Complex Quadratic Optimization and Semidefinite Programming
In this paper we study the approximation algorithms for a class of discrete quadratic optimization problems in the Hermitian complex form. A special case of the problem that we study corresponds to the max-3-cut model used in a recent paper of Goemans and Williamson J. Comput. System Sci., 68 (2004)...
Uložené v:
| Vydané v: | SIAM journal on optimization Ročník 16; číslo 3; s. 871 - 890 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2006
|
| Predmet: | |
| ISSN: | 1052-6234, 1095-7189 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper we study the approximation algorithms for a class of discrete quadratic optimization problems in the Hermitian complex form. A special case of the problem that we study corresponds to the max-3-cut model used in a recent paper of Goemans and Williamson J. Comput. System Sci., 68 (2004), pp. 442-470]. We first develop a closed-formformula to compute the probability of a complex-valued normally distributed bivariate random vector to be in a given angular region. This formula allows us to compute the expected value of a randomized (with a specific rounding rule) solution based on the optimal solution of the complex semidefinite programming relaxation problem. In particular, we present an $[m^2(1-\cos\frac{2\pi}{m})/8\pi]$-approximation algorithm, and then study the limit of that model, in which the problem remains NP-hard. We show that if the objective is to maximize a positive semidefinite Hermitian form, then the randomization-rounding procedure guarantees a worst-case performance ratio of $\pi/4 \approx 0.7854$, which is better than the ratio of $2/\pi \approx 0.6366$ for its counterpart in the real case due to Nesterov. Furthermore, if the objective matrix is real-valued positive semidefinite with nonpositive off-diagonal elements, then the performance ratio improves to 0.9349. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 1052-6234 1095-7189 |
| DOI: | 10.1137/04061341X |