Mining High Quality Patterns Using Multi-Objective Evolutionary Algorithm

Pattern mining (PM) refers to the process of discovering patterns of interest to users from data. However, most studies have considered only one pattern, such as frequent pattern or high-utility pattern. With the continuous requirement of businesses in various industries, the single-objective PM met...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 34; no. 8; p. 1
Main Authors: Fang, Wei, Zhang, Qiang, Sun, Jun, Wu, Xiao-Jun
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Pattern mining (PM) refers to the process of discovering patterns of interest to users from data. However, most studies have considered only one pattern, such as frequent pattern or high-utility pattern. With the continuous requirement of businesses in various industries, the single-objective PM methods are difficult to meet the increasingly diverse needs of users. In this paper, a multi-objective problem model for high quality pattern mining (HQPM) is proposed, where the objectives are support, occupancy, and utility. In order to solve the proposed three-objective problem efficiently, an improved multi-objective evolutionary algorithm for HQPM (MOEA-PM) is proposed. Two kinds of population initialization strategies are designed, which is used to ensure the population is effectively distributed in the feasible solution space. By taking the properties of the model into consideration, an auxiliary tool is proposed to accelerate the convergence of the algorithm. Experimental results on real-world datasets show that the proposed three-objective problem model with the MOEA-PM algorithm can discover patterns that are both frequently occurring and has a high utility in the transaction datasets, while at the same time being relatively complete. Compared with the state-of-the-art MOEA-based HQPM algorithms, MOEA-PM has better performance in terms of efficiency, quality, and convergence speed.
AbstractList Pattern mining (PM) refers to the process of discovering patterns of interest to users from data. However, most studies have considered only one pattern, such as frequent pattern or high-utility pattern. With the continuous requirement of businesses in various industries, the single-objective PM methods are difficult to meet the increasingly diverse needs of users. In this paper, a multi-objective problem model for high quality pattern mining (HQPM) is proposed, where the objectives are support, occupancy, and utility. In order to solve the proposed three-objective problem efficiently, an improved multi-objective evolutionary algorithm for HQPM (MOEA-PM) is proposed. Two kinds of population initialization strategies are designed, which is used to ensure the population is effectively distributed in the feasible solution space. By taking the properties of the model into consideration, an auxiliary tool is proposed to accelerate the convergence of the algorithm. Experimental results on real-world datasets show that the proposed three-objective problem model with the MOEA-PM algorithm can discover patterns that are both frequently occurring and has a high utility in the transaction datasets, while at the same time being relatively complete. Compared with the state-of-the-art MOEA-based HQPM algorithms, MOEA-PM has better performance in terms of efficiency, quality, and convergence speed.
Author Sun, Jun
Wu, Xiao-Jun
Fang, Wei
Zhang, Qiang
Author_xml – sequence: 1
  givenname: Wei
  surname: Fang
  fullname: Fang, Wei
  email: fangwei@jiangnan.edu.cn
  organization: Department of Computer Science and Technology, Jiangnan University, 66374 Wuxi, Jiangsu, China, (e-mail: fangwei@jiangnan.edu.cn)
– sequence: 2
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  email: 1227553789@qq.com
  organization: Department of Computer Science and Technology, Jiangnan University, 66374 Wuxi, Jiangsu, China, (e-mail: 1227553789@qq.com)
– sequence: 3
  givenname: Jun
  surname: Sun
  fullname: Sun, Jun
  email: sunjun_wx@hotmail.com
  organization: Department of Computer Science and Technology, Jiangnan University, 66374 Wuxi, Jiangsu, China, (e-mail: sunjun_wx@hotmail.com)
– sequence: 4
  givenname: Xiao-Jun
  surname: Wu
  fullname: Wu, Xiao-Jun
  email: wu_xiaojun@jiangnan.edu.cn
  organization: Department of Computer Science and Technology, Jiangnan University, 66374 Wuxi, Jiangsu, China, (e-mail: wu_xiaojun@jiangnan.edu.cn)
BookMark eNp9kDFvwjAQha2KSgXaH1B1idQ51BfbsT0iSgsqiFaC2XISB4xCQh0HiX_fRKAOHTrdSfe-u3tvgHplVRqEHgGPALB8WX-8TkcRjvCIYEIYyBvUB8ZEGIGEXttjCiEllN-hQV3vMcaCC-ij-dKWttwGM7vdBV-NLqw_B5_ae-PKOtjU3WzZFN6Gq2RvUm9PJpieqqLxtiq1OwfjYls563eHe3Sb66I2D9c6RJu36XoyCxer9_lkvAjTiMU-5EJqwQzFYCgFjLlMOctkJoTJY04Z5Ak3OoU0YwbnwBKSUMgiE2MtcZLHZIieL3uPrvpuTO3Vvmpc2Z5UUSxi0jpjtFXxiyp1VV07k6vUet097Z22hQKsutxUl5vqclPX3FoS_pBHZw-t1X-ZpwtjjTG_ehkRQUlEfgBcO3pU
CODEN ITKEEH
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3105102
crossref_primary_10_1016_j_engappai_2025_111387
crossref_primary_10_1007_s00500_021_06613_4
crossref_primary_10_3233_JIFS_236793
crossref_primary_10_1109_TAI_2024_3414289
crossref_primary_10_1109_JAS_2024_124548
crossref_primary_10_1109_TNNLS_2024_3371706
crossref_primary_10_1155_2024_6980514
crossref_primary_10_1007_s40860_021_00162_1
Cites_doi 10.1109/TETCI.2020.3000224
10.1016/j.swevo.2011.03.001
10.1109/TEVC.2018.2855411
10.1016/j.asoc.2009.11.023
10.1016/j.eswa.2014.11.001
10.1109/ICSMC.2009.5346628
10.1109/TEVC.2013.2290086
10.1109/TKDE.2009.46
10.1109/CEC.2013.6557902
10.1109/TMAG.2017.2661987
10.1007/s00500-016-2106-1
10.1109/ICDM.2011.118
10.1109/CEC.2014.6900618
10.1109/TKDE.2005.166
10.1109/MCI.2017.2708578
10.1145/2396761.2396775
10.1145/253260.253325
10.1109/TITS.2020.3012387
10.1145/568271.223813
10.1007/978-3-319-08326-1_9
10.1109/MCI.2018.2806997
10.1145/2330163.2330285
10.1016/j.ins.2020.02.073
10.1137/1.9781611972726.27
10.1109/MCI.2017.2742868
10.1109/4235.996017
10.1109/TKDE.2015.2399310
10.1109/TEVC.2020.3013290
10.1016/j.knosys.2006.08.005
10.1016/j.knosys.2008.03.011
10.1016/j.engappai.2016.07.006
10.1007/978-3-030-04921-8
10.1109/69.846291
10.1080/08839514.2014.891839
10.1007/11430919_79
10.1109/TEVC.2005.851275
10.1109/MCI.2014.2369894
10.1109/TCYB.2019.2896267
10.1007/978-3-319-46131-1_8
10.1145/2396761.2396773
10.1007/s10618-006-0059-1
10.1109/ACCESS.2019.2958150
10.1109/TKDE.2015.2458860
10.1007/978-3-319-27060-9_44
10.1007/s10589-014-9644-1
10.1137/1.9781611972740.51
10.1016/j.ins.2016.03.039
10.1016/j.ins.2013.01.028
10.1016/j.datak.2007.06.009
10.1145/1835804.1835839
10.4018/ijdwm.2014010101
10.1109/TKDE.2019.2942594
10.1145/508791.508905
10.1109/ACCESS.2018.2819162
10.1109/4235.797969
10.1109/BigData.2018.8622405
10.1145/2742642
10.1140/epjds/s13688-018-0133-0
10.1002/widm.1242
10.1109/ICSMC.1997.637339
10.1006/jpdc.2000.1693
10.1109/TCYB.2020.2970176
10.1016/j.asoc.2017.09.033
10.1109/MCI.2006.1597059
10.1007/978-3-319-31753-3_29
10.1145/1454008.1454027
10.1109/JSEN.2020.2991045
10.1109/ICDM.2001.989550
10.1109/CIS.2007.177
10.1016/j.eswa.2017.08.028
10.1109/TKDE.2005.183
10.1007/s00500-019-03829-3
10.1145/335191.335372
10.1109/ICDM.2012.20
10.1109/TKDE.2012.59
10.1145/2753765
10.1109/TEVC.2018.2875430
10.1145/170036.170072
10.1109/TEVC.2019.2918140
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2020.3033519
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1558-2191
EndPage 1
ExternalDocumentID 10_1109_TKDE_2020_3033519
9238432
Genre orig-research
GrantInformation_xml – fundername: National Key RD Program of China
  grantid: 2017YFC1601000; 2017YFC1601800
– fundername: Key Research and Development Program of Jiangsu Province
  grantid: BE2017630
– fundername: National Natural Science Foundation of China
  grantid: 61672263; 61673194; 62073155
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c256t-789a85e401e4410079c75d9d88ef67451fb7eac1cd5e0f15b3b41d2e60a90bf63
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000822378300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sun Nov 09 08:42:53 EST 2025
Sat Nov 29 02:36:03 EST 2025
Tue Nov 18 22:32:51 EST 2025
Wed Aug 27 02:29:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c256t-789a85e401e4410079c75d9d88ef67451fb7eac1cd5e0f15b3b41d2e60a90bf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8052-0994
0000-0002-5161-3339
0000-0002-0310-5778
0000-0002-9824-4294
PQID 2686300854
PQPubID 85438
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2020_3033519
crossref_primary_10_1109_TKDE_2020_3033519
ieee_primary_9238432
proquest_journals_2686300854
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Han (ref2) 2011
ref13
ref57
ref12
ref56
ref15
Liu (ref48)
ref59
ref14
ref58
ref53
Agrawal (ref8); 1215
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
Savasere (ref42) 1995
ref18
Coello (ref69) 2007; 5
ref51
ref50
ref46
ref45
ref47
ref86
Venkatadri (ref32) 2010; 1
ref41
ref85
ref44
ref87
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref76
ref1
ref39
ref38
ref71
ref70
ref73
ref72
Kalyanmoy (ref27) 2001
ref24
ref68
ref23
ref67
ref26
ref25
ref20
Toivonen (ref43); 96
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref29
ref60
ref62
ref61
References_xml – ident: ref4
  doi: 10.1109/TETCI.2020.3000224
– ident: ref71
  doi: 10.1016/j.swevo.2011.03.001
– ident: ref81
  doi: 10.1109/TEVC.2018.2855411
– ident: ref61
  doi: 10.1016/j.asoc.2009.11.023
– volume: 96
  start-page: 134
  volume-title: Proc. 22th Int. Conf. Very Large Data Bases
  ident: ref43
  article-title: Sampling large databases for association rules
– ident: ref57
  doi: 10.1016/j.eswa.2014.11.001
– ident: ref83
  doi: 10.1109/ICSMC.2009.5346628
– ident: ref31
  doi: 10.1109/TEVC.2013.2290086
– ident: ref52
  doi: 10.1109/TKDE.2009.46
– ident: ref73
  doi: 10.1109/CEC.2013.6557902
– ident: ref82
  doi: 10.1109/TMAG.2017.2661987
– ident: ref65
  doi: 10.1007/s00500-016-2106-1
– ident: ref39
  doi: 10.1109/ICDM.2011.118
– ident: ref74
  doi: 10.1109/CEC.2014.6900618
– ident: ref47
  doi: 10.1109/TKDE.2005.166
– ident: ref25
  doi: 10.1109/MCI.2017.2708578
– ident: ref7
  doi: 10.1145/2396761.2396775
– ident: ref44
  doi: 10.1145/253260.253325
– ident: ref24
  doi: 10.1109/TITS.2020.3012387
– ident: ref41
  doi: 10.1145/568271.223813
– ident: ref55
  doi: 10.1007/978-3-319-08326-1_9
– ident: ref30
  doi: 10.1109/MCI.2018.2806997
– start-page: 432
  year: 1995
  ident: ref42
  article-title: An efficient algorithm for mining association rules in large databases
– ident: ref34
  doi: 10.1145/2330163.2330285
– ident: ref58
  doi: 10.1016/j.ins.2020.02.073
– volume-title: Data Mining: Concepts and Techniques
  year: 2011
  ident: ref2
– ident: ref11
  doi: 10.1137/1.9781611972726.27
– ident: ref87
  doi: 10.1109/MCI.2017.2742868
– ident: ref72
  doi: 10.1109/4235.996017
– ident: ref12
  doi: 10.1109/TKDE.2015.2399310
– ident: ref86
  doi: 10.1109/TEVC.2020.3013290
– ident: ref75
  doi: 10.1016/j.knosys.2006.08.005
– ident: ref77
  doi: 10.1016/j.knosys.2008.03.011
– ident: ref63
  doi: 10.1016/j.engappai.2016.07.006
– ident: ref3
  doi: 10.1007/978-3-030-04921-8
– start-page: 1
  volume-title: Proc. ICDM Workshop Frequent Itemset Mining Implementations
  ident: ref48
  article-title: AFOPT: An efficient implementation of pattern growth approach
– ident: ref50
  doi: 10.1109/69.846291
– volume: 1
  start-page: 443
  issue: 5
  year: 2010
  ident: ref32
  article-title: A multiobjective genetic algorithm for feature selection in data mining
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– ident: ref62
  doi: 10.1080/08839514.2014.891839
– ident: ref15
  doi: 10.1007/11430919_79
– ident: ref85
  doi: 10.1109/TEVC.2005.851275
– ident: ref29
  doi: 10.1109/MCI.2014.2369894
– ident: ref22
  doi: 10.1109/TCYB.2019.2896267
– ident: ref79
  doi: 10.1007/978-3-319-46131-1_8
– volume-title: Multi Objective Optimization Using Evolutionary Algorithms
  year: 2001
  ident: ref27
– ident: ref18
  doi: 10.1145/2396761.2396773
– ident: ref1
  doi: 10.1007/s10618-006-0059-1
– ident: ref67
  doi: 10.1109/ACCESS.2019.2958150
– ident: ref21
  doi: 10.1109/TKDE.2015.2458860
– ident: ref54
  doi: 10.1007/978-3-319-27060-9_44
– volume: 5
  volume-title: Evolutionary Algorithms for Solving Multi-Objective Problems
  year: 2007
  ident: ref69
– ident: ref70
  doi: 10.1007/s10589-014-9644-1
– ident: ref13
  doi: 10.1137/1.9781611972740.51
– ident: ref60
  doi: 10.1016/j.ins.2016.03.039
– ident: ref33
  doi: 10.1016/j.ins.2013.01.028
– volume: 1215
  start-page: 487
  volume-title: Proc. 20th Int. Conf. Very Large Data Bases
  ident: ref8
  article-title: Fast algorithms for mining association rules
– ident: ref51
  doi: 10.1016/j.datak.2007.06.009
– ident: ref16
  doi: 10.1145/1835804.1835839
– ident: ref78
  doi: 10.4018/ijdwm.2014010101
– ident: ref14
  doi: 10.1109/TKDE.2019.2942594
– ident: ref59
  doi: 10.1145/508791.508905
– ident: ref66
  doi: 10.1109/ACCESS.2018.2819162
– ident: ref84
  doi: 10.1109/4235.797969
– ident: ref19
  doi: 10.1109/BigData.2018.8622405
– ident: ref36
  doi: 10.1145/2742642
– ident: ref37
  doi: 10.1140/epjds/s13688-018-0133-0
– ident: ref20
  doi: 10.1002/widm.1242
– ident: ref64
  doi: 10.1109/ICSMC.1997.637339
– ident: ref45
  doi: 10.1006/jpdc.2000.1693
– ident: ref23
  doi: 10.1109/TCYB.2020.2970176
– ident: ref26
  doi: 10.1016/j.asoc.2017.09.033
– ident: ref28
  doi: 10.1109/MCI.2006.1597059
– ident: ref40
  doi: 10.1007/978-3-319-31753-3_29
– ident: ref46
  doi: 10.1145/1454008.1454027
– ident: ref5
  doi: 10.1109/JSEN.2020.2991045
– ident: ref10
  doi: 10.1109/ICDM.2001.989550
– ident: ref49
  doi: 10.1109/CIS.2007.177
– ident: ref53
  doi: 10.1016/j.eswa.2017.08.028
– ident: ref76
  doi: 10.1109/TKDE.2005.183
– ident: ref35
  doi: 10.1007/s00500-019-03829-3
– ident: ref9
  doi: 10.1145/335191.335372
– ident: ref56
  doi: 10.1109/ICDM.2012.20
– ident: ref17
  doi: 10.1109/TKDE.2012.59
– ident: ref38
  doi: 10.1145/2753765
– ident: ref80
  doi: 10.1109/TEVC.2018.2875430
– ident: ref6
  doi: 10.1145/170036.170072
– ident: ref68
  doi: 10.1109/TEVC.2019.2918140
SSID ssj0008781
Score 2.4618208
Snippet Pattern mining (PM) refers to the process of discovering patterns of interest to users from data. However, most studies have considered only one pattern, such...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Convergence
Data mining
Datasets
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Itemsets
multi-objective evolutionary algorithm
occupancy
Optimization
Pattern analysis
Pattern mining
Sociology
Solution space
Statistics
support
utility
Title Mining High Quality Patterns Using Multi-Objective Evolutionary Algorithm
URI https://ieeexplore.ieee.org/document/9238432
https://www.proquest.com/docview/2686300854
Volume 34
WOSCitedRecordID wos000822378300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VigEGCgVEeckDEyI0D8eOxwqKQLw6FMQWxY7NQyVFoa3Ev8d23AgEQmLLYFtRvvP5Lr77PoADnEcBzyPuGRJsD3MlvEwR5lFtPZm25zC2Mp33V_TmJnl4YIMGHNW9MFJKW3wmj82jvcvPx2JqfpV1dTCS4Eg73AVKSdWrVXvdhFpBUp1d6JwowtTdYAY-6w4vT_s6Ewx1gupHRpDu2xlkRVV-eGJ7vJy1_vdiq7DiwkjUq3Bfg4Ys2tCaSzQgt2PbsPyFb7ANSya0rJiZ1-Hi2mpDIFPpgSoqjQ80sHSbxTuypQTItud6t_ylcouoP3OWmpUfqDd6HJfPk6fXDbg76w9Pzj0nrOAJHeFMNBAsS2KpUyupoyEdJTBB45zlSSIVoTgOFKfaIQcij6WvgphHHAd5KImfMZ8rEm1CsxgXcguQyjAnVFJFQ4ElUYxJ0-wbKL08EUJ2wJ9_6lQ41nEjfjFKbfbhs9Sgkxp0UodOBw7rKW8V5cZfg9cNHPVAh0QHdud4pm5TvqchSQzBWBLj7d9n7cBSaLobbH3fLjQn5VTuwaKYaWjKfWtvn7fT0dI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6KCurBaqtYrZqDJ3F1H9nN5li00tKHPVTxtmyyiQ9qK31B_71JNi2KInjbQxKW_SaTmc3M9wGc4yzwWBYwR5NgO5hJ7qQyog5R1pMqe_ZDI9P52Cbdbvz0RHsFuFz1wgghTPGZuNKP5i4_G_GZ_lV2rYKRGAfK4a6HGPtu3q218rsxMZKkKr9QWVGAib3D9Fx63W_d1lUu6KsU1Q20JN23U8jIqvzwxeaAuSv-79V2YccGkqiWI78HBTEsQXEp0oDsni3B9hfGwRJs6eAy52YuQ7Nj1CGQrvVAOZnGAvUM4eZwgkwxATINus49e8sdI6rPra2m4wWqDZ5H49fpy_s-PNzV-zcNx0orOFzFOFMFBU3jUKjkSqh4SMUJlJMwo1kcCxkRHHqSEeWSPZ6FwpVeyAKGvcwXkZtSl8koOIC14WgoDgHJFLOICCKJz7GIJKVCt_t6Ui0fcS4q4C4_dcIt77iWvxgkJv9waaLRSTQ6iUWnAherKR856cZfg8sajtVAi0QFqks8E7stJ4kfxZpiLA7x0e-zzmCz0e-0k3az2zqGLV_3OphqvyqsTcczcQIbfK5gGp8a2_sEymDVGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+High+Quality+Patterns+Using+Multi-Objective+Evolutionary+Algorithm&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Fang%2C+Wei&rft.au=Zhang%2C+Qiang&rft.au=Sun%2C+Jun&rft.au=Wu%2C+Xiao-Jun&rft.date=2022-08-01&rft.pub=IEEE&rft.issn=1041-4347&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTKDE.2020.3033519&rft.externalDocID=9238432
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon