Tensor LISTA: Differentiable sparse representation learning for multi-dimensional tensor

The existing algorithms for sparse coding, which aim to seek sparse representation for given multi-dimensional signal, suffer from two main defects. Vector-based algorithms, e.g., LISTA, couldn’t handle the signal in tensor form well. On the other hand, tensor-based algorithms are not learnable yet,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 463; s. 554 - 565
Hlavní autoři: Zhao, Qi, Liu, Guangcan, Liu, Qingshan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 06.11.2021
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The existing algorithms for sparse coding, which aim to seek sparse representation for given multi-dimensional signal, suffer from two main defects. Vector-based algorithms, e.g., LISTA, couldn’t handle the signal in tensor form well. On the other hand, tensor-based algorithms are not learnable yet, leading to high computational cost. Towards this dilemma, we propose Tensor LISTA (TLISTA) bA to a multi-dimensional tensor-based model. Benefiting from tensor representation and differentiable programming, TLISTA achieves rapid inference speed and acquires more valuable representation for the data primarily organized in tensor form. Theoretical analysis about the convergence of TLISTA is then introduced, showing that TLISTA can attain the linear convergence rate. Extensive experiments confirm the effectiveness and efficiency of TLISTA for tensor sparse coding.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2021.08.024