Single-frame multi-exposure image fusion via narrowband filter decoupled imaging

Multi-exposure image fusion (MEF) can efficiently enhance the dynamic range of image. It can break through the physical imaging limitations inherent in photoelectric sensors. However, the single-camera multi-exposure method requires a time investment, while the multi-camera single-exposure approach...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 625; s. 129441
Hlavní autoři: Zhao, Zhuang, Ke, Xin, Han, Jing, Wu, Zijian, Lu, Jun, Bai, Lianfa, Gong, Shuaifeng, Zhang, Yan, Peng, Yong, Xiong, Fengchao, Wei, Duan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 07.04.2025
Témata:
ISSN:0925-2312
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Multi-exposure image fusion (MEF) can efficiently enhance the dynamic range of image. It can break through the physical imaging limitations inherent in photoelectric sensors. However, the single-camera multi-exposure method requires a time investment, while the multi-camera single-exposure approach is subject to imaging conditions. In this paper, we propose a single-frame decoupled imaging method that enables acquiring multiple differently exposed images from a single exposure captured by one color camera. The method leverages the physical imaging process of a color camera, decoupling the narrowband filtered RAW data into multiple exposure images by exploiting the variations in quantum efficiency distributions. And based on this approach, we construct a decomposed single-frame (DSF) images dataset. The sequence of images within this dataset are naturally spatio-temporally consistent and no longer require registration. Furthermore, a decomposed single-frame MEF network is proposed, termed as DSF-MEF, which employs a hierarchical encoder-decoder structure to predict exposure weight mappings. Specifically, we design a residual mixed attention module (RMAM) for exposure weight prediction. It uses channel and spatial domain attention mechanisms and residual jump connections to perform feature extraction. Subsequently, to improve the overall spatial continuity representation of the exposure weight map sequence, we construct multiscale feature integration module (MFIM) to capture exposure information at different resolution scales. A loss function composed of image structural similarity, gradient texture similarity, and pixel intensity is designed to comprehensively optimize fusion performance. Experimental results show that our method not only achieves single-frame HDR fusion imaging, but also achieves better fusion visual effects compared to other advanced methods.
AbstractList Multi-exposure image fusion (MEF) can efficiently enhance the dynamic range of image. It can break through the physical imaging limitations inherent in photoelectric sensors. However, the single-camera multi-exposure method requires a time investment, while the multi-camera single-exposure approach is subject to imaging conditions. In this paper, we propose a single-frame decoupled imaging method that enables acquiring multiple differently exposed images from a single exposure captured by one color camera. The method leverages the physical imaging process of a color camera, decoupling the narrowband filtered RAW data into multiple exposure images by exploiting the variations in quantum efficiency distributions. And based on this approach, we construct a decomposed single-frame (DSF) images dataset. The sequence of images within this dataset are naturally spatio-temporally consistent and no longer require registration. Furthermore, a decomposed single-frame MEF network is proposed, termed as DSF-MEF, which employs a hierarchical encoder-decoder structure to predict exposure weight mappings. Specifically, we design a residual mixed attention module (RMAM) for exposure weight prediction. It uses channel and spatial domain attention mechanisms and residual jump connections to perform feature extraction. Subsequently, to improve the overall spatial continuity representation of the exposure weight map sequence, we construct multiscale feature integration module (MFIM) to capture exposure information at different resolution scales. A loss function composed of image structural similarity, gradient texture similarity, and pixel intensity is designed to comprehensively optimize fusion performance. Experimental results show that our method not only achieves single-frame HDR fusion imaging, but also achieves better fusion visual effects compared to other advanced methods.
ArticleNumber 129441
Author Gong, Shuaifeng
Wei, Duan
Ke, Xin
Xiong, Fengchao
Wu, Zijian
Peng, Yong
Lu, Jun
Han, Jing
Zhang, Yan
Zhao, Zhuang
Bai, Lianfa
Author_xml – sequence: 1
  givenname: Zhuang
  surname: Zhao
  fullname: Zhao, Zhuang
  email: zhaozhuang@njust.edu.cn
  organization: Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 2
  givenname: Xin
  surname: Ke
  fullname: Ke, Xin
  organization: Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 3
  givenname: Jing
  surname: Han
  fullname: Han, Jing
  organization: Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 4
  givenname: Zijian
  surname: Wu
  fullname: Wu, Zijian
  organization: Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 5
  givenname: Jun
  surname: Lu
  fullname: Lu, Jun
  organization: Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 6
  givenname: Lianfa
  surname: Bai
  fullname: Bai, Lianfa
  organization: Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 7
  givenname: Shuaifeng
  surname: Gong
  fullname: Gong, Shuaifeng
  organization: Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 8
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 9
  givenname: Yong
  surname: Peng
  fullname: Peng, Yong
  organization: Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 10
  givenname: Fengchao
  orcidid: 0000-0002-9753-4919
  surname: Xiong
  fullname: Xiong, Fengchao
  organization: Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 11
  givenname: Duan
  orcidid: 0009-0008-0880-3592
  surname: Wei
  fullname: Wei, Duan
  organization: Wuhan University of Science and Technology, Wuhan 430081, China
BookMark eNp9kMtOwzAQRb0oEm3hD1j4BxLsyXuDhCoelSqBBKwtPyaVq8Su7KTA35MS1qxmceceXZ0VWTjvkJAbzlLOeHl7SB2O2vcpMChSDk2e8wVZsgaKBDIOl2QV44ExXk3Zkry-WbfvMGmD7JH2YzfYBL-OPo4Bqe3lHmk7RusdPVlJnQzBfyrpDG1tN2CgBrUfjx2a3-eJdUUuWtlFvP67a_Lx-PC-eU52L0_bzf0u0VAUQ4JtwWVV1gAoQSpj8oajlnXGQPEi10qpsirBqIpVTS5rVUusGHIGILOaq2xN8pmrg48xYCuOYZoQvgVn4mxCHMRsQpxNiNnEVLubazhtO1kMImqLTqOxAfUgjLf_A34AoipufQ
Cites_doi 10.1016/j.inffus.2021.10.006
10.1049/el:20000267
10.1007/s11263-021-01501-8
10.1109/ICCV.2017.505
10.1109/TIP.2019.2952716
10.1117/1.1484495
10.1109/TPAMI.2012.213
10.2352/J.ImagingSci.Technol.2023.67.5.050409
10.7498/aps.56.3227
10.1109/CVPR.2016.90
10.1145/2366145.2366222
10.1016/j.optcom.2014.12.032
10.1609/aaai.v34i07.6975
10.1049/el:20081754
10.1109/TIP.2020.2999855
10.1109/TIP.2003.819861
10.1609/aaai.v36i2.20109
10.1109/TIP.2017.2671921
10.1109/TIP.2020.2987133
10.1142/S0218126616501231
10.1109/JAS.2022.105686
10.1016/j.compeleceng.2011.07.012
10.1007/s00521-020-05387-4
10.1587/transinf.2017EDL8173
10.1109/ICIP.2018.8451689
10.1109/CVPRW59228.2023.00234
10.1016/j.inffus.2019.07.011
10.1609/aaai.v34i07.6936
10.1016/j.physd.2004.11.001
10.1016/j.aqpro.2015.02.019
10.1016/j.jvcir.2015.06.021
10.1109/TCSVT.2019.2919310
10.1007/s00034-019-01131-z
10.1109/ICME.2017.8019529
10.1109/TPAMI.2020.3012548
10.1016/j.jvcir.2019.06.002
10.1109/TIP.2023.3261747
10.1109/TCI.2017.2786138
10.1109/TIP.2015.2442920
10.1016/j.inffus.2021.02.005
10.1016/j.biosystemseng.2009.02.009
10.1109/ICIP.2003.1247209
10.1016/j.imavis.2005.02.004
10.1109/TIP.2018.2794218
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2025.129441
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_neucom_2025_129441
S0925231225001134
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
WUQ
XPP
~HD
ID FETCH-LOGICAL-c255t-ef51a76822ea2abdd491eca8302b154cbbb6762db70794a8b8ae70e1022a381b3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001422574300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 08:01:29 EST 2025
Sat May 03 15:40:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-scale feature integration
Single-frame HDR imaging
Quantum efficiency
Multi-exposure image fusion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-ef51a76822ea2abdd491eca8302b154cbbb6762db70794a8b8ae70e1022a381b3
ORCID 0000-0002-9753-4919
0009-0008-0880-3592
ParticipantIDs crossref_primary_10_1016_j_neucom_2025_129441
elsevier_sciencedirect_doi_10_1016_j_neucom_2025_129441
PublicationCentury 2000
PublicationDate 2025-04-07
PublicationDateYYYYMMDD 2025-04-07
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ulyanov, Vedaldi, Lempitsky (bib38) 2016
Roberts, van Aardt, Ahmed (bib46) 2008; 2
Hossny, Nahavandi, Creighton (bib48) 2008; 44
Wang, Chen, Wu, Li (bib43) 2020; 30
Ma, Li, Yong, Wang, Meng, Zhang (bib13) 2017; 26
Ullah, Pedersen, Waaseth, Baltzersen (bib33) 2023; 67
Wang, Bovik, Sheikh, Simoncelli (bib15) 2004; 13
Paul, Sevcenco, Agathoklis (bib17) 2016; 25
Ramanath, Snyder, Bilbro, Sander (bib11) 2002; 11
Zhang, Bai, Zhang (bib35) 2007; 56
Zhao, Laganiere, Liu (bib54) 2007; 3
Yang, Chen, Le, Ma (bib25) 2021; 33
Zhang (bib9) 2021; 74
Xu, Ma, Jiang, Guo, Ling (bib32) 2022; 44
Q. Yue, L.Hyo JongDensely connected convolutional networks for multi-exposure fusion, 2018.
Li, Ma, Yong, Zhang (bib4) 2020; 29
Guo, Li, Guo, Loy, Hou, Kwong, Cong (bib36) 2020
K. He, X. Zhang, S. Ren, J. Sun, Ieee, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, 2016, pp. 770-778.
Goshtasby (bib1) 2005; 23
Ma, Duanmu, Yeganeh, Wang (bib14) 2018; 4
Woo, Park, Lee, Kweon (bib39) 2018
Cui, Feng, Xu, Li, Chen (bib51) 2015; 341
Z. Zhao, J. Zhang, H. Bai, Y. Wang, Y. Cui, L. Deng, K. Sun, C. Zhang, J. Liu, S. Xu, Deep Convolutional Sparse Coding Networks for Interpretable Image Fusion, 2023.
Ma, Zeng, Wang (bib19) 2015; 24
Haghighat, Aghagolzadeh, Seyedarabi (bib47) 2011; 37
Hayat, Imran (bib2) 2019; 62
P. Jagalingam, A.V. Hegde, A Review of Quality Metrics for Fused Image, in: International Conference on Water Resources, Coastal and Ocean Engineering (ICWRCOE), Natl Inst Technol Karnataka, Mangaluru, INDIA, 2015, pp. 133-142.
Gao, Xu, Li, Yang, Zeng, Qi (bib41) 2023; 32
He, Sun, Tang (bib22) 2013; 35
Wang, Shen, Zhang (bib50) 2005; 200
Han, Li, Guo, Ma (bib23) 2022; 79
Xu, Ma, Zhang (bib24) 2020; 29
Zhang, Liu, Sun, Yan, Zhao, Zhang (bib31) 2020; 54
Wang, Wang, Xu, Liu (bib27) 2018; E101D
Bulanon, Burks, Alchanatis (bib45) 2009; 103
Lee, Park, Cho, Ieee (bib3) 2018
Sen, Kalantari, Yaesoubi, Darabi, Goldman, Shechtman (bib10) 2012; 31
Cai, Gu, Zhang (bib6) 2018; 27
L. Qu, S. Liu, M. Wang, Z. SongI. Assoc Advancement Artificial, TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework Using Self-Supervised Multi-Task Learning, in: 36th AAAI Conference on Artificial Intelligence / 34th Conference on Innovative Applications of Artificial Intelligence / 12th Symposium on Educational Advances in Artificial Intelligence, Electr Network, 2022, pp. 2126-2134..
Ronneberger, Fischer, Brox (bib37) 2015
Bavirisetti, Xiao, Zhao, Dhuli, Liu (bib44) 2019; 38
H. Xu, J. Ma, Z. Le, J. Jiang, X. Guo, I. Assoc Advancement Artificial, FusionDN: A Unified Densely Connected Network for Image Fusion, in: 34th AAAI Conference on Artificial Intelligence / 32nd Innovative Applications of Artificial Intelligence Conference / 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, NY, 2020, pp. 12484-12491.
Zhang, Ma (bib30) 2021; 129
H. Li, L. Zhang, Ieee, Multi-exposure fusion with cnn features, in: 25th IEEE International Conference on Image Processing (ICIP), Athens, GREECE, 2018, pp. 1723-1727.
Rajalingam, Priya (bib52) 2018; 2
Liu, Wang (bib12) 2015; 31
Ma, Tang, Fan, Huang, Mei, Ma (bib42) 2022; 9
Xydeas, Petrovic (bib53) 2000; 36
H. Zhang, H. Xu, Y. Xiao, X. Guo, J. Ma, I. Assoc Advancement Artificial, Rethinking the Image Fusion: A Fast Unified Image Fusion Network based on Proportional Maintenance of Gradient and Intensity, in: 34th AAAI Conference on Artificial Intelligence / 32nd Innovative Applications of Artificial Intelligence Conference / 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, NY, 2020, pp. 12797-12804.
Ma, Duanm, Zhu, Fang, Wang (bib21) 2020; 29
Chen, Chen, Guo, Liang, Wong, Zhang (bib34) 2021
G. Piella, H. Heijmans, Ieee, Ieee, A new quality metric for image fusion, in: IEEE International Conference on Image Processing, Barcelona, Spain, 2003, pp. 173-176.
F. Kou, Z. Li, C. Wen, W. Chen, Ieee, Multi-scale exposure fusion via gradient domain guided image filtering, in: IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, HONG KONG, 2017, pp. 1105-1110.
Yin, Chen, Peng, Tsai (bib28) 2020
K.R. Prabhakar, V.S. Srikar, R.V. Babu, Ieee, DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs, in: 16th IEEE International Conference on Computer Vision (ICCV), Venice, ITALY, 2017, pp. 4724-4732.
Zhao (10.1016/j.neucom.2025.129441_bib54) 2007; 3
Zhang (10.1016/j.neucom.2025.129441_bib31) 2020; 54
Wang (10.1016/j.neucom.2025.129441_bib50) 2005; 200
Hossny (10.1016/j.neucom.2025.129441_bib48) 2008; 44
Xydeas (10.1016/j.neucom.2025.129441_bib53) 2000; 36
10.1016/j.neucom.2025.129441_bib5
Haghighat (10.1016/j.neucom.2025.129441_bib47) 2011; 37
Yin (10.1016/j.neucom.2025.129441_bib28) 2020
10.1016/j.neucom.2025.129441_bib40
10.1016/j.neucom.2025.129441_bib49
Ma (10.1016/j.neucom.2025.129441_bib13) 2017; 26
Ronneberger (10.1016/j.neucom.2025.129441_bib37) 2015
Hayat (10.1016/j.neucom.2025.129441_bib2) 2019; 62
Rajalingam (10.1016/j.neucom.2025.129441_bib52) 2018; 2
Yang (10.1016/j.neucom.2025.129441_bib25) 2021; 33
Ullah (10.1016/j.neucom.2025.129441_bib33) 2023; 67
Chen (10.1016/j.neucom.2025.129441_bib34) 2021
Han (10.1016/j.neucom.2025.129441_bib23) 2022; 79
Zhang (10.1016/j.neucom.2025.129441_bib9) 2021; 74
He (10.1016/j.neucom.2025.129441_bib22) 2013; 35
10.1016/j.neucom.2025.129441_bib55
Ma (10.1016/j.neucom.2025.129441_bib14) 2018; 4
Cai (10.1016/j.neucom.2025.129441_bib6) 2018; 27
Ulyanov (10.1016/j.neucom.2025.129441_bib38) 2016
10.1016/j.neucom.2025.129441_bib16
Ma (10.1016/j.neucom.2025.129441_bib42) 2022; 9
10.1016/j.neucom.2025.129441_bib18
Zhang (10.1016/j.neucom.2025.129441_bib35) 2007; 56
Woo (10.1016/j.neucom.2025.129441_bib39) 2018
10.1016/j.neucom.2025.129441_bib20
Wang (10.1016/j.neucom.2025.129441_bib27) 2018; E101D
Roberts (10.1016/j.neucom.2025.129441_bib46) 2008; 2
Lee (10.1016/j.neucom.2025.129441_bib3) 2018
Xu (10.1016/j.neucom.2025.129441_bib24) 2020; 29
Paul (10.1016/j.neucom.2025.129441_bib17) 2016; 25
Ma (10.1016/j.neucom.2025.129441_bib19) 2015; 24
Goshtasby (10.1016/j.neucom.2025.129441_bib1) 2005; 23
Cui (10.1016/j.neucom.2025.129441_bib51) 2015; 341
10.1016/j.neucom.2025.129441_bib29
Gao (10.1016/j.neucom.2025.129441_bib41) 2023; 32
Ramanath (10.1016/j.neucom.2025.129441_bib11) 2002; 11
10.1016/j.neucom.2025.129441_bib26
Li (10.1016/j.neucom.2025.129441_bib4) 2020; 29
Liu (10.1016/j.neucom.2025.129441_bib12) 2015; 31
Xu (10.1016/j.neucom.2025.129441_bib32) 2022; 44
Wang (10.1016/j.neucom.2025.129441_bib43) 2020; 30
Bulanon (10.1016/j.neucom.2025.129441_bib45) 2009; 103
Ma (10.1016/j.neucom.2025.129441_bib21) 2020; 29
Sen (10.1016/j.neucom.2025.129441_bib10) 2012; 31
10.1016/j.neucom.2025.129441_bib8
10.1016/j.neucom.2025.129441_bib7
Wang (10.1016/j.neucom.2025.129441_bib15) 2004; 13
Guo (10.1016/j.neucom.2025.129441_bib36) 2020
Bavirisetti (10.1016/j.neucom.2025.129441_bib44) 2019; 38
Zhang (10.1016/j.neucom.2025.129441_bib30) 2021; 129
References_xml – year: 2016
  ident: bib38
  article-title: Instance normalization: the missing ingredient for fast stylization arXiv
  publication-title: arXiv
– volume: 38
  start-page: 5576
  year: 2019
  end-page: 5605
  ident: bib44
  article-title: Multi-scale guided image and video fusion: a fast and efficient approach
  publication-title: Circuits Syst. Signal Process.
– reference: H. Li, L. Zhang, Ieee, Multi-exposure fusion with cnn features, in: 25th IEEE International Conference on Image Processing (ICIP), Athens, GREECE, 2018, pp. 1723-1727.
– volume: 25
  year: 2016
  ident: bib17
  article-title: Multi-exposure and multi-focus image fusion in gradient domain
  publication-title: J. Circuits Syst. Comput.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Ieee, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, 2016, pp. 770-778.
– volume: 44
  start-page: 1066
  year: 2008
  end-page: U1028
  ident: bib48
  article-title: Comments on 'Information measure for performance of image fusion
  publication-title: Electron. Lett.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib37
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 129
  start-page: 2761
  year: 2021
  end-page: 2785
  ident: bib30
  article-title: SDNet: a versatile squeeze-and-decomposition network for real-time image fusion
  publication-title: Int. J. Comput. Vis.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib15
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– reference: H. Xu, J. Ma, Z. Le, J. Jiang, X. Guo, I. Assoc Advancement Artificial, FusionDN: A Unified Densely Connected Network for Image Fusion, in: 34th AAAI Conference on Artificial Intelligence / 32nd Innovative Applications of Artificial Intelligence Conference / 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, NY, 2020, pp. 12484-12491.
– volume: 27
  start-page: 2049
  year: 2018
  end-page: 2062
  ident: bib6
  article-title: Learning a deep single image contrast enhancer from multi-exposure images
  publication-title: IEEE Trans. Image Process.
– reference: L. Qu, S. Liu, M. Wang, Z. SongI. Assoc Advancement Artificial, TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework Using Self-Supervised Multi-Task Learning, in: 36th AAAI Conference on Artificial Intelligence / 34th Conference on Innovative Applications of Artificial Intelligence / 12th Symposium on Educational Advances in Artificial Intelligence, Electr Network, 2022, pp. 2126-2134..
– start-page: 2482
  year: 2021
  end-page: 2491
  ident: bib34
  article-title: IEEE, HDR video reconstruction: a coarse-to-fine network and a real-world benchmark dataset
  publication-title: 18th IEEE/CVF International Conference on Computer Vision (ICCV)
– volume: 56
  start-page: 3227
  year: 2007
  end-page: 3233
  ident: bib35
  article-title: Method of fusing dual-spectrum low light Level images based on gray-scale spatial correlation
  publication-title: Acta Phys. Sin.
– volume: 74
  start-page: 111
  year: 2021
  end-page: 131
  ident: bib9
  article-title: Benchmarking and comparing multi-exposure image fusion algorithms
  publication-title: Inf. Fusion
– volume: 2
  year: 2008
  ident: bib46
  article-title: Assessment of image fusion procedures using entropy, image quality, and multispectral classification
  publication-title: J. Appl. Remote Sens.
– volume: 36
  start-page: 308
  year: 2000
  end-page: 309
  ident: bib53
  article-title: Objective image fusion performance measure
  publication-title: Electron. Lett.
– start-page: 3
  year: 2018
  end-page: 19
  ident: bib39
  article-title: CBAM: convolutional block attention module
  publication-title: 15th European Conference on Computer Vision (ECCV)
– volume: 2
  start-page: 52
  year: 2018
  end-page: 60
  ident: bib52
  article-title: Hybrid multimodality medical image fusion technique for feature enhancement in
  publication-title: Med. Diagn.
– volume: 200
  start-page: 287
  year: 2005
  end-page: 295
  ident: bib50
  article-title: A nonlinear correlation measure for multivariable data set
  publication-title: Phys. D. Nonlinear Phenom.
– volume: 30
  start-page: 2418
  year: 2020
  end-page: 2429
  ident: bib43
  article-title: Detail-enhanced multi-scale exposure fusion in YUV color space
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 11
  start-page: 306
  year: 2002
  end-page: 315
  ident: bib11
  article-title: Demosaicking methods for Bayer color arrays
  publication-title: J. Electron. Imaging
– volume: 33
  start-page: 6133
  year: 2021
  end-page: 6145
  ident: bib25
  article-title: GANFuse: a novel multi-exposure image fusion method based on generative adversarial networks
  publication-title: Neural Comput. Appl.
– volume: 44
  start-page: 502
  year: 2022
  end-page: 518
  ident: bib32
  article-title: U2Fusion: a unified unsupervised image fusion network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 35
  start-page: 1397
  year: 2013
  end-page: 1409
  ident: bib22
  article-title: Guided image filtering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 29
  start-page: 7203
  year: 2020
  end-page: 7216
  ident: bib24
  article-title: MEF-GAN: multi-exposure image fusion via generative adversarial networks
  publication-title: IEEE Trans. Image Process.
– reference: G. Piella, H. Heijmans, Ieee, Ieee, A new quality metric for image fusion, in: IEEE International Conference on Image Processing, Barcelona, Spain, 2003, pp. 173-176.
– reference: K.R. Prabhakar, V.S. Srikar, R.V. Babu, Ieee, DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs, in: 16th IEEE International Conference on Computer Vision (ICCV), Venice, ITALY, 2017, pp. 4724-4732.
– volume: 23
  start-page: 611
  year: 2005
  end-page: 618
  ident: bib1
  article-title: Fusion of multi-exposure images
  publication-title: Image Vis. Comput.
– reference: Q. Yue, L.Hyo JongDensely connected convolutional networks for multi-exposure fusion, 2018.
– volume: 37
  start-page: 744
  year: 2011
  end-page: 756
  ident: bib47
  article-title: A non-reference image fusion metric based on mutual information of image features
  publication-title: Comput. Electr. Eng.
– volume: 31
  year: 2012
  ident: bib10
  article-title: Robust patch-based HDR reconstruction of dynamic scenes
  publication-title: Acm Trans. Graph.
– start-page: 1777
  year: 2020
  end-page: 1786
  ident: bib36
  article-title: IEEE, zero-reference deep curve estimation for low-light image enhancement
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 62
  start-page: 295
  year: 2019
  end-page: 308
  ident: bib2
  article-title: Ghost-free multi exposure image fusion technique using dense SIFT descriptor and guided filter
  publication-title: J. Vis. Commun. Image Represent.
– volume: 24
  start-page: 3345
  year: 2015
  end-page: 3356
  ident: bib19
  article-title: Perceptual quality assessment for multi-exposure image fusion
  publication-title: IEEE Trans. Image Process.
– volume: 79
  start-page: 248
  year: 2022
  end-page: 262
  ident: bib23
  article-title: Multi-exposure image fusion via deep perceptual enhancement
  publication-title: Inf. Fusion
– reference: P. Jagalingam, A.V. Hegde, A Review of Quality Metrics for Fused Image, in: International Conference on Water Resources, Coastal and Ocean Engineering (ICWRCOE), Natl Inst Technol Karnataka, Mangaluru, INDIA, 2015, pp. 133-142.
– reference: Z. Zhao, J. Zhang, H. Bai, Y. Wang, Y. Cui, L. Deng, K. Sun, C. Zhang, J. Liu, S. Xu, Deep Convolutional Sparse Coding Networks for Interpretable Image Fusion, 2023.
– volume: 29
  start-page: 2808
  year: 2020
  end-page: 2819
  ident: bib21
  article-title: Deep guided learning for fast multi-exposure image fusion
  publication-title: IEEE Trans. Image Process.
– volume: 67
  year: 2023
  ident: bib33
  article-title: Multi-attention guided SKFHDRNet for HDR video reconstruction
  publication-title: J. Imaging Sci. Technol.
– volume: 103
  start-page: 12
  year: 2009
  end-page: 22
  ident: bib45
  article-title: Image fusion of visible and thermal images for fruit detection
  publication-title: Biosyst. Eng.
– volume: E101D
  start-page: 560
  year: 2018
  end-page: 563
  ident: bib27
  article-title: End-to-end exposure fusion using convolutional neural network
  publication-title: Ieice Trans. Inf. Syst.
– volume: 32
  start-page: 1978
  year: 2023
  end-page: 1991
  ident: bib41
  article-title: CTCNet: a CNN-transformer cooperation network for face image super-resolution
  publication-title: IEEE Trans. Image Process.
– volume: 31
  start-page: 208
  year: 2015
  end-page: 224
  ident: bib12
  article-title: Dense SIFT for ghost-free multi-exposure fusion
  publication-title: J. Vis. Commun. Image Represent.
– volume: 26
  start-page: 2519
  year: 2017
  end-page: 2532
  ident: bib13
  article-title: Robust multi-exposure image fusion: a structural patch decomposition approach
  publication-title: IEEE Trans. Image Process.
– reference: F. Kou, Z. Li, C. Wen, W. Chen, Ieee, Multi-scale exposure fusion via gradient domain guided image filtering, in: IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, HONG KONG, 2017, pp. 1105-1110.
– reference: H. Zhang, H. Xu, Y. Xiao, X. Guo, J. Ma, I. Assoc Advancement Artificial, Rethinking the Image Fusion: A Fast Unified Image Fusion Network based on Proportional Maintenance of Gradient and Intensity, in: 34th AAAI Conference on Artificial Intelligence / 32nd Innovative Applications of Artificial Intelligence Conference / 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, NY, 2020, pp. 12797-12804.
– volume: 29
  start-page: 5805
  year: 2020
  end-page: 5816
  ident: bib4
  article-title: Fast multi-scale structural patch decomposition for multi-exposure image fusion
  publication-title: IEEE Trans. Image Process.
– year: 2020
  ident: bib28
  article-title: IEEE, Deep prior guided network for high-quality image fusion
  publication-title: IEEE International Conference on Multimedia and Expo (ICME)
– volume: 4
  start-page: 60
  year: 2018
  end-page: 72
  ident: bib14
  article-title: Multi-exposure image fusion by optimizing a structural similarity index
  publication-title: IEEE Trans. Comput. Imaging
– volume: 9
  start-page: 1200
  year: 2022
  end-page: 1217
  ident: bib42
  article-title: SwinFusion: cross-domain long-range learning for general image fusion via swin transformer
  publication-title: IEEE-Caa J.. Autom. Sin.
– start-page: 1737
  year: 2018
  end-page: 1741
  ident: bib3
  article-title: A multi-exposure image fusion based on the adaptive weights reflecting the relative pixel intensity and global gradient
  publication-title: 25th IEEE International Conference on Image Processing (ICIP)
– volume: 341
  start-page: 199
  year: 2015
  end-page: 209
  ident: bib51
  article-title: Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition
  publication-title: Opt. Commun.
– volume: 54
  start-page: 99
  year: 2020
  end-page: 118
  ident: bib31
  article-title: IFCNN: a general image fusion framework based on convolutional neural network
  publication-title: Inf. Fusion
– volume: 3
  start-page: 1433
  year: 2007
  end-page: 1447
  ident: bib54
  article-title: Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement
  publication-title: Int. J. Innov. Comput. Inf. Control
– volume: 79
  start-page: 248
  year: 2022
  ident: 10.1016/j.neucom.2025.129441_bib23
  article-title: Multi-exposure image fusion via deep perceptual enhancement
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.10.006
– volume: 36
  start-page: 308
  year: 2000
  ident: 10.1016/j.neucom.2025.129441_bib53
  article-title: Objective image fusion performance measure
  publication-title: Electron. Lett.
  doi: 10.1049/el:20000267
– volume: 129
  start-page: 2761
  year: 2021
  ident: 10.1016/j.neucom.2025.129441_bib30
  article-title: SDNet: a versatile squeeze-and-decomposition network for real-time image fusion
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-021-01501-8
– ident: 10.1016/j.neucom.2025.129441_bib18
  doi: 10.1109/ICCV.2017.505
– volume: 29
  start-page: 2808
  year: 2020
  ident: 10.1016/j.neucom.2025.129441_bib21
  article-title: Deep guided learning for fast multi-exposure image fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2952716
– volume: 11
  start-page: 306
  year: 2002
  ident: 10.1016/j.neucom.2025.129441_bib11
  article-title: Demosaicking methods for Bayer color arrays
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.1484495
– volume: 35
  start-page: 1397
  year: 2013
  ident: 10.1016/j.neucom.2025.129441_bib22
  article-title: Guided image filtering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.213
– volume: 67
  year: 2023
  ident: 10.1016/j.neucom.2025.129441_bib33
  article-title: Multi-attention guided SKFHDRNet for HDR video reconstruction
  publication-title: J. Imaging Sci. Technol.
  doi: 10.2352/J.ImagingSci.Technol.2023.67.5.050409
– volume: 56
  start-page: 3227
  year: 2007
  ident: 10.1016/j.neucom.2025.129441_bib35
  article-title: Method of fusing dual-spectrum low light Level images based on gray-scale spatial correlation
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.56.3227
– ident: 10.1016/j.neucom.2025.129441_bib40
  doi: 10.1109/CVPR.2016.90
– volume: 31
  year: 2012
  ident: 10.1016/j.neucom.2025.129441_bib10
  article-title: Robust patch-based HDR reconstruction of dynamic scenes
  publication-title: Acm Trans. Graph.
  doi: 10.1145/2366145.2366222
– volume: 341
  start-page: 199
  year: 2015
  ident: 10.1016/j.neucom.2025.129441_bib51
  article-title: Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2014.12.032
– start-page: 3
  year: 2018
  ident: 10.1016/j.neucom.2025.129441_bib39
  article-title: CBAM: convolutional block attention module
– ident: 10.1016/j.neucom.2025.129441_bib29
  doi: 10.1609/aaai.v34i07.6975
– volume: 44
  start-page: 1066
  year: 2008
  ident: 10.1016/j.neucom.2025.129441_bib48
  article-title: Comments on 'Information measure for performance of image fusion
  publication-title: Electron. Lett.
  doi: 10.1049/el:20081754
– volume: 29
  start-page: 7203
  year: 2020
  ident: 10.1016/j.neucom.2025.129441_bib24
  article-title: MEF-GAN: multi-exposure image fusion via generative adversarial networks
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2999855
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.neucom.2025.129441_bib15
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– ident: 10.1016/j.neucom.2025.129441_bib26
  doi: 10.1609/aaai.v36i2.20109
– volume: 2
  year: 2008
  ident: 10.1016/j.neucom.2025.129441_bib46
  article-title: Assessment of image fusion procedures using entropy, image quality, and multispectral classification
  publication-title: J. Appl. Remote Sens.
– volume: 26
  start-page: 2519
  year: 2017
  ident: 10.1016/j.neucom.2025.129441_bib13
  article-title: Robust multi-exposure image fusion: a structural patch decomposition approach
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2671921
– year: 2016
  ident: 10.1016/j.neucom.2025.129441_bib38
  article-title: Instance normalization: the missing ingredient for fast stylization arXiv
  publication-title: arXiv
– volume: 29
  start-page: 5805
  year: 2020
  ident: 10.1016/j.neucom.2025.129441_bib4
  article-title: Fast multi-scale structural patch decomposition for multi-exposure image fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2987133
– volume: 25
  year: 2016
  ident: 10.1016/j.neucom.2025.129441_bib17
  article-title: Multi-exposure and multi-focus image fusion in gradient domain
  publication-title: J. Circuits Syst. Comput.
  doi: 10.1142/S0218126616501231
– volume: 9
  start-page: 1200
  year: 2022
  ident: 10.1016/j.neucom.2025.129441_bib42
  article-title: SwinFusion: cross-domain long-range learning for general image fusion via swin transformer
  publication-title: IEEE-Caa J.. Autom. Sin.
  doi: 10.1109/JAS.2022.105686
– volume: 3
  start-page: 1433
  year: 2007
  ident: 10.1016/j.neucom.2025.129441_bib54
  article-title: Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement
  publication-title: Int. J. Innov. Comput. Inf. Control
– volume: 37
  start-page: 744
  year: 2011
  ident: 10.1016/j.neucom.2025.129441_bib47
  article-title: A non-reference image fusion metric based on mutual information of image features
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2011.07.012
– volume: 33
  start-page: 6133
  year: 2021
  ident: 10.1016/j.neucom.2025.129441_bib25
  article-title: GANFuse: a novel multi-exposure image fusion method based on generative adversarial networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05387-4
– volume: E101D
  start-page: 560
  year: 2018
  ident: 10.1016/j.neucom.2025.129441_bib27
  article-title: End-to-end exposure fusion using convolutional neural network
  publication-title: Ieice Trans. Inf. Syst.
  doi: 10.1587/transinf.2017EDL8173
– ident: 10.1016/j.neucom.2025.129441_bib7
  doi: 10.1109/ICIP.2018.8451689
– ident: 10.1016/j.neucom.2025.129441_bib8
  doi: 10.1109/CVPRW59228.2023.00234
– volume: 54
  start-page: 99
  year: 2020
  ident: 10.1016/j.neucom.2025.129441_bib31
  article-title: IFCNN: a general image fusion framework based on convolutional neural network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.07.011
– ident: 10.1016/j.neucom.2025.129441_bib5
  doi: 10.1609/aaai.v34i07.6936
– volume: 200
  start-page: 287
  year: 2005
  ident: 10.1016/j.neucom.2025.129441_bib50
  article-title: A nonlinear correlation measure for multivariable data set
  publication-title: Phys. D. Nonlinear Phenom.
  doi: 10.1016/j.physd.2004.11.001
– start-page: 1737
  year: 2018
  ident: 10.1016/j.neucom.2025.129441_bib3
  article-title: A multi-exposure image fusion based on the adaptive weights reflecting the relative pixel intensity and global gradient
– volume: 2
  start-page: 52
  year: 2018
  ident: 10.1016/j.neucom.2025.129441_bib52
  article-title: Hybrid multimodality medical image fusion technique for feature enhancement in
  publication-title: Med. Diagn.
– ident: 10.1016/j.neucom.2025.129441_bib49
  doi: 10.1016/j.aqpro.2015.02.019
– ident: 10.1016/j.neucom.2025.129441_bib20
– volume: 31
  start-page: 208
  year: 2015
  ident: 10.1016/j.neucom.2025.129441_bib12
  article-title: Dense SIFT for ghost-free multi-exposure fusion
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2015.06.021
– volume: 30
  start-page: 2418
  year: 2020
  ident: 10.1016/j.neucom.2025.129441_bib43
  article-title: Detail-enhanced multi-scale exposure fusion in YUV color space
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2919310
– volume: 38
  start-page: 5576
  year: 2019
  ident: 10.1016/j.neucom.2025.129441_bib44
  article-title: Multi-scale guided image and video fusion: a fast and efficient approach
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-019-01131-z
– ident: 10.1016/j.neucom.2025.129441_bib16
  doi: 10.1109/ICME.2017.8019529
– volume: 44
  start-page: 502
  year: 2022
  ident: 10.1016/j.neucom.2025.129441_bib32
  article-title: U2Fusion: a unified unsupervised image fusion network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3012548
– volume: 62
  start-page: 295
  year: 2019
  ident: 10.1016/j.neucom.2025.129441_bib2
  article-title: Ghost-free multi exposure image fusion technique using dense SIFT descriptor and guided filter
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2019.06.002
– volume: 32
  start-page: 1978
  year: 2023
  ident: 10.1016/j.neucom.2025.129441_bib41
  article-title: CTCNet: a CNN-transformer cooperation network for face image super-resolution
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2023.3261747
– volume: 4
  start-page: 60
  year: 2018
  ident: 10.1016/j.neucom.2025.129441_bib14
  article-title: Multi-exposure image fusion by optimizing a structural similarity index
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2017.2786138
– volume: 24
  start-page: 3345
  year: 2015
  ident: 10.1016/j.neucom.2025.129441_bib19
  article-title: Perceptual quality assessment for multi-exposure image fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2442920
– volume: 74
  start-page: 111
  year: 2021
  ident: 10.1016/j.neucom.2025.129441_bib9
  article-title: Benchmarking and comparing multi-exposure image fusion algorithms
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.02.005
– start-page: 2482
  year: 2021
  ident: 10.1016/j.neucom.2025.129441_bib34
  article-title: IEEE, HDR video reconstruction: a coarse-to-fine network and a real-world benchmark dataset
– volume: 103
  start-page: 12
  year: 2009
  ident: 10.1016/j.neucom.2025.129441_bib45
  article-title: Image fusion of visible and thermal images for fruit detection
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2009.02.009
– start-page: 234
  year: 2015
  ident: 10.1016/j.neucom.2025.129441_bib37
  article-title: U-Net: convolutional networks for biomedical image segmentation
– start-page: 1777
  year: 2020
  ident: 10.1016/j.neucom.2025.129441_bib36
  article-title: IEEE, zero-reference deep curve estimation for low-light image enhancement
– ident: 10.1016/j.neucom.2025.129441_bib55
  doi: 10.1109/ICIP.2003.1247209
– volume: 23
  start-page: 611
  year: 2005
  ident: 10.1016/j.neucom.2025.129441_bib1
  article-title: Fusion of multi-exposure images
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2005.02.004
– year: 2020
  ident: 10.1016/j.neucom.2025.129441_bib28
  article-title: IEEE, Deep prior guided network for high-quality image fusion
– volume: 27
  start-page: 2049
  year: 2018
  ident: 10.1016/j.neucom.2025.129441_bib6
  article-title: Learning a deep single image contrast enhancer from multi-exposure images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2794218
SSID ssj0017129
Score 2.439241
Snippet Multi-exposure image fusion (MEF) can efficiently enhance the dynamic range of image. It can break through the physical imaging limitations inherent in...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 129441
SubjectTerms Multi-exposure image fusion
Multi-scale feature integration
Quantum efficiency
Single-frame HDR imaging
Title Single-frame multi-exposure image fusion via narrowband filter decoupled imaging
URI https://dx.doi.org/10.1016/j.neucom.2025.129441
Volume 625
WOSCitedRecordID wos001422574300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELZ4DSy8EW95YKuMiBvHyVihImBAlQBRsUR24ohUJa2gQf35nB9JWkAIBharsuxLlPt0d_56vkPo1MuCkFEVEQ4j8T3hEcnbAWFMQnDBuAg8YZpN8NvbsN-Peo7QfzPtBHhRhNNpNP5XVcMcKFtfnf2DumuhMAG_Qekwgtph_JXi78AZDRXJdNaVzRckajoeaSawlb_oFJ2s1BRZ6z0XrcLUYJSaPc_yoW0XnozK8RDiUL24cmyDqshTCQ7PNIJwFEPnRVdaSDWsakrh6VkYAvbpuRRuvzHpeq6fF43Rs_dC8mbNY2n25YMKtI6PoMyksfBZYhHmIGqcs7EBZTNWEmIM35a7-mLALZcwOCtUqbN59APOmuXz9bI_-bE6u7BKXBvEVkqspcRWyiJappxFYP-WO9fd_k39jxP3qK3L6N6-umZpcgG_vs33YcxMaHK_gdbcmQJ3LBY20YIqttB61a8DO_O9jXqz0MDz0MAGGthCAwM0cAMNbKGBa2hgB40d9HDZvb-4Iq6jBkng6DghKmOegAMmpUpQIdPUjzyVCF0DTkIsnUgpA_COqdR1E30RylAofq40KyAgtJPtXbRUjAq1h3AbRGSpn0ma-BDUqjANUsU8GbRBtPLDfUSqDxSPbeGU-CfF7CNefcXYBX82qIsBGj_uPPjjkw7RaoPbI7Q0eS3VMVpJ3if52-uJw8UHKT59sg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-frame+multi-exposure+image+fusion+via+narrowband+filter+decoupled+imaging&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhao%2C+Zhuang&rft.au=Ke%2C+Xin&rft.au=Han%2C+Jing&rft.au=Wu%2C+Zijian&rft.date=2025-04-07&rft.issn=0925-2312&rft.volume=625&rft.spage=129441&rft_id=info:doi/10.1016%2Fj.neucom.2025.129441&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2025_129441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon