A Patient-Specific Computational Model for Neonates and Infants with Borderline Left Ventricles

Borderline left ventricle (BLV) presents a dilemma between pursuing a biventricular repair (BiVR) and a Stage 1 palliation (S1P) because a discordant pursuit of BiVR increases mortality risk. We aim to develop and validate a personalized computational model to assist surgical decision-making by pred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering
Hauptverfasser: Chen, Yurui, Anzai, Isao A., Kalfa, David M., Vedula, Vijay
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 04.11.2025
Schlagworte:
ISSN:0090-6964, 1573-9686, 1573-9686
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Borderline left ventricle (BLV) presents a dilemma between pursuing a biventricular repair (BiVR) and a Stage 1 palliation (S1P) because a discordant pursuit of BiVR increases mortality risk. We aim to develop and validate a personalized computational model to assist surgical decision-making by predicting virtual surgery hemodynamics in BLV patients. We developed a novel multi-block lumped parameter network (LPN) model of a BLV circulatory system. Patient-specific model parameters were estimated using a semi-automatic tuning framework to fit clinical data in ten retrospectively identified BLV patients. Virtual surgeries (BiVR and S1P) were performed on each patient to quantify post-operative hemodynamics. In patients who clinically received S1P (Group I, N = 5), a virtual BiVR predicted significantly elevated mean pulmonary artery pressure (PAP : 38.00 ± 10.0 vs. 17.50 ± 2.7 mmHg, p < 0.01), mean left atrial pressure (LAP : 25.40 ± 8.2 vs. 6.20 ± 1.2 mmHg, p < 0.0001), and single-ventricle end-diastolic pressure (SVEDP: 21.80 ± 8.7 vs. 4.80 ± 1.3 mmHg, p < 0.0001) compared with a virtual S1P. A virtual BiVR in patients who clinically underwent BiVR (Group II, N = 5) did not predict any adverse hemodynamic outcome. A novel subject-specific computational modeling framework was developed to predict hemodynamics following virtual surgeries in BLV patients. The model predictions align with the clinically adopted procedure in this retrospectively selected cohort by predicting unacceptable PAP, LAP, and SVEDP. This predictive tool may guide surgeons in determining the hemodynamically optimal surgery for BLV infants, but it needs prospective validation on a larger cohort. Patient-specific computational modeling can predict hemodynamics following virtual surgery in borderline left ventricles and may assist surgical decision-making. A critical dilemma pediatric heart surgeons and pediatric cardiologists face is choosing between biventricular repair and single-ventricle palliation in patients born with a borderline left ventricle. Computational modeling using lumped parameter networks predicts hemodynamics from virtual surgery simulations and may enable clinicians to decide on the hemodynamically optimal procedure.
AbstractList Borderline left ventricle (BLV) presents a dilemma between pursuing a biventricular repair (BiVR) and a Stage 1 palliation (S1P) because a discordant pursuit of BiVR increases mortality risk. We aim to develop and validate a personalized computational model to assist surgical decision-making by predicting virtual surgery hemodynamics in BLV patients. We developed a novel multi-block lumped parameter network (LPN) model of a BLV circulatory system. Patient-specific model parameters were estimated using a semi-automatic tuning framework to fit clinical data in ten retrospectively identified BLV patients. Virtual surgeries (BiVR and S1P) were performed on each patient to quantify post-operative hemodynamics. In patients who clinically received S1P (Group I, N = 5), a virtual BiVR predicted significantly elevated mean pulmonary artery pressure (PAP : 38.00 ± 10.0 vs. 17.50 ± 2.7 mmHg, p < 0.01), mean left atrial pressure (LAP : 25.40 ± 8.2 vs. 6.20 ± 1.2 mmHg, p < 0.0001), and single-ventricle end-diastolic pressure (SVEDP: 21.80 ± 8.7 vs. 4.80 ± 1.3 mmHg, p < 0.0001) compared with a virtual S1P. A virtual BiVR in patients who clinically underwent BiVR (Group II, N = 5) did not predict any adverse hemodynamic outcome. A novel subject-specific computational modeling framework was developed to predict hemodynamics following virtual surgeries in BLV patients. The model predictions align with the clinically adopted procedure in this retrospectively selected cohort by predicting unacceptable PAP, LAP, and SVEDP. This predictive tool may guide surgeons in determining the hemodynamically optimal surgery for BLV infants, but it needs prospective validation on a larger cohort. Patient-specific computational modeling can predict hemodynamics following virtual surgery in borderline left ventricles and may assist surgical decision-making. A critical dilemma pediatric heart surgeons and pediatric cardiologists face is choosing between biventricular repair and single-ventricle palliation in patients born with a borderline left ventricle. Computational modeling using lumped parameter networks predicts hemodynamics from virtual surgery simulations and may enable clinicians to decide on the hemodynamically optimal procedure.
Borderline left ventricle (BLV) presents a dilemma between pursuing a biventricular repair (BiVR) and a Stage 1 palliation (S1P) because a discordant pursuit of BiVR increases mortality risk. We aim to develop and validate a personalized computational model to assist surgical decision-making by predicting virtual surgery hemodynamics in BLV patients.PURPOSEBorderline left ventricle (BLV) presents a dilemma between pursuing a biventricular repair (BiVR) and a Stage 1 palliation (S1P) because a discordant pursuit of BiVR increases mortality risk. We aim to develop and validate a personalized computational model to assist surgical decision-making by predicting virtual surgery hemodynamics in BLV patients.We developed a novel multi-block lumped parameter network (LPN) model of a BLV circulatory system. Patient-specific model parameters were estimated using a semi-automatic tuning framework to fit clinical data in ten retrospectively identified BLV patients. Virtual surgeries (BiVR and S1P) were performed on each patient to quantify post-operative hemodynamics.METHODSWe developed a novel multi-block lumped parameter network (LPN) model of a BLV circulatory system. Patient-specific model parameters were estimated using a semi-automatic tuning framework to fit clinical data in ten retrospectively identified BLV patients. Virtual surgeries (BiVR and S1P) were performed on each patient to quantify post-operative hemodynamics.In patients who clinically received S1P (Group I, N = 5), a virtual BiVR predicted significantly elevated mean pulmonary artery pressure (PAPmean: 38.00 ± 10.0 vs. 17.50 ± 2.7 mmHg, p < 0.01), mean left atrial pressure (LAPmean: 25.40 ± 8.2 vs. 6.20 ± 1.2 mmHg, p < 0.0001), and single-ventricle end-diastolic pressure (SVEDP: 21.80 ± 8.7 vs. 4.80 ± 1.3 mmHg, p < 0.0001) compared with a virtual S1P. A virtual BiVR in patients who clinically underwent BiVR (Group II, N = 5) did not predict any adverse hemodynamic outcome.RESULTSIn patients who clinically received S1P (Group I, N = 5), a virtual BiVR predicted significantly elevated mean pulmonary artery pressure (PAPmean: 38.00 ± 10.0 vs. 17.50 ± 2.7 mmHg, p < 0.01), mean left atrial pressure (LAPmean: 25.40 ± 8.2 vs. 6.20 ± 1.2 mmHg, p < 0.0001), and single-ventricle end-diastolic pressure (SVEDP: 21.80 ± 8.7 vs. 4.80 ± 1.3 mmHg, p < 0.0001) compared with a virtual S1P. A virtual BiVR in patients who clinically underwent BiVR (Group II, N = 5) did not predict any adverse hemodynamic outcome.A novel subject-specific computational modeling framework was developed to predict hemodynamics following virtual surgeries in BLV patients. The model predictions align with the clinically adopted procedure in this retrospectively selected cohort by predicting unacceptable PAP, LAP, and SVEDP. This predictive tool may guide surgeons in determining the hemodynamically optimal surgery for BLV infants, but it needs prospective validation on a larger cohort.CONCLUSIONA novel subject-specific computational modeling framework was developed to predict hemodynamics following virtual surgeries in BLV patients. The model predictions align with the clinically adopted procedure in this retrospectively selected cohort by predicting unacceptable PAP, LAP, and SVEDP. This predictive tool may guide surgeons in determining the hemodynamically optimal surgery for BLV infants, but it needs prospective validation on a larger cohort.Patient-specific computational modeling can predict hemodynamics following virtual surgery in borderline left ventricles and may assist surgical decision-making.CENTRAL MESSAGEPatient-specific computational modeling can predict hemodynamics following virtual surgery in borderline left ventricles and may assist surgical decision-making.A critical dilemma pediatric heart surgeons and pediatric cardiologists face is choosing between biventricular repair and single-ventricle palliation in patients born with a borderline left ventricle. Computational modeling using lumped parameter networks predicts hemodynamics from virtual surgery simulations and may enable clinicians to decide on the hemodynamically optimal procedure.PERSPECTIVEA critical dilemma pediatric heart surgeons and pediatric cardiologists face is choosing between biventricular repair and single-ventricle palliation in patients born with a borderline left ventricle. Computational modeling using lumped parameter networks predicts hemodynamics from virtual surgery simulations and may enable clinicians to decide on the hemodynamically optimal procedure.
Author Kalfa, David M.
Vedula, Vijay
Chen, Yurui
Anzai, Isao A.
Author_xml – sequence: 1
  givenname: Yurui
  surname: Chen
  fullname: Chen, Yurui
– sequence: 2
  givenname: Isao A.
  surname: Anzai
  fullname: Anzai, Isao A.
– sequence: 3
  givenname: David M.
  surname: Kalfa
  fullname: Kalfa, David M.
– sequence: 4
  givenname: Vijay
  orcidid: 0000-0002-3569-3340
  surname: Vedula
  fullname: Vedula, Vijay
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41186810$$D View this record in MEDLINE/PubMed
BookMark eNo9kM1OGzEYRa0K1ISfF-gCedmN6efxT8ZLGhWKlAJSC1vL4_msDprYwXYU9e0ZmsDqXl0d3cU5IUcxRSTkC4dLDrD4VjhIYRg0ioFojWS7T2TO1UIwo1t9ROYABpg2Ws7ISSnPAJy3Qn0mMzkV3XKYE3tFH1wdMFb2e4N-CIOny7TebOu0puhG-iv1ONKQMr3DaahYqIs9vY3BxVrobqh_6feUe8zjEJGuMFT6NP3lwY9YzshxcGPB80OeksfrH3-WP9nq_uZ2ebVivlG6MtcrAQYlokEt-27Re9U00PHguAggEYzoTCdVo0ABB80bFdB7pT2C4Eqckq_7301OL1ss1a6H4nEcXcS0LVY0upVSG8En9OKAbrs19naTh7XL_-y7lAlo9oDPqZSM4QPhYN_M2715O5m3_83bnXgFZz11xw
Cites_doi 10.1016/0735-1097(91)90765-2
10.1213/ANE.0b013e31825d36a1
10.1016/S1350-4533(96)00071-9
10.1016/j.jtcvs.2017.09.046
10.1161/CIRCULATIONAHA.116.022816
10.1007/s00246-017-1661-2
10.1152/ajpheart.00138.2005
10.1016/S0378-4754(00)00270-6
10.1152/ajpheart.00444.2004
10.1093/ejechocard/jeq085
10.1114/1.282
10.1002/cnm.2799
10.1016/j.athoracsur.2004.10.056
10.1097/HCO.0000000000000466
10.1016/j.athoracsur.2022.01.017
10.1016/j.jtcvs.2017.02.070
10.1016/j.compfluid.2016.05.015
10.1152/ajpheart.2001.280.5.h2076
10.1007/s002469900315
10.1007/s00246-013-0685-5
10.1016/j.jtcvs.2014.08.020
10.1109/TBME.1969.4502663
10.1093/comjnl/7.4.308
10.1186/1475-925X-12-69
10.1016/j.jacc.2011.09.022
10.1016/S0735-1097(98)00218-6
10.1016/j.jacc.2012.07.041
10.1093/ejcts/ezad366
10.1001/archsurg.1984.01390190032007
10.1016/j.cma.2024.117401
10.1161/CIRCULATIONAHA.120.045597
10.1016/j.jtcvs.2009.08.009
10.1016/j.jtcvs.2014.12.040
10.1007/s10439-024-03534-9
10.1097/MAT.0000000000000755
10.1053/j.pcsu.2021.03.001
10.1002/cnm.2737
10.1007/s00162-015-0349-6
10.1101/2025.04.26.650771
10.1053/j.optechstcvs.2017.03.001
10.1053/j.optechstcvs.2017.02.003
10.1002/cnm.2556
10.1067/mtc.2001.111207
10.1002/cnm.1466
10.1016/j.ejcts.2007.09.037
10.1016/S0735-1097(96)00262-8
10.1016/j.amjcard.2010.08.052
10.1097/MOP.0000000000000269
10.1115/1.4031487
10.1016/j.ejcts.2004.10.034
10.1007/s10741-022-10230-0
10.1016/S0021-9290(99)00219-5
10.1016/j.cma.2024.116764
10.1053/j.pcsu.2020.01.001
10.1080/10255842.2012.758254
10.1063/5.0109400
10.1016/j.jcp.2015.11.022
10.1161/01.CIR.84.6.2325
10.1177/2045894018780534
10.1093/ejcts/ezv368
10.1053/j.pcsu.2015.11.006
10.1007/s00246-011-0142-2
10.1016/j.jbiomech.2015.11.030
10.1016/j.jacadv.2024.101429
10.1016/j.jtcvs.2012.05.020
10.1007/s10237-020-01294-8
10.1016/j.cma.2010.03.012
10.1007/s00246-014-1009-0
10.1007/s10439-005-1731-0
10.1016/j.athoracsur.2013.11.015
10.1016/j.jtcvs.2005.09.047
10.1113/JP287929
10.1115/1.4062779
ContentType Journal Article
Copyright 2025. The Author(s) under exclusive licence to Biomedical Engineering Society.
Copyright_xml – notice: 2025. The Author(s) under exclusive licence to Biomedical Engineering Society.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1007/s10439-025-03894-w
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-9686
ExternalDocumentID 41186810
10_1007_s10439_025_03894_w
Genre Journal Article
GrantInformation_xml – fundername: National Institute of Health (US)
  grantid: R21LM014481
GroupedDBID ---
-DZ
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5RE
5VS
67N
67Z
6J9
6NX
78A
85S
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BENPR
BGNMA
BHPHI
BSONS
CITATION
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
L7B
LAK
LLZTM
M4Y
M7P
MA-
NB0
NPVJJ
NQJWS
O93
O9G
O9I
O9J
OAM
P19
P2P
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RRX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SBY
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~EX
~KM
AESKC
NPM
7X8
ID FETCH-LOGICAL-c256t-ad5309e4ee9e64db7dc5220b1fa13f04e093b9b4525050106125fecc56ce03153
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001608331700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0090-6964
1573-9686
IngestDate Tue Nov 04 16:36:18 EST 2025
Wed Nov 12 01:34:35 EST 2025
Sat Nov 29 07:02:41 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Biventricular repair
Borderline left ventricle
Lumped parameter networks
Patient-specific modeling
Hypoplastic left heart syndrome
Virtual surgery
Language English
License 2025. The Author(s) under exclusive licence to Biomedical Engineering Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c256t-ad5309e4ee9e64db7dc5220b1fa13f04e093b9b4525050106125fecc56ce03153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3569-3340
PMID 41186810
PQID 3268446931
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3268446931
pubmed_primary_41186810
crossref_primary_10_1007_s10439_025_03894_w
PublicationCentury 2000
PublicationDate 2025-11-04
PublicationDateYYYYMMDD 2025-11-04
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Annals of biomedical engineering
PublicationTitleAlternate Ann Biomed Eng
PublicationYear 2025
References G Pennati (3894_CR46) 1997; 19
M Restrepo (3894_CR67) 2014; 97
MK Parsons (3894_CR22) 1991; 18
C Haller (3894_CR10) 2016; 21
AL Marsden (3894_CR60) 2015; 27
DE Schiavazzi (3894_CR30) 2015; 149
DW Donker (3894_CR62) 2019; 65
EL Schwarz (3894_CR76) 2023
IM Sobol (3894_CR42) 2001; 55
G Pennati (3894_CR39) 2000; 28
R Mittal (3894_CR61) 2015; 305
A Sahni (3894_CR65) 2024; 52
EM Delmo Walter (3894_CR49) 2008; 33
AF Corno (3894_CR1) 2005; 27
K Pekkan (3894_CR33) 2005; 33
JH Shuhaiber (3894_CR51) 2006; 131
M Broomé (3894_CR57) 2013; 12
K Yuki (3894_CR36) 2012; 115
MB Ghbeis (3894_CR5) 2025; 4
K Bäumler (3894_CR73) 2020; 19
SM Emani (3894_CR12) 2009; 138
T Conover (3894_CR53) 2018; 155
JM Plymale (3894_CR17) 2017; 38
JE Hasson (3894_CR48) 1984; 119
V Vedula (3894_CR69) 2016; 30
L Shi (3894_CR71) 2024; 432
C Corsini (3894_CR29) 2014; 17
MF Snyder (3894_CR38) 1969; 16
ML Schwartz (3894_CR9) 2001; 104
M Cantinotti (3894_CR23) 2022
DE Schiavazzi (3894_CR75) 2016
W Yang (3894_CR31) 2010; 199
JA Nelder (3894_CR47) 1965
NS Ghanayem (3894_CR7) 2012; 144
DE Schiavazzi (3894_CR45) 2017; 33
MF Snyder (3894_CR40) 1969; 4
T Karamlou (3894_CR8) 2015; 149
L Mercer-Rosa (3894_CR66) 2022; 114
JA Feinstein (3894_CR6) 2012; 59
G Pennati (3894_CR41) 2000; 28
SM Emani (3894_CR14) 2016; 21
LA Rhodes (3894_CR26) 1991; 84
GK Lofland (3894_CR24) 2001; 121
JS Tran (3894_CR37) 2015
AA Hiebing (3894_CR63) 2023; 145
JP Mynard (3894_CR34) 2012; 28
MS Cohen (3894_CR2) 2018; 33
F Migliavacca (3894_CR28) 2000; 33
G Ballard (3894_CR11) 2010; 11
W Yang (3894_CR64) 2018; 8
J Rychik (3894_CR4) 2016; 19
A Ehsan (3894_CR52) 2005; 79
P Chiu (3894_CR16) 2021; 24
G Tuo (3894_CR20) 2013; 34
DP Recco (3894_CR50) 2023
CR Mart (3894_CR19) 2014; 35
MS Cohen (3894_CR25) 1996; 28
F Migliavacca (3894_CR27) 2001; 280
V Vedula (3894_CR68) 2015; 137
D Burkhoff (3894_CR58) 2005
L Shi (3894_CR74) 2025
J Emamaullee (3894_CR55) 2020; 142
JS Tran (3894_CR44) 2017; 142
MR De Leval (3894_CR3) 1998; 19
JH Seo (3894_CR70) 2013; 29
AL Szwast (3894_CR18) 2011; 107
TY Hsia (3894_CR32) 2016; 49
TY Hsia (3894_CR56) 2020; 23
M Haghebaert (3894_CR43) 2025
RG Ohye (3894_CR54) 2016; 134
JP Kovalchin (3894_CR21) 1998; 32
AL Brown (3894_CR72) 2024; 421
SM Emani (3894_CR13) 2012; 60
T Arts (3894_CR59) 2005; 288
S Pant (3894_CR35) 2016; 49
MA Herrin (3894_CR15) 2017; 154
40791734 - medRxiv. 2025 Jul 16:2025.07.15.25331596. doi: 10.1101/2025.07.15.25331596.
References_xml – volume: 18
  start-page: 1049
  issue: 4
  year: 1991
  ident: 3894_CR22
  publication-title: J Am Coll Cardiol.
  doi: 10.1016/0735-1097(91)90765-2
– volume: 115
  start-page: 618
  issue: 3
  year: 2012
  ident: 3894_CR36
  publication-title: Anesth Analg.
  doi: 10.1213/ANE.0b013e31825d36a1
– volume: 19
  start-page: 223
  issue: 3
  year: 1997
  ident: 3894_CR46
  publication-title: Med Eng Phys.
  doi: 10.1016/S1350-4533(96)00071-9
– volume: 155
  start-page: 712
  issue: 2
  year: 2018
  ident: 3894_CR53
  publication-title: J Thorac Cardiovasc Surg.
  doi: 10.1016/j.jtcvs.2017.09.046
– volume: 134
  start-page: 1265
  issue: 17
  year: 2016
  ident: 3894_CR54
  publication-title: Circulation.
  doi: 10.1161/CIRCULATIONAHA.116.022816
– volume: 38
  start-page: 1296
  issue: 6
  year: 2017
  ident: 3894_CR17
  publication-title: Pediatr Cardiol.
  doi: 10.1007/s00246-017-1661-2
– year: 2005
  ident: 3894_CR58
  publication-title: Am J Physiol Heart Circ Physiol.
  doi: 10.1152/ajpheart.00138.2005
– volume: 55
  start-page: 271
  issue: 1–3
  year: 2001
  ident: 3894_CR42
  publication-title: Math Comput Simul.
  doi: 10.1016/S0378-4754(00)00270-6
– volume: 288
  start-page: 1943
  year: 2005
  ident: 3894_CR59
  publication-title: Am J Physiol Heart Circ Physiol.
  doi: 10.1152/ajpheart.00444.2004
– volume: 11
  start-page: 870
  issue: 10
  year: 2010
  ident: 3894_CR11
  publication-title: Eur J Echocardiogr.
  doi: 10.1093/ejechocard/jeq085
– volume: 28
  start-page: 442
  issue: 4
  year: 2000
  ident: 3894_CR39
  publication-title: Ann Biomed Eng.
  doi: 10.1114/1.282
– volume: 33
  start-page: 1
  issue: 3
  year: 2017
  ident: 3894_CR45
  publication-title: Int J Numer Method Biomed Eng.
  doi: 10.1002/cnm.2799
– volume: 79
  start-page: 3
  issue: 3
  year: 2005
  ident: 3894_CR52
  publication-title: Ann Thorac Surg.
  doi: 10.1016/j.athoracsur.2004.10.056
– volume: 33
  start-page: 95
  issue: 1
  year: 2018
  ident: 3894_CR2
  publication-title: Curr Opin Cardiol.
  doi: 10.1097/HCO.0000000000000466
– volume: 114
  start-page: 841
  issue: 3
  year: 2022
  ident: 3894_CR66
  publication-title: Annals of Thoracic Surgery.
  doi: 10.1016/j.athoracsur.2022.01.017
– volume: 154
  start-page: 572
  issue: 2
  year: 2017
  ident: 3894_CR15
  publication-title: J Thorac Cardiovasc Surg.
  doi: 10.1016/j.jtcvs.2017.02.070
– volume: 142
  start-page: 128
  year: 2017
  ident: 3894_CR44
  publication-title: Comput Fluids.
  doi: 10.1016/j.compfluid.2016.05.015
– volume: 280
  start-page: 2076
  year: 2001
  ident: 3894_CR27
  publication-title: Am J Physiol Heart Circ Physiol.
  doi: 10.1152/ajpheart.2001.280.5.h2076
– volume: 19
  start-page: 316
  issue: 4
  year: 1998
  ident: 3894_CR3
  publication-title: Pediatr Cardiol.
  doi: 10.1007/s002469900315
– volume: 34
  start-page: 1567
  issue: 7
  year: 2013
  ident: 3894_CR20
  publication-title: Pediatr Cardiol.
  doi: 10.1007/s00246-013-0685-5
– volume: 149
  start-page: 195
  issue: 1
  year: 2015
  ident: 3894_CR8
  publication-title: J Thorac Cardiovasc Surg.
  doi: 10.1016/j.jtcvs.2014.08.020
– volume: 4
  start-page: 325
  year: 1969
  ident: 3894_CR40
  publication-title: IEEE Trans Biomed Eng.
  doi: 10.1109/TBME.1969.4502663
– year: 1965
  ident: 3894_CR47
  publication-title: Comput J.
  doi: 10.1093/comjnl/7.4.308
– volume: 12
  start-page: 1
  issue: 1
  year: 2013
  ident: 3894_CR57
  publication-title: Biomed Eng Online.
  doi: 10.1186/1475-925X-12-69
– volume: 59
  start-page: S1
  issue: 1 SUPPL.
  year: 2012
  ident: 3894_CR6
  publication-title: J Am Coll Cardiol.
  doi: 10.1016/j.jacc.2011.09.022
– volume: 32
  start-page: 237
  issue: 1
  year: 1998
  ident: 3894_CR21
  publication-title: J Am Coll Cardiol.
  doi: 10.1016/S0735-1097(98)00218-6
– volume: 60
  start-page: 1966
  issue: 19
  year: 2012
  ident: 3894_CR13
  publication-title: J Am Coll Cardiol.
  doi: 10.1016/j.jacc.2012.07.041
– year: 2023
  ident: 3894_CR50
  publication-title: Eur J Cardiothorac Surg.
  doi: 10.1093/ejcts/ezad366
– volume: 119
  start-page: 788
  issue: 7
  year: 1984
  ident: 3894_CR48
  publication-title: Arch Surg.
  doi: 10.1001/archsurg.1984.01390190032007
– volume: 432
  start-page: 117401
  year: 2024
  ident: 3894_CR71
  publication-title: Comput Methods Appl Mech Eng.
  doi: 10.1016/j.cma.2024.117401
– volume: 142
  start-page: 591
  issue: 6
  year: 2020
  ident: 3894_CR55
  publication-title: Circulation.
  doi: 10.1161/CIRCULATIONAHA.120.045597
– volume: 138
  start-page: 1276
  issue: 6
  year: 2009
  ident: 3894_CR12
  publication-title: J Thorac Cardiovasc Surg.
  doi: 10.1016/j.jtcvs.2009.08.009
– volume: 149
  start-page: 689
  issue: 3
  year: 2015
  ident: 3894_CR30
  publication-title: J Thorac Cardiovasc Surg.
  doi: 10.1016/j.jtcvs.2014.12.040
– volume: 52
  start-page: 2440
  issue: 9
  year: 2024
  ident: 3894_CR65
  publication-title: Ann Biomed Eng.
  doi: 10.1007/s10439-024-03534-9
– volume: 65
  start-page: 11
  issue: 1
  year: 2019
  ident: 3894_CR62
  publication-title: ASAIO J.
  doi: 10.1097/MAT.0000000000000755
– volume: 24
  start-page: 30
  year: 2021
  ident: 3894_CR16
  publication-title: Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu.
  doi: 10.1053/j.pcsu.2021.03.001
– year: 2016
  ident: 3894_CR75
  publication-title: Int J Numer Method Biomed Eng.
  doi: 10.1002/cnm.2737
– volume: 30
  start-page: 3
  issue: 1–2
  year: 2016
  ident: 3894_CR69
  publication-title: Theor Comput Fluid Dyn.
  doi: 10.1007/s00162-015-0349-6
– year: 2025
  ident: 3894_CR74
  publication-title: bioRxiv preprint.
  doi: 10.1101/2025.04.26.650771
– volume: 21
  start-page: 124
  issue: 2
  year: 2016
  ident: 3894_CR10
  publication-title: Operat Techn Thorac Cardiovasc Surg.
  doi: 10.1053/j.optechstcvs.2017.03.001
– volume: 21
  start-page: 112
  issue: 2
  year: 2016
  ident: 3894_CR14
  publication-title: Operat Techn Thorac Cardiovasc Surg.
  doi: 10.1053/j.optechstcvs.2017.02.003
– volume: 29
  start-page: 850
  year: 2013
  ident: 3894_CR70
  publication-title: Int J Numer Method Biomed Eng.
  doi: 10.1002/cnm.2556
– volume: 121
  start-page: 10
  issue: 1
  year: 2001
  ident: 3894_CR24
  publication-title: J Thorac Cardiovasc Surg.
  doi: 10.1067/mtc.2001.111207
– volume: 28
  start-page: 626
  year: 2012
  ident: 3894_CR34
  publication-title: Int J Numer Method Biomed Eng.
  doi: 10.1002/cnm.1466
– year: 2015
  ident: 3894_CR37
  publication-title: Comput Fluids.
  doi: 10.1016/j.compfluid.2016.05.015
– volume: 33
  start-page: 40
  issue: 1
  year: 2008
  ident: 3894_CR49
  publication-title: Eur J Cardiothorac Surg.
  doi: 10.1016/j.ejcts.2007.09.037
– volume: 28
  start-page: 1017
  issue: 4
  year: 1996
  ident: 3894_CR25
  publication-title: J Am Coll Cardiol.
  doi: 10.1016/S0735-1097(96)00262-8
– volume: 107
  start-page: 103
  issue: 1
  year: 2011
  ident: 3894_CR18
  publication-title: Am J Cardiol.
  doi: 10.1016/j.amjcard.2010.08.052
– volume: 27
  start-page: 587
  issue: 5
  year: 2015
  ident: 3894_CR60
  publication-title: Curr Opin Pediatr.
  doi: 10.1097/MOP.0000000000000269
– volume: 137
  start-page: 1
  year: 2015
  ident: 3894_CR68
  publication-title: J Biomech Eng.
  doi: 10.1115/1.4031487
– volume: 27
  start-page: 67
  issue: 1
  year: 2005
  ident: 3894_CR1
  publication-title: Eur J Cardiothorac Surg.
  doi: 10.1016/j.ejcts.2004.10.034
– year: 2022
  ident: 3894_CR23
  publication-title: Heart Fail Rev.
  doi: 10.1007/s10741-022-10230-0
– volume: 33
  start-page: 549
  issue: 5
  year: 2000
  ident: 3894_CR28
  publication-title: J Biomech.
  doi: 10.1016/S0021-9290(99)00219-5
– volume: 421
  start-page: 116764
  year: 2024
  ident: 3894_CR72
  publication-title: Comput Methods Appl Mech Eng.
  doi: 10.1016/j.cma.2024.116764
– volume: 23
  start-page: 2
  year: 2020
  ident: 3894_CR56
  publication-title: Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu.
  doi: 10.1053/j.pcsu.2020.01.001
– volume: 17
  start-page: 1572
  issue: 14
  year: 2014
  ident: 3894_CR29
  publication-title: Comput Methods Biomech Biomed Eng.
  doi: 10.1080/10255842.2012.758254
– year: 2023
  ident: 3894_CR76
  publication-title: Biophys Rev.
  doi: 10.1063/5.0109400
– volume: 305
  start-page: 1065
  year: 2015
  ident: 3894_CR61
  publication-title: J Comput Phys.
  doi: 10.1016/j.jcp.2015.11.022
– volume: 84
  start-page: 2325
  year: 1991
  ident: 3894_CR26
  publication-title: Circulation.
  doi: 10.1161/01.CIR.84.6.2325
– volume: 8
  start-page: 1
  issue: 3
  year: 2018
  ident: 3894_CR64
  publication-title: Pulm Circ.
  doi: 10.1177/2045894018780534
– volume: 49
  start-page: 365
  issue: 2
  year: 2016
  ident: 3894_CR32
  publication-title: Eur J Cardiothorac Surg.
  doi: 10.1093/ejcts/ezv368
– volume: 19
  start-page: 37
  issue: 1
  year: 2016
  ident: 3894_CR4
  publication-title: Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu.
  doi: 10.1053/j.pcsu.2015.11.006
– volume: 104
  start-page: 682
  year: 2001
  ident: 3894_CR9
  publication-title: Circulation.
  doi: 10.1007/s00246-011-0142-2
– volume: 49
  start-page: 2162
  issue: 11
  year: 2016
  ident: 3894_CR35
  publication-title: J Biomech.
  doi: 10.1016/j.jbiomech.2015.11.030
– volume: 4
  start-page: 1
  issue: 1
  year: 2025
  ident: 3894_CR5
  publication-title: JACC: Advances.
  doi: 10.1016/j.jacadv.2024.101429
– volume: 16
  start-page: 325
  issue: 4
  year: 1969
  ident: 3894_CR38
  publication-title: IEEE Trans Biomed Eng.
  doi: 10.1109/TBME.1969.4502663
– volume: 144
  start-page: 896
  issue: 4
  year: 2012
  ident: 3894_CR7
  publication-title: J Thorac Cardiovasc Surg.
  doi: 10.1016/j.jtcvs.2012.05.020
– volume: 19
  start-page: 1607
  issue: 5
  year: 2020
  ident: 3894_CR73
  publication-title: Biomech Model Mechanobiol.
  doi: 10.1007/s10237-020-01294-8
– volume: 199
  start-page: 2135
  issue: 33–36
  year: 2010
  ident: 3894_CR31
  publication-title: Comput Methods Appl Mech Eng.
  doi: 10.1016/j.cma.2010.03.012
– volume: 35
  start-page: 1456
  issue: 8
  year: 2014
  ident: 3894_CR19
  publication-title: Pediatr Cardiol.
  doi: 10.1007/s00246-014-1009-0
– volume: 33
  start-page: 284
  issue: 3
  year: 2005
  ident: 3894_CR33
  publication-title: Ann Biomed Eng.
  doi: 10.1007/s10439-005-1731-0
– volume: 97
  start-page: 916
  issue: 3
  year: 2014
  ident: 3894_CR67
  publication-title: Ann Thorac Surg.
  doi: 10.1016/j.athoracsur.2013.11.015
– volume: 131
  start-page: 478
  issue: 2
  year: 2006
  ident: 3894_CR51
  publication-title: J Thorac Cardiovasc Surg.
  doi: 10.1016/j.jtcvs.2005.09.047
– year: 2025
  ident: 3894_CR43
  publication-title: J Physiol.
  doi: 10.1113/JP287929
– volume: 28
  start-page: 442
  issue: 4
  year: 2000
  ident: 3894_CR41
  publication-title: Ann Biomed Eng.
  doi: 10.1114/1.282
– volume: 145
  start-page: 1
  issue: 10
  year: 2023
  ident: 3894_CR63
  publication-title: J Biomech Eng.
  doi: 10.1115/1.4062779
– reference: 40791734 - medRxiv. 2025 Jul 16:2025.07.15.25331596. doi: 10.1101/2025.07.15.25331596.
SSID ssj0011835
Score 2.463585
SecondaryResourceType online_first
Snippet Borderline left ventricle (BLV) presents a dilemma between pursuing a biventricular repair (BiVR) and a Stage 1 palliation (S1P) because a discordant pursuit...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Title A Patient-Specific Computational Model for Neonates and Infants with Borderline Left Ventricles
URI https://www.ncbi.nlm.nih.gov/pubmed/41186810
https://www.proquest.com/docview/3268446931
WOSCitedRecordID wos001608331700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-9686
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011835
  issn: 0090-6964
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1tS8MwED7mENEPvsy3-TIi-E0LzdK0zccpDoU5BurYt9C0CQykk61zf99c2k0F_bA_kJS7NPfcXe55AK51W9vfmVMvFBxJtZnxVKKQ9zalKWsrztyU67AX9fvxaCQGNbj9t4OPQ242aHoou4pkcIG3sBcuDcthrZfhqmVgz2YpVyBsPiTCoJqQ-XuJ31HoH2jpQkx3b72P24fdCkqSTun7A6jpvAE7PwgGG7D1XLXOD0F2yKDkUPWc5rwZp6SUdKjKgQRl0d6JBbGkr7GmrmckyTPylBt8K0OwYkvuHFUnQlPS06YgQywOu5d1R_DWfXi9f_QqdQUvtTCn8JKMM1_oQGuhwyBTUZZaLOYrahLKjB9oXzAllOt7cpc5trmxDuchSozZi_IY6vkk16dA4iRjLGNRFNlsLsq40ioVBtENN5mI4ybcLK0tP0oSDflNl4wWlNaC0llQLppwtXSItGcdGxhJrifzmWRITWPzeUabcFJ6arVeQJH4n_pna-11DtttdB7WiYMLqBfTub6EzfSzGM-mLdiIRnHLHbMvh3HH2w
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Patient-Specific+Computational+Model+for+Neonates+and+Infants+with+Borderline+Left+Ventricles&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Chen%2C+Yurui&rft.au=Anzai%2C+Isao+A&rft.au=Kalfa%2C+David+M&rft.au=Vedula%2C+Vijay&rft.date=2025-11-04&rft.issn=1573-9686&rft.eissn=1573-9686&rft_id=info:doi/10.1007%2Fs10439-025-03894-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon