report on the assembly of linear clusters that consist of phthalocyanine (H2Pc) molecules on a Ag(111) surface. The molecules are imaged as well as manipulated with a low-temperature scanning tunneling microscope (STM). Upon deprotonation of every second H2Pc, the resulting HPc molecule exhibits an isomeric bistability which can be used as inputs in logic gates. Combining our STM measurements with density functional theory calculations we show that the HPc isomers exhibit a repulsive electrostatic interaction with adjacent H2Pc molecules which, due to the asymmetric charge distribution on HPc, results in a counterclockwise or clockwise molecule tilt of the latter, thereby defining the logic 0 and 1 of the output. It is shown that information can be relayed along molecule chains over distances equivalent to at least nine molecules. One particularly fascinating vision for charge-operated devices is the controlled assembly of structures from single surface-deposited molecules. Here, we report on the assembly of linear clusters that consist of phthalocyanine (H Pc) molecules on a Ag(111) surface. The molecules are imaged as well as manipulated with a low-temperature scanning tunneling microscope (STM). Upon deprotonation of every second H Pc, the resulting HPc molecule exhibits an isomeric bistability which can be used as inputs in logic gates. Combining our STM measurements with density functional theory calculations we show that the HPc isomers exhibit a repulsive electrostatic interaction with adjacent H Pc molecules which, due to the asymmetric charge distribution on HPc, results in a counterclockwise or clockwise molecule tilt of the latter, thereby defining the logic 0 and 1 of the output. It is shown that information can be relayed along molecule chains over distances equivalent to at least nine molecules. |
| Author | Haldar, Soumyajyoti Christ, Andreas Heinze, Stefan Leisegang, Markus Bode, Matthias |
| Author_xml | – sequence: 1 givenname: Markus orcidid: 0000-0002-7807-4224 surname: Leisegang fullname: Leisegang, Markus organization: Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany – sequence: 2 givenname: Andreas surname: Christ fullname: Christ, Andreas organization: Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany – sequence: 3 givenname: Soumyajyoti orcidid: 0000-0002-3161-4326 surname: Haldar fullname: Haldar, Soumyajyoti organization: Institute of Theoretical Physics and Astrophysics, University of Kiel, Leibnizstrasse 15, 24098 Kiel, Germany – sequence: 4 givenname: Stefan surname: Heinze fullname: Heinze, Stefan organization: Institute of Theoretical Physics and Astrophysics, University of Kiel, Leibnizstrasse 15, 24098 Kiel, Germany – sequence: 5 givenname: Matthias surname: Bode fullname: Bode, Matthias organization: Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany, Wilhelm Conrad Röntgen-Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, 97074 Würzburg, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33290080$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kMtOwzAQRS1URB_wBwhlySZlbMdpza6qoCAVwQLW1sSPEJQ4xU4W_D2p-ljNHenoSvdMyci33hJyS2FOgdEH1HHu0be17bo5aOBymV2QCRUc0lxKNjrnZTYm0xh_AEByAVdkzDmTAEuYkMXbUKD7GkOy_sbKx8dkFQL6svJlgt4kH6EtAzbN_t-2ZaWTDXY2XpNLh3W0N8c7I1_PT5_rl3T7vnldr7apZiLvUiupk0AXhgpWGIqCC-c4YxwNM1hwQwuJwDQaqp0wzjHGcsNzvjAZzcHxGbk_9O5C-9vb2KmmitrWNXrb9lGxLF_mQlKaDejdEe2Lxhq1C1WD4U-dxg5AdgB0aGMM1p0RCmrvVA1O1cmpOjrl_5tUbCo |
| Cites_doi | 10.1002/j.1538-7305.1948.tb01338.x 10.1038/nnano.2017.179 10.1038/s41586-020-2061-y 10.1021/ja065449s 10.1038/nnano.2013.170 10.1021/acs.nanolett.8b00465 10.1103/RevModPhys.81.109 10.1021/acs.chemrev.5b00680 10.1103/PhysRevLett.98.116102 10.1038/352600a0 10.1038/nnano.2011.211 10.1021/acs.jpcc.7b10564 10.1103/RevModPhys.79.1217 10.1038/natrevmats.2017.31 10.1126/science.1144366 10.1073/pnas.0703748104 10.1021/acs.jpclett.6b00476 10.1016/j.commatsci.2005.04.010 10.1038/530144a 10.1021/acsnano.6b05924 10.1038/nnano.2012.20 10.1126/science.1065389 10.1038/nature25737 10.1103/PhysRevLett.99.038301 10.1021/ja807876c 10.1038/nature10681 10.1002/anie.201100950 10.1038/nature11458 10.1103/PhysRevApplied.4.047001 10.1126/science.1076768 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1021/acs.nanolett.0c03984 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1530-6992 |
| EndPage | 555 |
| ExternalDocumentID | 33290080 10_1021_acs_nanolett_0c03984 |
| Genre | Journal Article |
| GroupedDBID | --- -~X .K2 123 4.4 55A 5VS 6P2 7~N AABXI AAHBH AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACBEA ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL TN5 UI2 VF5 VG9 W1F NPM 7X8 |
| ID | FETCH-LOGICAL-c256t-e91f9017d152bd1a535ff3223ad2dab3d1b9a02cad1cf5dff2226d3637d4160f3 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000611082000074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-6984 1530-6992 |
| IngestDate | Thu Oct 02 06:40:02 EDT 2025 Thu Jan 02 22:57:39 EST 2025 Sat Nov 29 06:17:15 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Logic Gate Molecule Phthalocyanine STM Switching Coulomb Repulsion |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c256t-e91f9017d152bd1a535ff3223ad2dab3d1b9a02cad1cf5dff2226d3637d4160f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3161-4326 0000-0002-7807-4224 |
| PMID | 33290080 |
| PQID | 2468659114 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_2468659114 pubmed_primary_33290080 crossref_primary_10_1021_acs_nanolett_0c03984 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-13 2021-Jan-13 20210113 |
| PublicationDateYYYYMMDD | 2021-01-13 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Nano letters |
| PublicationTitleAlternate | Nano Lett |
| PublicationYear | 2021 |
| References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref23/cit23 ref14/cit14 ref5/cit5 ref31/cit31 ref2/cit2 ref28/cit28 Mohn F. (ref29/cit29) 2012; 7 ref20/cit20 van der Molen S. J. (ref13/cit13) 2010; 22 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 Castro Neto A. H. (ref8/cit8) 2009; 81 ref22/cit22 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
| References_xml | – ident: ref1/cit1 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: ref23/cit23 doi: 10.1038/nnano.2017.179 – ident: ref6/cit6 doi: 10.1038/s41586-020-2061-y – ident: ref15/cit15 doi: 10.1021/ja065449s – ident: ref20/cit20 doi: 10.1038/nnano.2013.170 – ident: ref27/cit27 doi: 10.1021/acs.nanolett.8b00465 – volume: 81 start-page: 109162 year: 2009 ident: ref8/cit8 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 22 start-page: 133001 year: 2010 ident: ref13/cit13 publication-title: J. Phys.: Condens. Matter – ident: ref12/cit12 doi: 10.1021/acs.chemrev.5b00680 – ident: ref18/cit18 doi: 10.1103/PhysRevLett.98.116102 – ident: ref21/cit21 doi: 10.1038/352600a0 – ident: ref26/cit26 doi: 10.1038/nnano.2011.211 – ident: ref25/cit25 doi: 10.1021/acs.jpcc.7b10564 – ident: ref4/cit4 doi: 10.1103/RevModPhys.79.1217 – ident: ref7/cit7 doi: 10.1038/natrevmats.2017.31 – ident: ref14/cit14 doi: 10.1126/science.1144366 – ident: ref16/cit16 doi: 10.1073/pnas.0703748104 – ident: ref31/cit31 doi: 10.1021/acs.jpclett.6b00476 – ident: ref30/cit30 doi: 10.1016/j.commatsci.2005.04.010 – ident: ref2/cit2 doi: 10.1038/530144a – ident: ref28/cit28 doi: 10.1021/acsnano.6b05924 – volume: 7 start-page: 227231 year: 2012 ident: ref29/cit29 publication-title: Nature Nanotechnol. doi: 10.1038/nnano.2012.20 – ident: ref3/cit3 doi: 10.1126/science.1065389 – ident: ref11/cit11 doi: 10.1038/nature25737 – ident: ref17/cit17 doi: 10.1103/PhysRevLett.99.038301 – ident: ref19/cit19 doi: 10.1021/ja807876c – ident: ref10/cit10 doi: 10.1038/nature10681 – ident: ref24/cit24 doi: 10.1002/anie.201100950 – ident: ref9/cit9 doi: 10.1038/nature11458 – ident: ref5/cit5 doi: 10.1103/PhysRevApplied.4.047001 – ident: ref22/cit22 doi: 10.1126/science.1076768 |
| SSID | ssj0009350 |
| Score | 2.3969746 |
| Snippet | One particularly fascinating vision for charge-operated devices is the controlled assembly of structures from single surface-deposited molecules. Here, we... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 550 |
| Title | Molecular Chains: Arranging and Programming Logic Gates |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33290080 https://www.proquest.com/docview/2468659114 |
| Volume | 21 |
| WOSCitedRecordID | wos000611082000074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals (Lakeside Campuses) customDbUrl: eissn: 1530-6992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009350 issn: 1530-6984 databaseCode: ACS dateStart: 20010101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qHvTg-_2ggtdok7Rp4m1ZXLwoggp7K7OZBvdgV7Zdf7-TdusLPOyxMCTt15nMl046H2OXziWJRQEcrUSeQJFyAJfxFA04k_oiRWzEJrKHBzMc2sfvjeLfCr4U1-CqqxLKCT1GfRW7WFnTtP_MVIjDXv_pu8euagRZKYZpR0RW3Z9y_wzyOxP9Qy-bNDPYXPQGt9jGnFBGvdYDttlSUe6w9R9tBndZdt9p4Eb9VxiX1Q2ZU44K-kQRlBg9toe03sJ1EF92UfioVu2xl8Htc_-OzwUTuCPmUvPCCk_5PUNKyiN6AalKvaeIVYASYaRQjCzE0gEK51P0nsiBRqVVhsTLYq_22Uo5KYtDFqEwECpwVgpIjASjvfMaMm3RjLQujhjvwMvf274YeVPPliInQPIOkHwOyBG76BDOyYFDVQLKYjKrcploo1Nac8nmoIX-a0SlpA2c9njB2U7YmgxnT2LBhTplK_V0VpyxVfdRj6vpOVvOhua88Z1Pd-7DNQ |
| linkProvider | American Chemical Society |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Chains%3A+Arranging+and+Programming+Logic+Gates&rft.jtitle=Nano+letters&rft.au=Leisegang%2C+Markus&rft.au=Christ%2C+Andreas&rft.au=Haldar%2C+Soumyajyoti&rft.au=Heinze%2C+Stefan&rft.date=2021-01-13&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=21&rft.issue=1&rft.spage=550&rft_id=info:doi/10.1021%2Facs.nanolett.0c03984&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |