Mining High Quality Patterns Using Multi-Objective Evolutionary Algorithm
Pattern mining (PM) refers to the process of discovering patterns of interest to users from data. However, most studies have considered only one pattern, such as frequent pattern or high-utility pattern. With the continuous requirement of businesses in various industries, the single-objective PM met...
Uloženo v:
| Vydáno v: | IEEE transactions on knowledge and data engineering Ročník 34; číslo 8; s. 1 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1041-4347, 1558-2191 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Pattern mining (PM) refers to the process of discovering patterns of interest to users from data. However, most studies have considered only one pattern, such as frequent pattern or high-utility pattern. With the continuous requirement of businesses in various industries, the single-objective PM methods are difficult to meet the increasingly diverse needs of users. In this paper, a multi-objective problem model for high quality pattern mining (HQPM) is proposed, where the objectives are support, occupancy, and utility. In order to solve the proposed three-objective problem efficiently, an improved multi-objective evolutionary algorithm for HQPM (MOEA-PM) is proposed. Two kinds of population initialization strategies are designed, which is used to ensure the population is effectively distributed in the feasible solution space. By taking the properties of the model into consideration, an auxiliary tool is proposed to accelerate the convergence of the algorithm. Experimental results on real-world datasets show that the proposed three-objective problem model with the MOEA-PM algorithm can discover patterns that are both frequently occurring and has a high utility in the transaction datasets, while at the same time being relatively complete. Compared with the state-of-the-art MOEA-based HQPM algorithms, MOEA-PM has better performance in terms of efficiency, quality, and convergence speed. |
|---|---|
| AbstractList | Pattern mining (PM) refers to the process of discovering patterns of interest to users from data. However, most studies have considered only one pattern, such as frequent pattern or high-utility pattern. With the continuous requirement of businesses in various industries, the single-objective PM methods are difficult to meet the increasingly diverse needs of users. In this paper, a multi-objective problem model for high quality pattern mining (HQPM) is proposed, where the objectives are support, occupancy, and utility. In order to solve the proposed three-objective problem efficiently, an improved multi-objective evolutionary algorithm for HQPM (MOEA-PM) is proposed. Two kinds of population initialization strategies are designed, which is used to ensure the population is effectively distributed in the feasible solution space. By taking the properties of the model into consideration, an auxiliary tool is proposed to accelerate the convergence of the algorithm. Experimental results on real-world datasets show that the proposed three-objective problem model with the MOEA-PM algorithm can discover patterns that are both frequently occurring and has a high utility in the transaction datasets, while at the same time being relatively complete. Compared with the state-of-the-art MOEA-based HQPM algorithms, MOEA-PM has better performance in terms of efficiency, quality, and convergence speed. |
| Author | Sun, Jun Wu, Xiao-Jun Fang, Wei Zhang, Qiang |
| Author_xml | – sequence: 1 givenname: Wei surname: Fang fullname: Fang, Wei email: fangwei@jiangnan.edu.cn organization: Department of Computer Science and Technology, Jiangnan University, 66374 Wuxi, Jiangsu, China, (e-mail: fangwei@jiangnan.edu.cn) – sequence: 2 givenname: Qiang surname: Zhang fullname: Zhang, Qiang email: 1227553789@qq.com organization: Department of Computer Science and Technology, Jiangnan University, 66374 Wuxi, Jiangsu, China, (e-mail: 1227553789@qq.com) – sequence: 3 givenname: Jun surname: Sun fullname: Sun, Jun email: sunjun_wx@hotmail.com organization: Department of Computer Science and Technology, Jiangnan University, 66374 Wuxi, Jiangsu, China, (e-mail: sunjun_wx@hotmail.com) – sequence: 4 givenname: Xiao-Jun surname: Wu fullname: Wu, Xiao-Jun email: wu_xiaojun@jiangnan.edu.cn organization: Department of Computer Science and Technology, Jiangnan University, 66374 Wuxi, Jiangsu, China, (e-mail: wu_xiaojun@jiangnan.edu.cn) |
| BookMark | eNp9kDFvwjAQha2KSgXaH1B1idQ51BfbsT0iSgsqiFaC2XISB4xCQh0HiX_fRKAOHTrdSfe-u3tvgHplVRqEHgGPALB8WX-8TkcRjvCIYEIYyBvUB8ZEGIGEXttjCiEllN-hQV3vMcaCC-ij-dKWttwGM7vdBV-NLqw_B5_ae-PKOtjU3WzZFN6Gq2RvUm9PJpieqqLxtiq1OwfjYls563eHe3Sb66I2D9c6RJu36XoyCxer9_lkvAjTiMU-5EJqwQzFYCgFjLlMOctkJoTJY04Z5Ak3OoU0YwbnwBKSUMgiE2MtcZLHZIieL3uPrvpuTO3Vvmpc2Z5UUSxi0jpjtFXxiyp1VV07k6vUet097Z22hQKsutxUl5vqclPX3FoS_pBHZw-t1X-ZpwtjjTG_ehkRQUlEfgBcO3pU |
| CODEN | ITKEEH |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3105102 crossref_primary_10_1016_j_engappai_2025_111387 crossref_primary_10_1007_s00500_021_06613_4 crossref_primary_10_3233_JIFS_236793 crossref_primary_10_1109_TAI_2024_3414289 crossref_primary_10_1109_JAS_2024_124548 crossref_primary_10_1109_TNNLS_2024_3371706 crossref_primary_10_1155_2024_6980514 crossref_primary_10_1007_s40860_021_00162_1 |
| Cites_doi | 10.1109/TETCI.2020.3000224 10.1016/j.swevo.2011.03.001 10.1109/TEVC.2018.2855411 10.1016/j.asoc.2009.11.023 10.1016/j.eswa.2014.11.001 10.1109/ICSMC.2009.5346628 10.1109/TEVC.2013.2290086 10.1109/TKDE.2009.46 10.1109/CEC.2013.6557902 10.1109/TMAG.2017.2661987 10.1007/s00500-016-2106-1 10.1109/ICDM.2011.118 10.1109/CEC.2014.6900618 10.1109/TKDE.2005.166 10.1109/MCI.2017.2708578 10.1145/2396761.2396775 10.1145/253260.253325 10.1109/TITS.2020.3012387 10.1145/568271.223813 10.1007/978-3-319-08326-1_9 10.1109/MCI.2018.2806997 10.1145/2330163.2330285 10.1016/j.ins.2020.02.073 10.1137/1.9781611972726.27 10.1109/MCI.2017.2742868 10.1109/4235.996017 10.1109/TKDE.2015.2399310 10.1109/TEVC.2020.3013290 10.1016/j.knosys.2006.08.005 10.1016/j.knosys.2008.03.011 10.1016/j.engappai.2016.07.006 10.1007/978-3-030-04921-8 10.1109/69.846291 10.1080/08839514.2014.891839 10.1007/11430919_79 10.1109/TEVC.2005.851275 10.1109/MCI.2014.2369894 10.1109/TCYB.2019.2896267 10.1007/978-3-319-46131-1_8 10.1145/2396761.2396773 10.1007/s10618-006-0059-1 10.1109/ACCESS.2019.2958150 10.1109/TKDE.2015.2458860 10.1007/978-3-319-27060-9_44 10.1007/s10589-014-9644-1 10.1137/1.9781611972740.51 10.1016/j.ins.2016.03.039 10.1016/j.ins.2013.01.028 10.1016/j.datak.2007.06.009 10.1145/1835804.1835839 10.4018/ijdwm.2014010101 10.1109/TKDE.2019.2942594 10.1145/508791.508905 10.1109/ACCESS.2018.2819162 10.1109/4235.797969 10.1109/BigData.2018.8622405 10.1145/2742642 10.1140/epjds/s13688-018-0133-0 10.1002/widm.1242 10.1109/ICSMC.1997.637339 10.1006/jpdc.2000.1693 10.1109/TCYB.2020.2970176 10.1016/j.asoc.2017.09.033 10.1109/MCI.2006.1597059 10.1007/978-3-319-31753-3_29 10.1145/1454008.1454027 10.1109/JSEN.2020.2991045 10.1109/ICDM.2001.989550 10.1109/CIS.2007.177 10.1016/j.eswa.2017.08.028 10.1109/TKDE.2005.183 10.1007/s00500-019-03829-3 10.1145/335191.335372 10.1109/ICDM.2012.20 10.1109/TKDE.2012.59 10.1145/2753765 10.1109/TEVC.2018.2875430 10.1145/170036.170072 10.1109/TEVC.2019.2918140 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TKDE.2020.3033519 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 1558-2191 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TKDE_2020_3033519 9238432 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key RD Program of China grantid: 2017YFC1601000; 2017YFC1601800 – fundername: Key Research and Development Program of Jiangsu Province grantid: BE2017630 – fundername: National Natural Science Foundation of China grantid: 61672263; 61673194; 62073155 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c256t-789a85e401e4410079c75d9d88ef67451fb7eac1cd5e0f15b3b41d2e60a90bf63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000822378300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1041-4347 |
| IngestDate | Sun Nov 09 08:42:53 EST 2025 Sat Nov 29 02:36:03 EST 2025 Tue Nov 18 22:32:51 EST 2025 Wed Aug 27 02:29:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c256t-789a85e401e4410079c75d9d88ef67451fb7eac1cd5e0f15b3b41d2e60a90bf63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8052-0994 0000-0002-5161-3339 0000-0002-0310-5778 0000-0002-9824-4294 |
| PQID | 2686300854 |
| PQPubID | 85438 |
| PageCount | 1 |
| ParticipantIDs | crossref_citationtrail_10_1109_TKDE_2020_3033519 crossref_primary_10_1109_TKDE_2020_3033519 ieee_primary_9238432 proquest_journals_2686300854 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on knowledge and data engineering |
| PublicationTitleAbbrev | TKDE |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | Han (ref2) 2011 ref13 ref57 ref12 ref56 ref15 Liu (ref48) ref59 ref14 ref58 ref53 Agrawal (ref8); 1215 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 Savasere (ref42) 1995 ref18 Coello (ref69) 2007; 5 ref51 ref50 ref46 ref45 ref47 ref86 Venkatadri (ref32) 2010; 1 ref41 ref85 ref44 ref87 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref76 ref1 ref39 ref38 ref71 ref70 ref73 ref72 Kalyanmoy (ref27) 2001 ref24 ref68 ref23 ref67 ref26 ref25 ref20 Toivonen (ref43); 96 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref4 doi: 10.1109/TETCI.2020.3000224 – ident: ref71 doi: 10.1016/j.swevo.2011.03.001 – ident: ref81 doi: 10.1109/TEVC.2018.2855411 – ident: ref61 doi: 10.1016/j.asoc.2009.11.023 – volume: 96 start-page: 134 volume-title: Proc. 22th Int. Conf. Very Large Data Bases ident: ref43 article-title: Sampling large databases for association rules – ident: ref57 doi: 10.1016/j.eswa.2014.11.001 – ident: ref83 doi: 10.1109/ICSMC.2009.5346628 – ident: ref31 doi: 10.1109/TEVC.2013.2290086 – ident: ref52 doi: 10.1109/TKDE.2009.46 – ident: ref73 doi: 10.1109/CEC.2013.6557902 – ident: ref82 doi: 10.1109/TMAG.2017.2661987 – ident: ref65 doi: 10.1007/s00500-016-2106-1 – ident: ref39 doi: 10.1109/ICDM.2011.118 – ident: ref74 doi: 10.1109/CEC.2014.6900618 – ident: ref47 doi: 10.1109/TKDE.2005.166 – ident: ref25 doi: 10.1109/MCI.2017.2708578 – ident: ref7 doi: 10.1145/2396761.2396775 – ident: ref44 doi: 10.1145/253260.253325 – ident: ref24 doi: 10.1109/TITS.2020.3012387 – ident: ref41 doi: 10.1145/568271.223813 – ident: ref55 doi: 10.1007/978-3-319-08326-1_9 – ident: ref30 doi: 10.1109/MCI.2018.2806997 – start-page: 432 year: 1995 ident: ref42 article-title: An efficient algorithm for mining association rules in large databases – ident: ref34 doi: 10.1145/2330163.2330285 – ident: ref58 doi: 10.1016/j.ins.2020.02.073 – volume-title: Data Mining: Concepts and Techniques year: 2011 ident: ref2 – ident: ref11 doi: 10.1137/1.9781611972726.27 – ident: ref87 doi: 10.1109/MCI.2017.2742868 – ident: ref72 doi: 10.1109/4235.996017 – ident: ref12 doi: 10.1109/TKDE.2015.2399310 – ident: ref86 doi: 10.1109/TEVC.2020.3013290 – ident: ref75 doi: 10.1016/j.knosys.2006.08.005 – ident: ref77 doi: 10.1016/j.knosys.2008.03.011 – ident: ref63 doi: 10.1016/j.engappai.2016.07.006 – ident: ref3 doi: 10.1007/978-3-030-04921-8 – start-page: 1 volume-title: Proc. ICDM Workshop Frequent Itemset Mining Implementations ident: ref48 article-title: AFOPT: An efficient implementation of pattern growth approach – ident: ref50 doi: 10.1109/69.846291 – volume: 1 start-page: 443 issue: 5 year: 2010 ident: ref32 article-title: A multiobjective genetic algorithm for feature selection in data mining publication-title: Int. J. Comput. Sci. Inf. Technol. – ident: ref62 doi: 10.1080/08839514.2014.891839 – ident: ref15 doi: 10.1007/11430919_79 – ident: ref85 doi: 10.1109/TEVC.2005.851275 – ident: ref29 doi: 10.1109/MCI.2014.2369894 – ident: ref22 doi: 10.1109/TCYB.2019.2896267 – ident: ref79 doi: 10.1007/978-3-319-46131-1_8 – volume-title: Multi Objective Optimization Using Evolutionary Algorithms year: 2001 ident: ref27 – ident: ref18 doi: 10.1145/2396761.2396773 – ident: ref1 doi: 10.1007/s10618-006-0059-1 – ident: ref67 doi: 10.1109/ACCESS.2019.2958150 – ident: ref21 doi: 10.1109/TKDE.2015.2458860 – ident: ref54 doi: 10.1007/978-3-319-27060-9_44 – volume: 5 volume-title: Evolutionary Algorithms for Solving Multi-Objective Problems year: 2007 ident: ref69 – ident: ref70 doi: 10.1007/s10589-014-9644-1 – ident: ref13 doi: 10.1137/1.9781611972740.51 – ident: ref60 doi: 10.1016/j.ins.2016.03.039 – ident: ref33 doi: 10.1016/j.ins.2013.01.028 – volume: 1215 start-page: 487 volume-title: Proc. 20th Int. Conf. Very Large Data Bases ident: ref8 article-title: Fast algorithms for mining association rules – ident: ref51 doi: 10.1016/j.datak.2007.06.009 – ident: ref16 doi: 10.1145/1835804.1835839 – ident: ref78 doi: 10.4018/ijdwm.2014010101 – ident: ref14 doi: 10.1109/TKDE.2019.2942594 – ident: ref59 doi: 10.1145/508791.508905 – ident: ref66 doi: 10.1109/ACCESS.2018.2819162 – ident: ref84 doi: 10.1109/4235.797969 – ident: ref19 doi: 10.1109/BigData.2018.8622405 – ident: ref36 doi: 10.1145/2742642 – ident: ref37 doi: 10.1140/epjds/s13688-018-0133-0 – ident: ref20 doi: 10.1002/widm.1242 – ident: ref64 doi: 10.1109/ICSMC.1997.637339 – ident: ref45 doi: 10.1006/jpdc.2000.1693 – ident: ref23 doi: 10.1109/TCYB.2020.2970176 – ident: ref26 doi: 10.1016/j.asoc.2017.09.033 – ident: ref28 doi: 10.1109/MCI.2006.1597059 – ident: ref40 doi: 10.1007/978-3-319-31753-3_29 – ident: ref46 doi: 10.1145/1454008.1454027 – ident: ref5 doi: 10.1109/JSEN.2020.2991045 – ident: ref10 doi: 10.1109/ICDM.2001.989550 – ident: ref49 doi: 10.1109/CIS.2007.177 – ident: ref53 doi: 10.1016/j.eswa.2017.08.028 – ident: ref76 doi: 10.1109/TKDE.2005.183 – ident: ref35 doi: 10.1007/s00500-019-03829-3 – ident: ref9 doi: 10.1145/335191.335372 – ident: ref56 doi: 10.1109/ICDM.2012.20 – ident: ref17 doi: 10.1109/TKDE.2012.59 – ident: ref38 doi: 10.1145/2753765 – ident: ref80 doi: 10.1109/TEVC.2018.2875430 – ident: ref6 doi: 10.1145/170036.170072 – ident: ref68 doi: 10.1109/TEVC.2019.2918140 |
| SSID | ssj0008781 |
| Score | 2.461899 |
| Snippet | Pattern mining (PM) refers to the process of discovering patterns of interest to users from data. However, most studies have considered only one pattern, such... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Convergence Data mining Datasets Evolutionary algorithms Evolutionary computation Genetic algorithms Itemsets multi-objective evolutionary algorithm occupancy Optimization Pattern analysis Pattern mining Sociology Solution space Statistics support utility |
| Title | Mining High Quality Patterns Using Multi-Objective Evolutionary Algorithm |
| URI | https://ieeexplore.ieee.org/document/9238432 https://www.proquest.com/docview/2686300854 |
| Volume | 34 |
| WOSCitedRecordID | wos000822378300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2191 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008781 issn: 1041-4347 databaseCode: RIE dateStart: 19890101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4WEenG6K0yk5eBLr0jZpkuPQDUWcO0zYrbRp6g_mJvsF--9N0mwoiuCthwRKv-Tl-5r33gdwrhkBCTKJPc4J8UjIMk9QFnqSCyYxURhniTWbYL0eHw5FvwSXm1oYpZRNPlNX5tHe5WcTuTC_ylqajHAS6oC7xVhU1Gptoi5n1pBUqwutiULC3A2mj0VrcH_T0Uow0AIVh8aQ7tsZZE1VfkRie7x0q_97sT3YdTQStQvc96GkxjWori0akNuxNdj50m-wBhVDLYvOzHW4e7DeEMhkeqCilcYK9W27zfEM2VQCZMtzvcf0rQiLqLN0KzWZrlB79DyZvs5f3g_gqdsZXN96zljBk5rhzD3GRcKp0tJKaTakWYKQjGYi41zlESPUz1OmA7IvM6pw7tM0TImfBSrCicBpHoWHUB5PxuoIUJLqDW4qWhllJFFaa5uUuZQmeRTkqU8agNefOpau67gxvxjFVn1gERt0YoNO7NBpwMVmykfRcuOvwXUDx2agQ6IBzTWesduUsziIuGkwxik5_n3WCVQCU91g8_uaUJ5PF-oUtuVSQzM9s-vtE8e10HE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL2MKTgfnE7F-ZkHn8S6tE2a5FF0Y2M69zDBt9KmqR_MTfYh-O9N0mwoiuBbHxIoPcnNOc299wCcakZAgkxij3NCPBKyzBOUhZ7kgklMFMZZYs0mWK_HHx5EvwTny1oYpZRNPlMX5tHe5WdjOTe_yhqajHAS6oC7QgkJcFGttYy7nFlLUq0vtCoKCXN3mD4WjUH3uqm1YKAlKg6NJd23U8jaqvyIxfaAaVX_92qbsOGIJLoskN-CkhrVoLowaUBuz9Zg_UvHwRpUDLksejNvQ-fWukMgk-uBimYaH6hvG26OpsgmEyBboOvdpS9FYETNd7dWk8kHuhw-jifPs6fXHbhvNQdXbc9ZK3hSc5yZx7hIOFVaXCnNhzRPEJLRTGScqzxihPp5ynRI9mVGFc59moYp8bNARTgROM2jcBfKo_FI7QFKUr3FTU0ro4wkSqttkzSX0iSPgjz1SR3w4lPH0vUdN_YXw9jqDyxig05s0IkdOnU4W055K5pu_DV428CxHOiQqMPhAs_YbctpHETctBjjlOz_PusE1tqD25v4ptPrHkAlMLUONtvvEMqzyVwdwap81zBNju3a-wTJBtO4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+High+Quality+Patterns+Using+Multi-Objective+Evolutionary+Algorithm&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Fang%2C+Wei&rft.au=Zhang%2C+Qiang&rft.au=Sun%2C+Jun&rft.au=Wu%2C+Xiaojun&rft.date=2022-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=34&rft.issue=8&rft.spage=3883&rft_id=info:doi/10.1109%2FTKDE.2020.3033519&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |