A Patient-Specific Computational Model for Neonates and Infants with Borderline Left Ventricles
Borderline left ventricle (BLV) presents a dilemma between pursuing a biventricular repair (BiVR) and a Stage 1 palliation (S1P) because a discordant pursuit of BiVR increases mortality risk. We aim to develop and validate a personalized computational model to assist surgical decision-making by pred...
Gespeichert in:
| Veröffentlicht in: | Annals of biomedical engineering |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
04.11.2025
|
| Schlagworte: | |
| ISSN: | 0090-6964, 1573-9686, 1573-9686 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Borderline left ventricle (BLV) presents a dilemma between pursuing a biventricular repair (BiVR) and a Stage 1 palliation (S1P) because a discordant pursuit of BiVR increases mortality risk. We aim to develop and validate a personalized computational model to assist surgical decision-making by predicting virtual surgery hemodynamics in BLV patients.
We developed a novel multi-block lumped parameter network (LPN) model of a BLV circulatory system. Patient-specific model parameters were estimated using a semi-automatic tuning framework to fit clinical data in ten retrospectively identified BLV patients. Virtual surgeries (BiVR and S1P) were performed on each patient to quantify post-operative hemodynamics.
In patients who clinically received S1P (Group I, N = 5), a virtual BiVR predicted significantly elevated mean pulmonary artery pressure (PAP
: 38.00 ± 10.0 vs. 17.50 ± 2.7 mmHg, p < 0.01), mean left atrial pressure (LAP
: 25.40 ± 8.2 vs. 6.20 ± 1.2 mmHg, p < 0.0001), and single-ventricle end-diastolic pressure (SVEDP: 21.80 ± 8.7 vs. 4.80 ± 1.3 mmHg, p < 0.0001) compared with a virtual S1P. A virtual BiVR in patients who clinically underwent BiVR (Group II, N = 5) did not predict any adverse hemodynamic outcome.
A novel subject-specific computational modeling framework was developed to predict hemodynamics following virtual surgeries in BLV patients. The model predictions align with the clinically adopted procedure in this retrospectively selected cohort by predicting unacceptable PAP, LAP, and SVEDP. This predictive tool may guide surgeons in determining the hemodynamically optimal surgery for BLV infants, but it needs prospective validation on a larger cohort.
Patient-specific computational modeling can predict hemodynamics following virtual surgery in borderline left ventricles and may assist surgical decision-making.
A critical dilemma pediatric heart surgeons and pediatric cardiologists face is choosing between biventricular repair and single-ventricle palliation in patients born with a borderline left ventricle. Computational modeling using lumped parameter networks predicts hemodynamics from virtual surgery simulations and may enable clinicians to decide on the hemodynamically optimal procedure. |
|---|---|
| AbstractList | Borderline left ventricle (BLV) presents a dilemma between pursuing a biventricular repair (BiVR) and a Stage 1 palliation (S1P) because a discordant pursuit of BiVR increases mortality risk. We aim to develop and validate a personalized computational model to assist surgical decision-making by predicting virtual surgery hemodynamics in BLV patients.
We developed a novel multi-block lumped parameter network (LPN) model of a BLV circulatory system. Patient-specific model parameters were estimated using a semi-automatic tuning framework to fit clinical data in ten retrospectively identified BLV patients. Virtual surgeries (BiVR and S1P) were performed on each patient to quantify post-operative hemodynamics.
In patients who clinically received S1P (Group I, N = 5), a virtual BiVR predicted significantly elevated mean pulmonary artery pressure (PAP
: 38.00 ± 10.0 vs. 17.50 ± 2.7 mmHg, p < 0.01), mean left atrial pressure (LAP
: 25.40 ± 8.2 vs. 6.20 ± 1.2 mmHg, p < 0.0001), and single-ventricle end-diastolic pressure (SVEDP: 21.80 ± 8.7 vs. 4.80 ± 1.3 mmHg, p < 0.0001) compared with a virtual S1P. A virtual BiVR in patients who clinically underwent BiVR (Group II, N = 5) did not predict any adverse hemodynamic outcome.
A novel subject-specific computational modeling framework was developed to predict hemodynamics following virtual surgeries in BLV patients. The model predictions align with the clinically adopted procedure in this retrospectively selected cohort by predicting unacceptable PAP, LAP, and SVEDP. This predictive tool may guide surgeons in determining the hemodynamically optimal surgery for BLV infants, but it needs prospective validation on a larger cohort.
Patient-specific computational modeling can predict hemodynamics following virtual surgery in borderline left ventricles and may assist surgical decision-making.
A critical dilemma pediatric heart surgeons and pediatric cardiologists face is choosing between biventricular repair and single-ventricle palliation in patients born with a borderline left ventricle. Computational modeling using lumped parameter networks predicts hemodynamics from virtual surgery simulations and may enable clinicians to decide on the hemodynamically optimal procedure. Borderline left ventricle (BLV) presents a dilemma between pursuing a biventricular repair (BiVR) and a Stage 1 palliation (S1P) because a discordant pursuit of BiVR increases mortality risk. We aim to develop and validate a personalized computational model to assist surgical decision-making by predicting virtual surgery hemodynamics in BLV patients.PURPOSEBorderline left ventricle (BLV) presents a dilemma between pursuing a biventricular repair (BiVR) and a Stage 1 palliation (S1P) because a discordant pursuit of BiVR increases mortality risk. We aim to develop and validate a personalized computational model to assist surgical decision-making by predicting virtual surgery hemodynamics in BLV patients.We developed a novel multi-block lumped parameter network (LPN) model of a BLV circulatory system. Patient-specific model parameters were estimated using a semi-automatic tuning framework to fit clinical data in ten retrospectively identified BLV patients. Virtual surgeries (BiVR and S1P) were performed on each patient to quantify post-operative hemodynamics.METHODSWe developed a novel multi-block lumped parameter network (LPN) model of a BLV circulatory system. Patient-specific model parameters were estimated using a semi-automatic tuning framework to fit clinical data in ten retrospectively identified BLV patients. Virtual surgeries (BiVR and S1P) were performed on each patient to quantify post-operative hemodynamics.In patients who clinically received S1P (Group I, N = 5), a virtual BiVR predicted significantly elevated mean pulmonary artery pressure (PAPmean: 38.00 ± 10.0 vs. 17.50 ± 2.7 mmHg, p < 0.01), mean left atrial pressure (LAPmean: 25.40 ± 8.2 vs. 6.20 ± 1.2 mmHg, p < 0.0001), and single-ventricle end-diastolic pressure (SVEDP: 21.80 ± 8.7 vs. 4.80 ± 1.3 mmHg, p < 0.0001) compared with a virtual S1P. A virtual BiVR in patients who clinically underwent BiVR (Group II, N = 5) did not predict any adverse hemodynamic outcome.RESULTSIn patients who clinically received S1P (Group I, N = 5), a virtual BiVR predicted significantly elevated mean pulmonary artery pressure (PAPmean: 38.00 ± 10.0 vs. 17.50 ± 2.7 mmHg, p < 0.01), mean left atrial pressure (LAPmean: 25.40 ± 8.2 vs. 6.20 ± 1.2 mmHg, p < 0.0001), and single-ventricle end-diastolic pressure (SVEDP: 21.80 ± 8.7 vs. 4.80 ± 1.3 mmHg, p < 0.0001) compared with a virtual S1P. A virtual BiVR in patients who clinically underwent BiVR (Group II, N = 5) did not predict any adverse hemodynamic outcome.A novel subject-specific computational modeling framework was developed to predict hemodynamics following virtual surgeries in BLV patients. The model predictions align with the clinically adopted procedure in this retrospectively selected cohort by predicting unacceptable PAP, LAP, and SVEDP. This predictive tool may guide surgeons in determining the hemodynamically optimal surgery for BLV infants, but it needs prospective validation on a larger cohort.CONCLUSIONA novel subject-specific computational modeling framework was developed to predict hemodynamics following virtual surgeries in BLV patients. The model predictions align with the clinically adopted procedure in this retrospectively selected cohort by predicting unacceptable PAP, LAP, and SVEDP. This predictive tool may guide surgeons in determining the hemodynamically optimal surgery for BLV infants, but it needs prospective validation on a larger cohort.Patient-specific computational modeling can predict hemodynamics following virtual surgery in borderline left ventricles and may assist surgical decision-making.CENTRAL MESSAGEPatient-specific computational modeling can predict hemodynamics following virtual surgery in borderline left ventricles and may assist surgical decision-making.A critical dilemma pediatric heart surgeons and pediatric cardiologists face is choosing between biventricular repair and single-ventricle palliation in patients born with a borderline left ventricle. Computational modeling using lumped parameter networks predicts hemodynamics from virtual surgery simulations and may enable clinicians to decide on the hemodynamically optimal procedure.PERSPECTIVEA critical dilemma pediatric heart surgeons and pediatric cardiologists face is choosing between biventricular repair and single-ventricle palliation in patients born with a borderline left ventricle. Computational modeling using lumped parameter networks predicts hemodynamics from virtual surgery simulations and may enable clinicians to decide on the hemodynamically optimal procedure. |
| Author | Kalfa, David M. Vedula, Vijay Chen, Yurui Anzai, Isao A. |
| Author_xml | – sequence: 1 givenname: Yurui surname: Chen fullname: Chen, Yurui – sequence: 2 givenname: Isao A. surname: Anzai fullname: Anzai, Isao A. – sequence: 3 givenname: David M. surname: Kalfa fullname: Kalfa, David M. – sequence: 4 givenname: Vijay orcidid: 0000-0002-3569-3340 surname: Vedula fullname: Vedula, Vijay |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41186810$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kM1OGzEYRa0K1ISfF-gCedmN6efxT8ZLGhWKlAJSC1vL4_msDprYwXYU9e0ZmsDqXl0d3cU5IUcxRSTkC4dLDrD4VjhIYRg0ioFojWS7T2TO1UIwo1t9ROYABpg2Ws7ISSnPAJy3Qn0mMzkV3XKYE3tFH1wdMFb2e4N-CIOny7TebOu0puhG-iv1ONKQMr3DaahYqIs9vY3BxVrobqh_6feUe8zjEJGuMFT6NP3lwY9YzshxcGPB80OeksfrH3-WP9nq_uZ2ebVivlG6MtcrAQYlokEt-27Re9U00PHguAggEYzoTCdVo0ABB80bFdB7pT2C4Eqckq_7301OL1ss1a6H4nEcXcS0LVY0upVSG8En9OKAbrs19naTh7XL_-y7lAlo9oDPqZSM4QPhYN_M2715O5m3_83bnXgFZz11xw |
| Cites_doi | 10.1016/0735-1097(91)90765-2 10.1213/ANE.0b013e31825d36a1 10.1016/S1350-4533(96)00071-9 10.1016/j.jtcvs.2017.09.046 10.1161/CIRCULATIONAHA.116.022816 10.1007/s00246-017-1661-2 10.1152/ajpheart.00138.2005 10.1016/S0378-4754(00)00270-6 10.1152/ajpheart.00444.2004 10.1093/ejechocard/jeq085 10.1114/1.282 10.1002/cnm.2799 10.1016/j.athoracsur.2004.10.056 10.1097/HCO.0000000000000466 10.1016/j.athoracsur.2022.01.017 10.1016/j.jtcvs.2017.02.070 10.1016/j.compfluid.2016.05.015 10.1152/ajpheart.2001.280.5.h2076 10.1007/s002469900315 10.1007/s00246-013-0685-5 10.1016/j.jtcvs.2014.08.020 10.1109/TBME.1969.4502663 10.1093/comjnl/7.4.308 10.1186/1475-925X-12-69 10.1016/j.jacc.2011.09.022 10.1016/S0735-1097(98)00218-6 10.1016/j.jacc.2012.07.041 10.1093/ejcts/ezad366 10.1001/archsurg.1984.01390190032007 10.1016/j.cma.2024.117401 10.1161/CIRCULATIONAHA.120.045597 10.1016/j.jtcvs.2009.08.009 10.1016/j.jtcvs.2014.12.040 10.1007/s10439-024-03534-9 10.1097/MAT.0000000000000755 10.1053/j.pcsu.2021.03.001 10.1002/cnm.2737 10.1007/s00162-015-0349-6 10.1101/2025.04.26.650771 10.1053/j.optechstcvs.2017.03.001 10.1053/j.optechstcvs.2017.02.003 10.1002/cnm.2556 10.1067/mtc.2001.111207 10.1002/cnm.1466 10.1016/j.ejcts.2007.09.037 10.1016/S0735-1097(96)00262-8 10.1016/j.amjcard.2010.08.052 10.1097/MOP.0000000000000269 10.1115/1.4031487 10.1016/j.ejcts.2004.10.034 10.1007/s10741-022-10230-0 10.1016/S0021-9290(99)00219-5 10.1016/j.cma.2024.116764 10.1053/j.pcsu.2020.01.001 10.1080/10255842.2012.758254 10.1063/5.0109400 10.1016/j.jcp.2015.11.022 10.1161/01.CIR.84.6.2325 10.1177/2045894018780534 10.1093/ejcts/ezv368 10.1053/j.pcsu.2015.11.006 10.1007/s00246-011-0142-2 10.1016/j.jbiomech.2015.11.030 10.1016/j.jacadv.2024.101429 10.1016/j.jtcvs.2012.05.020 10.1007/s10237-020-01294-8 10.1016/j.cma.2010.03.012 10.1007/s00246-014-1009-0 10.1007/s10439-005-1731-0 10.1016/j.athoracsur.2013.11.015 10.1016/j.jtcvs.2005.09.047 10.1113/JP287929 10.1115/1.4062779 |
| ContentType | Journal Article |
| Copyright | 2025. The Author(s) under exclusive licence to Biomedical Engineering Society. |
| Copyright_xml | – notice: 2025. The Author(s) under exclusive licence to Biomedical Engineering Society. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1007/s10439-025-03894-w |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1573-9686 |
| ExternalDocumentID | 41186810 10_1007_s10439_025_03894_w |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Institute of Health (US) grantid: R21LM014481 |
| GroupedDBID | --- -DZ -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5RE 5VS 67N 67Z 6J9 6NX 78A 85S 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSTC ACZOJ ADBBV ADHHG ADHIR ADIMF ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN B-. BA0 BENPR BGNMA BHPHI BSONS CITATION CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH L7B LAK LLZTM M4Y M7P MA- NB0 NPVJJ NQJWS O93 O9G O9I O9J OAM P19 P2P PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNS ROL RPX RRX RSV S16 S1Z S27 S3A S3B SAP SBL SBY SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~EX ~KM AESKC NPM 7X8 |
| ID | FETCH-LOGICAL-c256t-ad5309e4ee9e64db7dc5220b1fa13f04e093b9b4525050106125fecc56ce03153 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001608331700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0090-6964 1573-9686 |
| IngestDate | Tue Nov 04 16:36:18 EST 2025 Wed Nov 12 01:34:35 EST 2025 Sat Nov 29 07:02:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Biventricular repair Borderline left ventricle Lumped parameter networks Patient-specific modeling Hypoplastic left heart syndrome Virtual surgery |
| Language | English |
| License | 2025. The Author(s) under exclusive licence to Biomedical Engineering Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c256t-ad5309e4ee9e64db7dc5220b1fa13f04e093b9b4525050106125fecc56ce03153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3569-3340 |
| PMID | 41186810 |
| PQID | 3268446931 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3268446931 pubmed_primary_41186810 crossref_primary_10_1007_s10439_025_03894_w |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-04 |
| PublicationDateYYYYMMDD | 2025-11-04 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Annals of biomedical engineering |
| PublicationTitleAlternate | Ann Biomed Eng |
| PublicationYear | 2025 |
| References | G Pennati (3894_CR46) 1997; 19 M Restrepo (3894_CR67) 2014; 97 MK Parsons (3894_CR22) 1991; 18 C Haller (3894_CR10) 2016; 21 AL Marsden (3894_CR60) 2015; 27 DE Schiavazzi (3894_CR30) 2015; 149 DW Donker (3894_CR62) 2019; 65 EL Schwarz (3894_CR76) 2023 IM Sobol (3894_CR42) 2001; 55 G Pennati (3894_CR39) 2000; 28 R Mittal (3894_CR61) 2015; 305 A Sahni (3894_CR65) 2024; 52 EM Delmo Walter (3894_CR49) 2008; 33 AF Corno (3894_CR1) 2005; 27 K Pekkan (3894_CR33) 2005; 33 JH Shuhaiber (3894_CR51) 2006; 131 M Broomé (3894_CR57) 2013; 12 K Yuki (3894_CR36) 2012; 115 MB Ghbeis (3894_CR5) 2025; 4 K Bäumler (3894_CR73) 2020; 19 SM Emani (3894_CR12) 2009; 138 T Conover (3894_CR53) 2018; 155 JM Plymale (3894_CR17) 2017; 38 JE Hasson (3894_CR48) 1984; 119 V Vedula (3894_CR69) 2016; 30 L Shi (3894_CR71) 2024; 432 C Corsini (3894_CR29) 2014; 17 MF Snyder (3894_CR38) 1969; 16 ML Schwartz (3894_CR9) 2001; 104 M Cantinotti (3894_CR23) 2022 DE Schiavazzi (3894_CR75) 2016 W Yang (3894_CR31) 2010; 199 JA Nelder (3894_CR47) 1965 NS Ghanayem (3894_CR7) 2012; 144 DE Schiavazzi (3894_CR45) 2017; 33 MF Snyder (3894_CR40) 1969; 4 T Karamlou (3894_CR8) 2015; 149 L Mercer-Rosa (3894_CR66) 2022; 114 JA Feinstein (3894_CR6) 2012; 59 G Pennati (3894_CR41) 2000; 28 SM Emani (3894_CR14) 2016; 21 LA Rhodes (3894_CR26) 1991; 84 GK Lofland (3894_CR24) 2001; 121 JS Tran (3894_CR37) 2015 AA Hiebing (3894_CR63) 2023; 145 JP Mynard (3894_CR34) 2012; 28 MS Cohen (3894_CR2) 2018; 33 F Migliavacca (3894_CR28) 2000; 33 G Ballard (3894_CR11) 2010; 11 W Yang (3894_CR64) 2018; 8 J Rychik (3894_CR4) 2016; 19 A Ehsan (3894_CR52) 2005; 79 P Chiu (3894_CR16) 2021; 24 G Tuo (3894_CR20) 2013; 34 DP Recco (3894_CR50) 2023 CR Mart (3894_CR19) 2014; 35 MS Cohen (3894_CR25) 1996; 28 F Migliavacca (3894_CR27) 2001; 280 V Vedula (3894_CR68) 2015; 137 D Burkhoff (3894_CR58) 2005 L Shi (3894_CR74) 2025 J Emamaullee (3894_CR55) 2020; 142 JS Tran (3894_CR44) 2017; 142 MR De Leval (3894_CR3) 1998; 19 JH Seo (3894_CR70) 2013; 29 AL Szwast (3894_CR18) 2011; 107 TY Hsia (3894_CR32) 2016; 49 TY Hsia (3894_CR56) 2020; 23 M Haghebaert (3894_CR43) 2025 RG Ohye (3894_CR54) 2016; 134 JP Kovalchin (3894_CR21) 1998; 32 AL Brown (3894_CR72) 2024; 421 SM Emani (3894_CR13) 2012; 60 T Arts (3894_CR59) 2005; 288 S Pant (3894_CR35) 2016; 49 MA Herrin (3894_CR15) 2017; 154 40791734 - medRxiv. 2025 Jul 16:2025.07.15.25331596. doi: 10.1101/2025.07.15.25331596. |
| References_xml | – volume: 18 start-page: 1049 issue: 4 year: 1991 ident: 3894_CR22 publication-title: J Am Coll Cardiol. doi: 10.1016/0735-1097(91)90765-2 – volume: 115 start-page: 618 issue: 3 year: 2012 ident: 3894_CR36 publication-title: Anesth Analg. doi: 10.1213/ANE.0b013e31825d36a1 – volume: 19 start-page: 223 issue: 3 year: 1997 ident: 3894_CR46 publication-title: Med Eng Phys. doi: 10.1016/S1350-4533(96)00071-9 – volume: 155 start-page: 712 issue: 2 year: 2018 ident: 3894_CR53 publication-title: J Thorac Cardiovasc Surg. doi: 10.1016/j.jtcvs.2017.09.046 – volume: 134 start-page: 1265 issue: 17 year: 2016 ident: 3894_CR54 publication-title: Circulation. doi: 10.1161/CIRCULATIONAHA.116.022816 – volume: 38 start-page: 1296 issue: 6 year: 2017 ident: 3894_CR17 publication-title: Pediatr Cardiol. doi: 10.1007/s00246-017-1661-2 – year: 2005 ident: 3894_CR58 publication-title: Am J Physiol Heart Circ Physiol. doi: 10.1152/ajpheart.00138.2005 – volume: 55 start-page: 271 issue: 1–3 year: 2001 ident: 3894_CR42 publication-title: Math Comput Simul. doi: 10.1016/S0378-4754(00)00270-6 – volume: 288 start-page: 1943 year: 2005 ident: 3894_CR59 publication-title: Am J Physiol Heart Circ Physiol. doi: 10.1152/ajpheart.00444.2004 – volume: 11 start-page: 870 issue: 10 year: 2010 ident: 3894_CR11 publication-title: Eur J Echocardiogr. doi: 10.1093/ejechocard/jeq085 – volume: 28 start-page: 442 issue: 4 year: 2000 ident: 3894_CR39 publication-title: Ann Biomed Eng. doi: 10.1114/1.282 – volume: 33 start-page: 1 issue: 3 year: 2017 ident: 3894_CR45 publication-title: Int J Numer Method Biomed Eng. doi: 10.1002/cnm.2799 – volume: 79 start-page: 3 issue: 3 year: 2005 ident: 3894_CR52 publication-title: Ann Thorac Surg. doi: 10.1016/j.athoracsur.2004.10.056 – volume: 33 start-page: 95 issue: 1 year: 2018 ident: 3894_CR2 publication-title: Curr Opin Cardiol. doi: 10.1097/HCO.0000000000000466 – volume: 114 start-page: 841 issue: 3 year: 2022 ident: 3894_CR66 publication-title: Annals of Thoracic Surgery. doi: 10.1016/j.athoracsur.2022.01.017 – volume: 154 start-page: 572 issue: 2 year: 2017 ident: 3894_CR15 publication-title: J Thorac Cardiovasc Surg. doi: 10.1016/j.jtcvs.2017.02.070 – volume: 142 start-page: 128 year: 2017 ident: 3894_CR44 publication-title: Comput Fluids. doi: 10.1016/j.compfluid.2016.05.015 – volume: 280 start-page: 2076 year: 2001 ident: 3894_CR27 publication-title: Am J Physiol Heart Circ Physiol. doi: 10.1152/ajpheart.2001.280.5.h2076 – volume: 19 start-page: 316 issue: 4 year: 1998 ident: 3894_CR3 publication-title: Pediatr Cardiol. doi: 10.1007/s002469900315 – volume: 34 start-page: 1567 issue: 7 year: 2013 ident: 3894_CR20 publication-title: Pediatr Cardiol. doi: 10.1007/s00246-013-0685-5 – volume: 149 start-page: 195 issue: 1 year: 2015 ident: 3894_CR8 publication-title: J Thorac Cardiovasc Surg. doi: 10.1016/j.jtcvs.2014.08.020 – volume: 4 start-page: 325 year: 1969 ident: 3894_CR40 publication-title: IEEE Trans Biomed Eng. doi: 10.1109/TBME.1969.4502663 – year: 1965 ident: 3894_CR47 publication-title: Comput J. doi: 10.1093/comjnl/7.4.308 – volume: 12 start-page: 1 issue: 1 year: 2013 ident: 3894_CR57 publication-title: Biomed Eng Online. doi: 10.1186/1475-925X-12-69 – volume: 59 start-page: S1 issue: 1 SUPPL. year: 2012 ident: 3894_CR6 publication-title: J Am Coll Cardiol. doi: 10.1016/j.jacc.2011.09.022 – volume: 32 start-page: 237 issue: 1 year: 1998 ident: 3894_CR21 publication-title: J Am Coll Cardiol. doi: 10.1016/S0735-1097(98)00218-6 – volume: 60 start-page: 1966 issue: 19 year: 2012 ident: 3894_CR13 publication-title: J Am Coll Cardiol. doi: 10.1016/j.jacc.2012.07.041 – year: 2023 ident: 3894_CR50 publication-title: Eur J Cardiothorac Surg. doi: 10.1093/ejcts/ezad366 – volume: 119 start-page: 788 issue: 7 year: 1984 ident: 3894_CR48 publication-title: Arch Surg. doi: 10.1001/archsurg.1984.01390190032007 – volume: 432 start-page: 117401 year: 2024 ident: 3894_CR71 publication-title: Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2024.117401 – volume: 142 start-page: 591 issue: 6 year: 2020 ident: 3894_CR55 publication-title: Circulation. doi: 10.1161/CIRCULATIONAHA.120.045597 – volume: 138 start-page: 1276 issue: 6 year: 2009 ident: 3894_CR12 publication-title: J Thorac Cardiovasc Surg. doi: 10.1016/j.jtcvs.2009.08.009 – volume: 149 start-page: 689 issue: 3 year: 2015 ident: 3894_CR30 publication-title: J Thorac Cardiovasc Surg. doi: 10.1016/j.jtcvs.2014.12.040 – volume: 52 start-page: 2440 issue: 9 year: 2024 ident: 3894_CR65 publication-title: Ann Biomed Eng. doi: 10.1007/s10439-024-03534-9 – volume: 65 start-page: 11 issue: 1 year: 2019 ident: 3894_CR62 publication-title: ASAIO J. doi: 10.1097/MAT.0000000000000755 – volume: 24 start-page: 30 year: 2021 ident: 3894_CR16 publication-title: Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. doi: 10.1053/j.pcsu.2021.03.001 – year: 2016 ident: 3894_CR75 publication-title: Int J Numer Method Biomed Eng. doi: 10.1002/cnm.2737 – volume: 30 start-page: 3 issue: 1–2 year: 2016 ident: 3894_CR69 publication-title: Theor Comput Fluid Dyn. doi: 10.1007/s00162-015-0349-6 – year: 2025 ident: 3894_CR74 publication-title: bioRxiv preprint. doi: 10.1101/2025.04.26.650771 – volume: 21 start-page: 124 issue: 2 year: 2016 ident: 3894_CR10 publication-title: Operat Techn Thorac Cardiovasc Surg. doi: 10.1053/j.optechstcvs.2017.03.001 – volume: 21 start-page: 112 issue: 2 year: 2016 ident: 3894_CR14 publication-title: Operat Techn Thorac Cardiovasc Surg. doi: 10.1053/j.optechstcvs.2017.02.003 – volume: 29 start-page: 850 year: 2013 ident: 3894_CR70 publication-title: Int J Numer Method Biomed Eng. doi: 10.1002/cnm.2556 – volume: 121 start-page: 10 issue: 1 year: 2001 ident: 3894_CR24 publication-title: J Thorac Cardiovasc Surg. doi: 10.1067/mtc.2001.111207 – volume: 28 start-page: 626 year: 2012 ident: 3894_CR34 publication-title: Int J Numer Method Biomed Eng. doi: 10.1002/cnm.1466 – year: 2015 ident: 3894_CR37 publication-title: Comput Fluids. doi: 10.1016/j.compfluid.2016.05.015 – volume: 33 start-page: 40 issue: 1 year: 2008 ident: 3894_CR49 publication-title: Eur J Cardiothorac Surg. doi: 10.1016/j.ejcts.2007.09.037 – volume: 28 start-page: 1017 issue: 4 year: 1996 ident: 3894_CR25 publication-title: J Am Coll Cardiol. doi: 10.1016/S0735-1097(96)00262-8 – volume: 107 start-page: 103 issue: 1 year: 2011 ident: 3894_CR18 publication-title: Am J Cardiol. doi: 10.1016/j.amjcard.2010.08.052 – volume: 27 start-page: 587 issue: 5 year: 2015 ident: 3894_CR60 publication-title: Curr Opin Pediatr. doi: 10.1097/MOP.0000000000000269 – volume: 137 start-page: 1 year: 2015 ident: 3894_CR68 publication-title: J Biomech Eng. doi: 10.1115/1.4031487 – volume: 27 start-page: 67 issue: 1 year: 2005 ident: 3894_CR1 publication-title: Eur J Cardiothorac Surg. doi: 10.1016/j.ejcts.2004.10.034 – year: 2022 ident: 3894_CR23 publication-title: Heart Fail Rev. doi: 10.1007/s10741-022-10230-0 – volume: 33 start-page: 549 issue: 5 year: 2000 ident: 3894_CR28 publication-title: J Biomech. doi: 10.1016/S0021-9290(99)00219-5 – volume: 421 start-page: 116764 year: 2024 ident: 3894_CR72 publication-title: Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2024.116764 – volume: 23 start-page: 2 year: 2020 ident: 3894_CR56 publication-title: Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. doi: 10.1053/j.pcsu.2020.01.001 – volume: 17 start-page: 1572 issue: 14 year: 2014 ident: 3894_CR29 publication-title: Comput Methods Biomech Biomed Eng. doi: 10.1080/10255842.2012.758254 – year: 2023 ident: 3894_CR76 publication-title: Biophys Rev. doi: 10.1063/5.0109400 – volume: 305 start-page: 1065 year: 2015 ident: 3894_CR61 publication-title: J Comput Phys. doi: 10.1016/j.jcp.2015.11.022 – volume: 84 start-page: 2325 year: 1991 ident: 3894_CR26 publication-title: Circulation. doi: 10.1161/01.CIR.84.6.2325 – volume: 8 start-page: 1 issue: 3 year: 2018 ident: 3894_CR64 publication-title: Pulm Circ. doi: 10.1177/2045894018780534 – volume: 49 start-page: 365 issue: 2 year: 2016 ident: 3894_CR32 publication-title: Eur J Cardiothorac Surg. doi: 10.1093/ejcts/ezv368 – volume: 19 start-page: 37 issue: 1 year: 2016 ident: 3894_CR4 publication-title: Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. doi: 10.1053/j.pcsu.2015.11.006 – volume: 104 start-page: 682 year: 2001 ident: 3894_CR9 publication-title: Circulation. doi: 10.1007/s00246-011-0142-2 – volume: 49 start-page: 2162 issue: 11 year: 2016 ident: 3894_CR35 publication-title: J Biomech. doi: 10.1016/j.jbiomech.2015.11.030 – volume: 4 start-page: 1 issue: 1 year: 2025 ident: 3894_CR5 publication-title: JACC: Advances. doi: 10.1016/j.jacadv.2024.101429 – volume: 16 start-page: 325 issue: 4 year: 1969 ident: 3894_CR38 publication-title: IEEE Trans Biomed Eng. doi: 10.1109/TBME.1969.4502663 – volume: 144 start-page: 896 issue: 4 year: 2012 ident: 3894_CR7 publication-title: J Thorac Cardiovasc Surg. doi: 10.1016/j.jtcvs.2012.05.020 – volume: 19 start-page: 1607 issue: 5 year: 2020 ident: 3894_CR73 publication-title: Biomech Model Mechanobiol. doi: 10.1007/s10237-020-01294-8 – volume: 199 start-page: 2135 issue: 33–36 year: 2010 ident: 3894_CR31 publication-title: Comput Methods Appl Mech Eng. doi: 10.1016/j.cma.2010.03.012 – volume: 35 start-page: 1456 issue: 8 year: 2014 ident: 3894_CR19 publication-title: Pediatr Cardiol. doi: 10.1007/s00246-014-1009-0 – volume: 33 start-page: 284 issue: 3 year: 2005 ident: 3894_CR33 publication-title: Ann Biomed Eng. doi: 10.1007/s10439-005-1731-0 – volume: 97 start-page: 916 issue: 3 year: 2014 ident: 3894_CR67 publication-title: Ann Thorac Surg. doi: 10.1016/j.athoracsur.2013.11.015 – volume: 131 start-page: 478 issue: 2 year: 2006 ident: 3894_CR51 publication-title: J Thorac Cardiovasc Surg. doi: 10.1016/j.jtcvs.2005.09.047 – year: 2025 ident: 3894_CR43 publication-title: J Physiol. doi: 10.1113/JP287929 – volume: 28 start-page: 442 issue: 4 year: 2000 ident: 3894_CR41 publication-title: Ann Biomed Eng. doi: 10.1114/1.282 – volume: 145 start-page: 1 issue: 10 year: 2023 ident: 3894_CR63 publication-title: J Biomech Eng. doi: 10.1115/1.4062779 – reference: 40791734 - medRxiv. 2025 Jul 16:2025.07.15.25331596. doi: 10.1101/2025.07.15.25331596. |
| SSID | ssj0011835 |
| Score | 2.463585 |
| SecondaryResourceType | online_first |
| Snippet | Borderline left ventricle (BLV) presents a dilemma between pursuing a biventricular repair (BiVR) and a Stage 1 palliation (S1P) because a discordant pursuit... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database |
| Title | A Patient-Specific Computational Model for Neonates and Infants with Borderline Left Ventricles |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41186810 https://www.proquest.com/docview/3268446931 |
| WOSCitedRecordID | wos001608331700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1573-9686 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011835 issn: 0090-6964 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1tS8MwED7mENEPvsy3-TIi-E0LzdK0zccpDoU5BurYt9C0CQykk61zf99c2k0F_bA_kJS7NPfcXe55AK51W9vfmVMvFBxJtZnxVKKQ9zalKWsrztyU67AX9fvxaCQGNbj9t4OPQ242aHoou4pkcIG3sBcuDcthrZfhqmVgz2YpVyBsPiTCoJqQ-XuJ31HoH2jpQkx3b72P24fdCkqSTun7A6jpvAE7PwgGG7D1XLXOD0F2yKDkUPWc5rwZp6SUdKjKgQRl0d6JBbGkr7GmrmckyTPylBt8K0OwYkvuHFUnQlPS06YgQywOu5d1R_DWfXi9f_QqdQUvtTCn8JKMM1_oQGuhwyBTUZZaLOYrahLKjB9oXzAllOt7cpc5trmxDuchSozZi_IY6vkk16dA4iRjLGNRFNlsLsq40ioVBtENN5mI4ybcLK0tP0oSDflNl4wWlNaC0llQLppwtXSItGcdGxhJrifzmWRITWPzeUabcFJ6arVeQJH4n_pna-11DtttdB7WiYMLqBfTub6EzfSzGM-mLdiIRnHLHbMvh3HH2w |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Patient-Specific+Computational+Model+for+Neonates+and+Infants+with+Borderline+Left+Ventricles&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Chen%2C+Yurui&rft.au=Anzai%2C+Isao+A&rft.au=Kalfa%2C+David+M&rft.au=Vedula%2C+Vijay&rft.date=2025-11-04&rft.issn=1573-9686&rft.eissn=1573-9686&rft_id=info:doi/10.1007%2Fs10439-025-03894-w&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon |