VHGAE: Drug-Target Interaction Prediction Model Based on Heterogeneous Graph Variational Autoencoder
Identifying drug-target interaction (DTI) is crucial for drug discovery and repositioning. Biological identification of DTI is costly and time-consuming, so heterogeneous network methods for DTI prediction, which can speed up drug development, have drawn much attention. However, the scarcity of know...
Uložené v:
| Vydané v: | Interdisciplinary sciences : computational life sciences |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
21.08.2025
|
| Predmet: | |
| ISSN: | 1913-2751, 1867-1462, 1867-1462 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Identifying drug-target interaction (DTI) is crucial for drug discovery and repositioning. Biological identification of DTI is costly and time-consuming, so heterogeneous network methods for DTI prediction, which can speed up drug development, have drawn much attention. However, the scarcity of known drug-target pairs leads to an overwhelmingly sparse network structure. This sparsity makes it difficult for graph convolutional networks to fully capture the potential relationships between nodes during information transmission and feature extraction, thus challenging the prediction performance of DTI. Therefore, we propose a method, called VHGAE, based on a heterogeneous graph variational autoencoder to predict drug-target interactions. The VHGAE model integrates a wealth of prior knowledge from various sources related to drugs and targets to construct a heterogeneous network. To address the sparsity issue within the constructed heterogeneous network, first, the weighted k-nearest neighbor algorithm is used to densify the DTI network to increase the connectivity of the sparse network. Second, the weighted graph convolutional network within a variational graph autoencoder framework is employed to bolster the edge weights with limited connections. Third, a variational expectation maximization algorithm is introduced between the encoder and the decoder to recover potential relationships in the sparse network. The experimental results on two datasets show that the performance of VHGAE outperforms nine state-of-the-art DTI prediction methods, which suggests that the design of VHGAE in multi-source data fusion and sparse network processing plays an important role in improving prediction performance. |
|---|---|
| AbstractList | Identifying drug-target interaction (DTI) is crucial for drug discovery and repositioning. Biological identification of DTI is costly and time-consuming, so heterogeneous network methods for DTI prediction, which can speed up drug development, have drawn much attention. However, the scarcity of known drug-target pairs leads to an overwhelmingly sparse network structure. This sparsity makes it difficult for graph convolutional networks to fully capture the potential relationships between nodes during information transmission and feature extraction, thus challenging the prediction performance of DTI. Therefore, we propose a method, called VHGAE, based on a heterogeneous graph variational autoencoder to predict drug-target interactions. The VHGAE model integrates a wealth of prior knowledge from various sources related to drugs and targets to construct a heterogeneous network. To address the sparsity issue within the constructed heterogeneous network, first, the weighted k-nearest neighbor algorithm is used to densify the DTI network to increase the connectivity of the sparse network. Second, the weighted graph convolutional network within a variational graph autoencoder framework is employed to bolster the edge weights with limited connections. Third, a variational expectation maximization algorithm is introduced between the encoder and the decoder to recover potential relationships in the sparse network. The experimental results on two datasets show that the performance of VHGAE outperforms nine state-of-the-art DTI prediction methods, which suggests that the design of VHGAE in multi-source data fusion and sparse network processing plays an important role in improving prediction performance. Identifying drug-target interaction (DTI) is crucial for drug discovery and repositioning. Biological identification of DTI is costly and time-consuming, so heterogeneous network methods for DTI prediction, which can speed up drug development, have drawn much attention. However, the scarcity of known drug-target pairs leads to an overwhelmingly sparse network structure. This sparsity makes it difficult for graph convolutional networks to fully capture the potential relationships between nodes during information transmission and feature extraction, thus challenging the prediction performance of DTI. Therefore, we propose a method, called VHGAE, based on a heterogeneous graph variational autoencoder to predict drug-target interactions. The VHGAE model integrates a wealth of prior knowledge from various sources related to drugs and targets to construct a heterogeneous network. To address the sparsity issue within the constructed heterogeneous network, first, the weighted k-nearest neighbor algorithm is used to densify the DTI network to increase the connectivity of the sparse network. Second, the weighted graph convolutional network within a variational graph autoencoder framework is employed to bolster the edge weights with limited connections. Third, a variational expectation maximization algorithm is introduced between the encoder and the decoder to recover potential relationships in the sparse network. The experimental results on two datasets show that the performance of VHGAE outperforms nine state-of-the-art DTI prediction methods, which suggests that the design of VHGAE in multi-source data fusion and sparse network processing plays an important role in improving prediction performance.Identifying drug-target interaction (DTI) is crucial for drug discovery and repositioning. Biological identification of DTI is costly and time-consuming, so heterogeneous network methods for DTI prediction, which can speed up drug development, have drawn much attention. However, the scarcity of known drug-target pairs leads to an overwhelmingly sparse network structure. This sparsity makes it difficult for graph convolutional networks to fully capture the potential relationships between nodes during information transmission and feature extraction, thus challenging the prediction performance of DTI. Therefore, we propose a method, called VHGAE, based on a heterogeneous graph variational autoencoder to predict drug-target interactions. The VHGAE model integrates a wealth of prior knowledge from various sources related to drugs and targets to construct a heterogeneous network. To address the sparsity issue within the constructed heterogeneous network, first, the weighted k-nearest neighbor algorithm is used to densify the DTI network to increase the connectivity of the sparse network. Second, the weighted graph convolutional network within a variational graph autoencoder framework is employed to bolster the edge weights with limited connections. Third, a variational expectation maximization algorithm is introduced between the encoder and the decoder to recover potential relationships in the sparse network. The experimental results on two datasets show that the performance of VHGAE outperforms nine state-of-the-art DTI prediction methods, which suggests that the design of VHGAE in multi-source data fusion and sparse network processing plays an important role in improving prediction performance. |
| Author | Cai, Hongzhen Zhang, Chen Sun, Jiaqi Xing, Linlin Che, Kai Zhang, Longbo |
| Author_xml | – sequence: 1 givenname: Chen surname: Zhang fullname: Zhang, Chen – sequence: 2 givenname: Jiaqi surname: Sun fullname: Sun, Jiaqi – sequence: 3 givenname: Linlin surname: Xing fullname: Xing, Linlin – sequence: 4 givenname: Longbo surname: Zhang fullname: Zhang, Longbo – sequence: 5 givenname: Hongzhen surname: Cai fullname: Cai, Hongzhen – sequence: 6 givenname: Kai surname: Che fullname: Che, Kai |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40841491$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kMtOwzAQRS1URB_wAyxQlmwMfiY2u1JKW6kIFlW3lhNPS1CaFDtZ8Pe4D1jNHenM1egMUa9uakDolpIHSkj2GCiTXGPCJI6rVFhdoAFVaYapSFkvZk05ZpmkfTQM4YuQVChOrlBfECWo0HSA3Ho-G0-fkhffbfHK-i20yaJuwduiLZs6-fDgylN8axxUybMN4JK4ziFSzRZqaLqQzLzdfyZr60t7gG2VjLu2gbqIR_4aXW5sFeDmPEdo9TpdTeZ4-T5bTMZLXDCZtlhJopiAQqdFrrI0FxQcE6l0gjutnMqtyInYSJtJYFblonAamM6VErnmjI_Q_al275vvDkJrdmUooKrs8UfDYxknRAod0bsz2uU7cGbvy531P-ZPTATYCSh8E4KHzT9CiTnYNyf7Jto3R_tG8V_FL3a5 |
| Cites_doi | 10.1038/nbt1284 10.1016/j.drudis.2016.10.011 10.1186/s12859-023-05387-w 10.2174/157340911793743547 10.1093/bib/bbv066 10.1007/978-981-97-5692-6_21 10.1186/s12859-024-05904-5 10.1093/bib/bbac109 10.1109/TCBB.2023.3339645 10.1016/j.ymeth.2022.08.016 10.1093/nar/gky1049 10.1093/nar/gkw993 10.1109/ICBK.2019.00012 10.1007/s10489-021-02495-z 10.1016/S1359-6446(02)02288-2 10.1186/s12859-023-05275-3 10.1093/nar/gkx1037 10.1093/nar/gkv1075 10.1093/nar/gkq1126 10.1007/s13755-024-00287-6 10.1186/1752-0509-4-S2-S6 10.1093/bib/bbab275 10.1093/nar/gkaa971 10.1109/APCC47188.2019.9026503 10.1145/3511808.3557346 10.1093/nar/gkn892 10.1002/jcc.21256 10.1093/nar/gkaa1074 10.1038/s41467-017-00680-8 10.1093/nar/gks994 10.1038/msb.2009.98 |
| ContentType | Journal Article |
| Copyright | 2025. International Association of Scientists in the Interdisciplinary Areas. |
| Copyright_xml | – notice: 2025. International Association of Scientists in the Interdisciplinary Areas. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1007/s12539-025-00758-8 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1867-1462 |
| ExternalDocumentID | 40841491 10_1007_s12539_025_00758_8 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62202373 – fundername: National Natural Science Foundation of China grantid: 62002206 |
| GroupedDBID | --- 06C 06D 0R~ 0VY 1N0 29~ 2KG 2~H 30V 4.4 406 408 409 40D 40E 53G 67N 6NX 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYXX AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADKNI ADRFC ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AEVLU AEXYK AFDZB AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG ATHPR AUKKA AVWKF AXYYD AYFIA AZFZN BA0 BGNMA CITATION DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG F5P FERAY FFXSO FIGPU FNLPD FRRFC FYJPI G-Y G-Z GGCAI GGRSB GJIRD GQ7 GQ8 GXS HG6 HLICF HMJXF HQYDN HRMNR I0C IJ- IKXTQ IWAJR IZIGR I~X J-C JBSCW JCJTX JZLTJ KOV LLZTM M0K M4Y M7P NPVJJ NQJWS NU0 O9J PT4 QOR QOS R89 RLLFE ROL RSV S1Z S27 S3A S3B SBL SCL SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 ZMTXR ZOVNA ~A9 AAYZH AESKC NPM 7X8 PYCSY |
| ID | FETCH-LOGICAL-c256t-850824ec96cb876b41ed2465d43d98d8ba4b04f5a75e2a8b4cd9e29b884b9323 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001555875900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1913-2751 1867-1462 |
| IngestDate | Sat Nov 01 13:58:38 EDT 2025 Thu Sep 04 05:01:26 EDT 2025 Sat Nov 29 07:36:56 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Keywords | Drug-target interaction prediction Heterogeneous graph Variational inference Variational graph autoencoder |
| Language | English |
| License | 2025. International Association of Scientists in the Interdisciplinary Areas. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c256t-850824ec96cb876b41ed2465d43d98d8ba4b04f5a75e2a8b4cd9e29b884b9323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 40841491 |
| PQID | 3246300549 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3246300549 pubmed_primary_40841491 crossref_primary_10_1007_s12539_025_00758_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-21 |
| PublicationDateYYYYMMDD | 2025-08-21 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany |
| PublicationTitle | Interdisciplinary sciences : computational life sciences |
| PublicationTitleAlternate | Interdiscip Sci |
| PublicationYear | 2025 |
| References | M Rudrapal (758_CR1) 2020 W Shi (758_CR9) 2024; 12 T Keshava Prasad (758_CR20) 2008; 37 S Kim (758_CR33) 2021; 49 758_CR23 DS Wishart (758_CR22) 2018; 46 Q An (758_CR11) 2021; 22 758_CR21 P Chen (758_CR26) 2023; 24 B Liu (758_CR31) 2022; 52 Z Xia (758_CR3) 2010; 4 C Acharya (758_CR7) 2011; 7 GM Morris (758_CR5) 2009; 30 A Davis (758_CR18) 2012; 41 Y Zhang (758_CR27) 2023; 24 GR Langley (758_CR4) 2017; 22 Y Luo (758_CR10) 2017; 8 D Szklarczyk (758_CR25) 2021; D1 B Zhang (758_CR29) 2024; 25 C Knox (758_CR17) 2010; 39 758_CR34 758_CR14 758_CR30 D Butina (758_CR8) 2002; 7 758_CR15 M Kuhn (758_CR19) 2010; 6 758_CR16 K Shao (758_CR12) 2022; 23 W Wang (758_CR13) 2022; 206 MJ Keiser (758_CR6) 2007; 25 W Wang (758_CR28) 2023; 21 M Kuhn (758_CR24) 2016; D1 O Ursu (758_CR32) 2016; 45 X Chen (758_CR2) 2016; 17 |
| References_xml | – volume: 25 start-page: 197 year: 2007 ident: 758_CR6 publication-title: Nat Biotechnol doi: 10.1038/nbt1284 – volume: 22 start-page: 327 year: 2017 ident: 758_CR4 publication-title: Drug Discov Today doi: 10.1016/j.drudis.2016.10.011 – volume: 24 start-page: 278 year: 2023 ident: 758_CR27 publication-title: BMC Bioinform doi: 10.1186/s12859-023-05387-w – volume: 7 start-page: 10 year: 2011 ident: 758_CR7 publication-title: Curr Comput Aided Drug Des doi: 10.2174/157340911793743547 – ident: 758_CR34 – volume: 17 start-page: 696 year: 2016 ident: 758_CR2 publication-title: Brief Bioinform doi: 10.1093/bib/bbv066 – ident: 758_CR30 doi: 10.1007/978-981-97-5692-6_21 – volume: 25 start-page: 275 year: 2024 ident: 758_CR29 publication-title: BMC Bioinform doi: 10.1186/s12859-024-05904-5 – volume: 23 start-page: 109 year: 2022 ident: 758_CR12 publication-title: Brief Bioinform doi: 10.1093/bib/bbac109 – volume: 21 start-page: 143 year: 2023 ident: 758_CR28 publication-title: IEEE ACM T Comput Bi doi: 10.1109/TCBB.2023.3339645 – volume: 206 start-page: 101 year: 2022 ident: 758_CR13 publication-title: Methods doi: 10.1016/j.ymeth.2022.08.016 – ident: 758_CR16 – ident: 758_CR23 doi: 10.1093/nar/gky1049 – volume: 45 start-page: D932 year: 2016 ident: 758_CR32 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw993 – ident: 758_CR15 doi: 10.1109/ICBK.2019.00012 – volume: 52 start-page: 3705 year: 2022 ident: 758_CR31 publication-title: Appl Intell doi: 10.1007/s10489-021-02495-z – volume: 7 start-page: S83 year: 2002 ident: 758_CR8 publication-title: Drug Discov Today doi: 10.1016/S1359-6446(02)02288-2 – volume: 24 start-page: 151 year: 2023 ident: 758_CR26 publication-title: BMC Bioinform doi: 10.1186/s12859-023-05275-3 – volume: 46 start-page: D1074 year: 2018 ident: 758_CR22 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1037 – volume: D1 start-page: D1075 year: 2016 ident: 758_CR24 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1075 – volume: 39 start-page: 1035 year: 2010 ident: 758_CR17 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1126 – volume: 12 start-page: 30 year: 2024 ident: 758_CR9 publication-title: Health Inf Sci Syst doi: 10.1007/s13755-024-00287-6 – volume: 4 start-page: 1 year: 2010 ident: 758_CR3 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-S2-S6 – volume: 22 start-page: 275 year: 2021 ident: 758_CR11 publication-title: Brief Bioinform doi: 10.1093/bib/bbab275 – volume: 49 start-page: 1388 year: 2021 ident: 758_CR33 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa971 – ident: 758_CR14 doi: 10.1109/APCC47188.2019.9026503 – ident: 758_CR21 doi: 10.1145/3511808.3557346 – volume: 37 start-page: 767 year: 2008 ident: 758_CR20 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn892 – volume: 30 start-page: 2785 year: 2009 ident: 758_CR5 publication-title: J Comput Chem doi: 10.1002/jcc.21256 – volume: D1 start-page: D605 year: 2021 ident: 758_CR25 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa1074 – volume: 8 start-page: 573 year: 2017 ident: 758_CR10 publication-title: Nat Commu doi: 10.1038/s41467-017-00680-8 – volume: 41 start-page: 1104 year: 2012 ident: 758_CR18 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks994 – start-page: 10 volume-title: Drug Repurposing year: 2020 ident: 758_CR1 – volume: 6 start-page: 343 year: 2010 ident: 758_CR19 publication-title: Mol Syst Biol doi: 10.1038/msb.2009.98 |
| SSID | ssj0064830 |
| Score | 2.3278592 |
| Snippet | Identifying drug-target interaction (DTI) is crucial for drug discovery and repositioning. Biological identification of DTI is costly and time-consuming, so... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database |
| Title | VHGAE: Drug-Target Interaction Prediction Model Based on Heterogeneous Graph Variational Autoencoder |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40841491 https://www.proquest.com/docview/3246300549 |
| WOSCitedRecordID | wos001555875900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1867-1462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064830 issn: 1913-2751 databaseCode: RSV dateStart: 20090301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYGAokL78d4KUjcIIKmbptwGzDYAU0TTNVuVdNkCAltqNuQ-Pc4aQdCggO39pK0tuXvcxzbAKchDoPYRMgJTg3HRAuuYoU8GEoPGQZ9xjR9SLpdORioXgPO_8zgX0wIgkPF3dhVh2-Su8reIBZuXMHjUzp3uzFKP1iE4o-QiyQK6gqZ35f4iUJ_UEsPMXdr__u4dVitqSRrVbrfgIYdbcJyNVzyYwtM2rlvta_YbTl75n1_4Zv587-qlIH1Spej8Y9uINoruyZAM4xeO-6KzJgsy45nE3bvWlqzlGLq-tyQtWbTset_aWy5Df27dv-mw-uZCrwgbUy5JEIm0BYqLjQ5Qo2BNQLjyGBolDRS56gvcRjlSWRFLjUWRlmhtJSoieqFO7A4Go_sHjBFXC0fCuPybMS5ZF4Qk8itJHzTcZBjE87mIs7eqs4Z2XePZCe2jMSWebFlsgkncy1kZOAua5H7v8yI8bm2YBTHNmG3Us_XengpkUK8YP9fex3AivAaIx8RHMLitJzZI1gq3qcvk_IYFpKBPPa29Ql1kMG5 |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VHGAE%3A+Drug-Target+Interaction+Prediction+Model+Based+on+Heterogeneous+Graph+Variational+Autoencoder&rft.jtitle=Interdisciplinary+sciences+%3A+computational+life+sciences&rft.au=Zhang%2C+Chen&rft.au=Sun%2C+Jiaqi&rft.au=Xing%2C+Linlin&rft.au=Zhang%2C+Longbo&rft.date=2025-08-21&rft.issn=1867-1462&rft.eissn=1867-1462&rft_id=info:doi/10.1007%2Fs12539-025-00758-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-2751&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-2751&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-2751&client=summon |