Special Issue “Advances in Machine Learning and Deep Learning Based Machine Fault Diagnosis and Prognosis”

Fault diagnosis and failure prognosis aim to reduce downtime of the systems and to optimise their performance by replacing preventive and corrective maintenance strategies with predictive or conditional ones [...]

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes Jg. 9; H. 3; S. 532
Hauptverfasser: Djeziri, Mohand, Bendahan, Marc
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.01.2021
MDPI
Schlagworte:
ISSN:2227-9717, 2227-9717
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Fault diagnosis and failure prognosis aim to reduce downtime of the systems and to optimise their performance by replacing preventive and corrective maintenance strategies with predictive or conditional ones [...]
AbstractList The papers proposed in this book present new methods of fault diagnosis and failure prognosis which provide solutions to scientific issues such as structured and unstructured uncertainties, the presence of multiple faults, the lack of prior knowledge on the conditions of use, feature extraction and selection, model optimisation and online implementation. Induction motor is also considered in [3] which focus their study on the impact of the use of attribute selection methods such as ReliefF, correlation-based feature selection (CFS), and correlation and fitness value-based feature selection (CFFS), on the performance of neural classifiers such as probabilistic neural network (PNN), radial basis function neural network (RBNN), and back propagation neural network (BPNN). To evaluate the effectiveness of this algorithm in presence of different operating conditions, a hydraulic pump is used as a case study, where three kinds of loads are simulated by means of the throttle valve.
Fault diagnosis and failure prognosis aim to reduce downtime of the systems and to optimise their performance by replacing preventive and corrective maintenance strategies with predictive or conditional ones [...]
Author Bendahan, Marc
Djeziri, Mohand
Author_xml – sequence: 1
  givenname: Mohand
  orcidid: 0000-0002-1597-3193
  surname: Djeziri
  fullname: Djeziri, Mohand
– sequence: 2
  givenname: Marc
  surname: Bendahan
  fullname: Bendahan, Marc
BackLink https://hal.science/hal-03410264$$DView record in HAL
BookMark eNplkc1OAjEQxxuDiYgcfINNPHlAum23pUcEERKMJuq5GbtdKFm7a7uQeONB9OV4EhdRMHEO85XfTP6TOUUNVziD0HmMryiVuFt6iSlOKDlCTUKI6EgRi8af_AS1Q1jg2mRMewlvIvdYGm0hjyYhLE20WX_00xU4bUJkXXQHem6diaYGvLNuFoFLo6Ex5aFzDcGke3AEy7yKhhZmrgg2fPMPvthVm_XnGTrOIA-m_RNb6Hl08zQYd6b3t5NBf9rRJOFV7TPNMyCcCCaEFoISrDMG0kjQKfCU9hhLKauP1T3a45lMeZIJAS8EZ5wx2kKXu71zyFXp7Sv4d1WAVeP-VG17mLIYE85Wcc1e7NjSF29LEyq1KJbe1fIUSTClAsdS1lR3R2lfhOBNprStoLKFqzzYXMVYbX-g9j84aNhP_Ar5z34BsHyItA
CitedBy_id crossref_primary_10_1007_s42107_024_01132_7
Cites_doi 10.3390/pr8070748
10.3390/pr8060678
10.3390/pr8111353
10.3390/pr9020358
10.3390/pr8101217
10.3390/pr8060649
10.3390/pr8050528
10.3390/pr8111480
10.3390/pr8101322
10.3390/pr8091084
10.3390/pr8091055
10.3390/pr8050609
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
VOOES
DOI 10.3390/pr9030532
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium
Materials Research Database
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Computer Science
EISSN 2227-9717
ExternalDocumentID oai:HAL:hal-03410264v1
10_3390_pr9030532
Genre Commentary
Editorial
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
IPNFZ
ITC
RIG
VOOES
ID FETCH-LOGICAL-c256t-c2fc6fa2627477c77320cf4a9e9acda6d3844d34305c8386f9d65f77ab20f6443
IEDL.DBID PIMPY
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000634174700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-9717
IngestDate Tue Oct 14 20:18:52 EDT 2025
Wed Nov 19 14:51:41 EST 2025
Sat Nov 29 07:08:49 EST 2025
Tue Nov 18 21:53:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c256t-c2fc6fa2627477c77320cf4a9e9acda6d3844d34305c8386f9d65f77ab20f6443
Notes SourceType-Scholarly Journals-1
content type line 14
ObjectType-Editorial-2
ObjectType-Commentary-1
ORCID 0000-0002-1597-3193
OpenAccessLink https://www.proquest.com/publiccontent/docview/2503370199?pq-origsite=%requestingapplication%
PQID 2503370199
PQPubID 2032344
ParticipantIDs hal_primary_oai_HAL_hal_03410264v1
proquest_journals_2503370199
crossref_citationtrail_10_3390_pr9030532
crossref_primary_10_3390_pr9030532
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_1
ref_3
ref_2
ref_9
ref_8
ref_12
ref_11
ref_5
ref_10
ref_4
ref_7
ref_6
References_xml – ident: ref_7
  doi: 10.3390/pr8070748
– ident: ref_11
  doi: 10.3390/pr8060678
– ident: ref_10
  doi: 10.3390/pr8111353
– ident: ref_9
  doi: 10.3390/pr9020358
– ident: ref_12
  doi: 10.3390/pr8101217
– ident: ref_6
  doi: 10.3390/pr8060649
– ident: ref_8
  doi: 10.3390/pr8050528
– ident: ref_1
  doi: 10.3390/pr8111480
– ident: ref_2
  doi: 10.3390/pr8101322
– ident: ref_4
  doi: 10.3390/pr8091084
– ident: ref_3
  doi: 10.3390/pr8091055
– ident: ref_5
  doi: 10.3390/pr8050609
SSID ssj0000913856
Score 2.1296747
Snippet Fault diagnosis and failure prognosis aim to reduce downtime of the systems and to optimise their performance by replacing preventive and corrective...
The papers proposed in this book present new methods of fault diagnosis and failure prognosis which provide solutions to scientific issues such as structured...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 532
SubjectTerms Algorithms
Artificial neural networks
Back propagation
Back propagation networks
Case studies
Classification
Computer Science
Conflicts of interest
Data processing
Deep learning
Fault diagnosis
Feature extraction
Feature selection
Hydraulic equipment
Induction motors
Learning algorithms
Machine Learning
Neural networks
Optimization
Performance evaluation
Prognosis
Radial basis function
Throttles
Wavelet transforms
Title Special Issue “Advances in Machine Learning and Deep Learning Based Machine Fault Diagnosis and Prognosis”
URI https://www.proquest.com/docview/2503370199
https://hal.science/hal-03410264
Volume 9
WOSCitedRecordID wos000634174700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M7P
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KB.
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9swGH5FWw7bYXxtogMqa9oBDlnT2PnwCbXQCrRRRWhIcIpc2xmVUNo1hSPih8Cf45fgN3EDQ4jTLpFiv4dIr_1-2E-eB-A7GwkvGFHqsJT7DvNY4IwkDR2tmCsEpUwpWYhNhMNhdH7OY_t7dG5hlYuYWATqku0ZcdsmCLfVROKJedvD2zdkEuf7078OakjhXasV1KhBA4m33Do04uOT-KI6c0EOzMgPSoIharr99nTGccVT75-0VLtEUOSr2FwknMHK__3UVfhkC0_SLVfKGizpbB0-vqAjXIc1u9FzsmvZqPc2ILMK9aTQ6SOPd_fdEjaQk3FGTgospiaWpvUPEZkih1pPn0d6Jk-qynAgrq_m5LAE-I3zwj6eTcq3x7uHz3A26P8-OHKsSIMjTbU0N89UBqlxOLa3oQxD6rkyZYJrLqQSgaIRY4ois5iMaBSkXAV-GoZi5LmpKcboF6hnk0xvAuGUG-vUl8xVTGtfcKo7oamrhfCk7ERN2F34KJGWwRyFNK4S08mgO5PKnU34VplOS9qON42Mo6t5JNo-6v5KcMw1yd10p-ym04TthZMTu73z5NmnX9-f3oIPHoJgijObbajPZ9d6B5blzXycz1rQ6PWH8WkLaj97P1oIO43xedtv2ZX7BH_z_IY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dThQxFD4BNFEuVFDiIkJjNMGLCbNt56cXhqysmyUsm03EhLux23ZwEzI77iwY73gQfQUfiiehp_ODGOIdF9xMMu3JZNL5ev565jsAb_lY0nDMmMdTEXic8tAbKxZ5RnNfSsa41so1m4iGw_j4WIwW4E_9LwyWVdY60SlqPVWYI9-heN6G3OFiN__uYdcoPF2tW2iUsDgwP3_YkK34sN-13_cdpb1PR3t9r-oq4Clr3uf2mqowtW-I8VikoohRX6VcCiOk0jLULOZcM6TCUjGLw1ToMEijSI6pn1rvgdnnLsID60ZQ35UKjpqcDnJsxkFYEhgxJvydfCZwRzF6w-wtfsOiy390vzNovaf3bSmewZPKdSadEusrsGCyVVj-i1BxFVYqVVWQ7YpP-_1zyD7nBg8GiOs0SC4vfnXKwoeCTDJy6KpJDamIZk-IzDTpGpNfj3y0ll43gj15djon3bJEcVI4-dFsWt5dXvx-AV_uZBXWYCmbZuYlEMGElU4DxX3NjQmkYKYd2chASqpUO27Bdo2CRFUc7NgK5DSxsRgCJmkA04I3jWheEo_cKmSh1MwjVXi_M0hwzLfuiY2v-Xm7BRs1jJJKQRXJNYbW_z-9BY_6R4eDZLA_PHgFjymW9LgM1AYszWdn5jU8VOfzSTHbdHuBwNe7RtwVRoVHVQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LThRBFL0BJEYWKKhxBLFCNMFFOz1V1Y9aGDMwTiCDk0nUhF1bUw-dhPQ00wOGHR-CP-Ln8CXW7RdqDDsWbDrpqptOp_rcV9XtcwFe8bGk4Zgxj1sReJzy0BsrFnlGc19KxrjWqmg2EQ2H8dGRGC3Ar_pfGCyrrG1iYaj1VOEeeZvieRtyh4u2rcoiRr3---zEww5SeNJat9MoITIw5z9c-pa_O-i5b_2a0v6Hz3v7XtVhwFPO1c_d1arQurfF3CxSUcSoryyXwgiptAw1iznXDGmxVMzi0AodBjaK5Jj61kUSzD13Ee45Lxygjg123zb7O8i3GQdhSWbEmPDb2UygdjH6lwtc_I4FmP_4gcK59R_e5WV5BKtVSE26pQ6swYJJ12HlD6LFdVirTFhOdiqe7TePIf2UGTwwIEUHQnJ1cdktCyJyMknJx6LK1JCKgPYbkakmPWOy65FdFwHoRrAvT4_npFeWLk7yQn40m5Z3Vxc_n8CXW1mFp7CUTlPzDIhgwknbQHFfc2MCKZjpRC5jkJIq1YlbsFMjIlEVNzu2CDlOXI6G4Eka8LRguxHNSkKS_wo5WDXzSCG-3z1McMx3YYvLu_lZpwWbNaSSynDlyTWent88_RLuO6AlhwfDwQY8oFjpU2xMbcLSfHZqXsCyOptP8tlWoRYEvt424H4D10ZP7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Special+Issue+%E2%80%9CAdvances+in+Machine+Learning+and+Deep+Learning+Based+Machine+Fault+Diagnosis+and+Prognosis%E2%80%9D&rft.jtitle=Processes&rft.au=Djeziri%2C+Mohand&rft.au=Bendahan%2C+Marc&rft.date=2021-01-01&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=9&rft.issue=3&rft.spage=532&rft_id=info:doi/10.3390%2Fpr9030532&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pr9030532
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon