Dynamic instance sampling for multi-objective automatic algorithm configuration

Multi-objective automatic algorithm configuration alleviates the tedious parameter tuning for users by optimizing both the performance and efficiency of the target algorithm. Its evaluation requires performing multiple runs for each configuration on an instance set, making the computational cost exp...

Full description

Saved in:
Bibliographic Details
Published in:Swarm and evolutionary computation Vol. 97; p. 102008
Main Authors: Li, Yuchen, Wang, Handing
Format: Journal Article
Language:English
Published: Elsevier B.V 01.08.2025
Subjects:
ISSN:2210-6502
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multi-objective automatic algorithm configuration alleviates the tedious parameter tuning for users by optimizing both the performance and efficiency of the target algorithm. Its evaluation requires performing multiple runs for each configuration on an instance set, making the computational cost expensive. Especially for real-world application problems, it is crucial to reduce computational costs under limited budgets. However, when the instance set is large, model-based approaches struggle to further reduce the high cost of configuration evaluations, which remains a significant challenge. To address this, we propose a Kriging-assisted Two_Arch2 with dynamic instance sampling algorithm, which aims to reduce the high costs of configuration evaluations by lowering the fidelity of the evaluations. Specifically, we align the number of evaluation instances with the evaluation fidelity and design a dynamic instance sampling strategy to effectively control the frequency of new instance sampling, enabling fidelity switching. Moreover, a trade-off configuration selection method is proposed to assist users in choosing configurations when preferences are unclear. The proposed method has been tested on numerous instances from the BBOB benchmark suite. The experimental results demonstrate that the performance of the proposed algorithm outperforms other state-of-the-art methods.
AbstractList Multi-objective automatic algorithm configuration alleviates the tedious parameter tuning for users by optimizing both the performance and efficiency of the target algorithm. Its evaluation requires performing multiple runs for each configuration on an instance set, making the computational cost expensive. Especially for real-world application problems, it is crucial to reduce computational costs under limited budgets. However, when the instance set is large, model-based approaches struggle to further reduce the high cost of configuration evaluations, which remains a significant challenge. To address this, we propose a Kriging-assisted Two_Arch2 with dynamic instance sampling algorithm, which aims to reduce the high costs of configuration evaluations by lowering the fidelity of the evaluations. Specifically, we align the number of evaluation instances with the evaluation fidelity and design a dynamic instance sampling strategy to effectively control the frequency of new instance sampling, enabling fidelity switching. Moreover, a trade-off configuration selection method is proposed to assist users in choosing configurations when preferences are unclear. The proposed method has been tested on numerous instances from the BBOB benchmark suite. The experimental results demonstrate that the performance of the proposed algorithm outperforms other state-of-the-art methods.
ArticleNumber 102008
Author Wang, Handing
Li, Yuchen
Author_xml – sequence: 1
  givenname: Yuchen
  orcidid: 0009-0002-3169-8977
  surname: Li
  fullname: Li, Yuchen
  email: ycli_7@stu.xidian.edu.cn
– sequence: 2
  givenname: Handing
  orcidid: 0000-0002-4805-3780
  surname: Wang
  fullname: Wang, Handing
  email: hdwang@xidian.edu.cn
BookMark eNp9UMtuwjAQ9IFKpZQv6CU_EOoHMcmhh4o-JSQu7dlyNmvqKLGRbaj4-5rSc_ey2tHM7s7ckInzDgm5Y3TBKJP3_SJ-49EvOOVVRjil9YRMOWe0lBXl12QeY09zyUyominZPp2cHi0U1sWkHWAR9bgfrNsVxodiPAzJlr7tEZI9YqEPyY86Zb4edj7Y9DUW4J2xu0PIsHe35MroIeL8r8_I58vzx_qt3Gxf39ePmxLy3VSi1ryFlsKqlZ1echBdkych0QhWSykM1C00DRMM-EqIBnXXLmupK-DGNFLMiLjsheBjDGjUPthRh5NiVJ2jUL36jUKdo1CXKLLq4aLC_NrRYlARLGbXnQ3Zoeq8_Vf_A320bsw
Cites_doi 10.1145/3610536
10.1109/TEVC.2014.2350987
10.1109/TCYB.2015.2456187
10.1162/106365601750190398
10.1162/106365603321828970
10.1080/00401706.2000.10485979
10.11144/Javeriana.upsy10-2.cdcp
10.1162/evco_a_00371
10.1109/TEVC.2014.2304415
10.1137/S1052623496307510
10.1109/TEVC.2021.3073648
10.1007/BF00932614
10.1111/j.2517-6161.1995.tb02031.x
10.1023/A:1015059928466
10.1038/scientificamerican0792-66
10.1109/TEVC.2014.2339823
10.3389/fnins.2020.00667
10.1109/TEVC.2021.3102863
10.1137/16M1082469
10.1109/TEVC.2006.872133
10.1109/TEVC.2005.851274
10.1109/TEVC.2022.3226837
10.1109/4235.996017
10.1109/CEC45853.2021.9504792
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2025.102008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2025_102008
S221065022500166X
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABGRD
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c255t-eaa2bcb0c7b6da42c3d9b0c36ef318663fc8bc99131c27339eadb486a5c2ff963
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001509618900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Sat Nov 29 07:36:28 EST 2025
Sat Sep 27 17:14:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Automatic algorithm configuration
Multi-objective optimization
Dynamic instance sampling
Parameter tuning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c255t-eaa2bcb0c7b6da42c3d9b0c36ef318663fc8bc99131c27339eadb486a5c2ff963
ORCID 0009-0002-3169-8977
0000-0002-4805-3780
ParticipantIDs crossref_primary_10_1016_j_swevo_2025_102008
elsevier_sciencedirect_doi_10_1016_j_swevo_2025_102008
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Macbeth, Razumiejczyk, Ledesma (b50) 2011; 10
Ramachandran, Tsokos (b26) 2009
Snoek, Larochelle, Adams (b9) 2012
Wang, Jiao, Yao (b37) 2015; 19
Hansen, Finck, Ros, Auger (b47) 2009
Zhang, Georgiopoulos, Anagnostopoulos (b25) 2015
Knowles (b32) 2006; 10
Ma, Guo, Chen, Li, Peng, Gong, Ma, Cao (b14) 2023; 36
Camacho-Villalón, Dorigo, Stützle (b55) 2022; 26
Hutter, Hoos, Stützle (b17) 2007
Hutter, Hoos, Leyton-Brown (b19) 2011
Birattari, Stützle, Paquete, Varrentrapp (b15) 2002
Mockus (b21) 1974
Anastacio, Matricon, Hoos (b35) 2022; vol. 191
Audet, Hare (b1) 2017
Zhang, Georgiopoulos, Anagnostopoulos (b24) 2016; 46
S. Biswas, D. Saha, S. De, A.D. Cobb, S. Das, B.A. Jalaian, Improving Differential Evolution through Bayesian Hyperparameter Optimization, in: 2021 IEEE Congress on Evolutionary Computation, CEC, 2021, pp. 832–840.
Sinha, Malo, Xu, Deb (b13) 2014
Beyer, Schwefel (b6) 2002
Benjamini, Hochberg (b49) 1995; 57
Hansen, Ostermeier (b7) 2001
McKay, Beckman, Conover (b40) 2000; 42
Das, Dennis (b45) 1998; 8
Benjamins, Cenikj, Nikolikj, Mohan, Eftimov, Lindauer (b52) 2024
Peherstorfer, Willcox, Gunzburger (b42) 2018; 60
Bhattacharjee, Singh, Ray (b44) 2016
Krige (b38) 1951
Holland (b2) 1992; 267
Deb, Pratap, Agarwal, Meyarivan (b48) 2002; 6
Parsa, Mitchell, Schuman, Patton, Potok, Roy (b34) 2020; 14
Schede, Brandt, Tornede, Wever, Bengs, Hüllermeier, Tierney (b12) 2022; 75
Hastie, Tibshirani, Friedman (b20) 2001
Preuß, Rook, Trautmann (b22) 2024
Lindauer, Eggensperger, Feurer, Biedenkapp, Deng, Benjamins, Ruhkopf, Sass, Hutter (b31) 2022; 23
Vermetten, Caraffini, Kononova, Bäck (b54) 2023
Zhang, Georgiopoulos, Anagnostopoulos (b23) 2013
Qin, Huang, Suganthan (b3) 2008
Wald (b27) 2004
Lourenço, Martin, Stützle (b18) 2003
Song, Wang, He, Jin (b36) 2021; 25
Fieldsend, Everson (b43) 2015; 19
Rook, Benjamins, Bossek, Trautmann, Hoos, Lindauer (b30) 2025
Rasmussen, Williams (b39) 2005
Wu, Chen, Zhang, Xiong, Lei, Deng (b10) 2019
Gu, Wang, Jin (b41) 2023; 27
Birattari (b16) 2009
de Nobel, Vermetten, Wang, Doerr, Bäck (b53) 2021
Blot, Hoos, Jourdan, Kessaci-Marmion, Trautmann (b28) 2016
Brest, Greiner, Boskovic, Mernik, Zumer (b5) 2006
Asafuddoula, Ray, Sarker (b46) 2015; 19
Zhang, Sanderson (b4) 2009
Hansen, Müller, Koumoutsakos (b8) 2003
Karl, Pielok, Moosbauer, Pfisterer, Coors, Binder, Schneider, Thomas, Richter, Lang, Garrido-Merchán, Branke, Bischl (b33) 2023; 3
Yu (b29) 1974; 14
Hoos (b11) 2012
Camacho-Villalón (10.1016/j.swevo.2025.102008_b55) 2022; 26
Krige (10.1016/j.swevo.2025.102008_b38) 1951
Das (10.1016/j.swevo.2025.102008_b45) 1998; 8
Hansen (10.1016/j.swevo.2025.102008_b8) 2003
Sinha (10.1016/j.swevo.2025.102008_b13) 2014
Qin (10.1016/j.swevo.2025.102008_b3) 2008
Wald (10.1016/j.swevo.2025.102008_b27) 2004
Knowles (10.1016/j.swevo.2025.102008_b32) 2006; 10
Snoek (10.1016/j.swevo.2025.102008_b9) 2012
Zhang (10.1016/j.swevo.2025.102008_b23) 2013
Gu (10.1016/j.swevo.2025.102008_b41) 2023; 27
Macbeth (10.1016/j.swevo.2025.102008_b50) 2011; 10
Birattari (10.1016/j.swevo.2025.102008_b15) 2002
Brest (10.1016/j.swevo.2025.102008_b5) 2006
10.1016/j.swevo.2025.102008_b51
Beyer (10.1016/j.swevo.2025.102008_b6) 2002
Karl (10.1016/j.swevo.2025.102008_b33) 2023; 3
Zhang (10.1016/j.swevo.2025.102008_b24) 2016; 46
Song (10.1016/j.swevo.2025.102008_b36) 2021; 25
Hutter (10.1016/j.swevo.2025.102008_b17) 2007
Hoos (10.1016/j.swevo.2025.102008_b11) 2012
Asafuddoula (10.1016/j.swevo.2025.102008_b46) 2015; 19
Schede (10.1016/j.swevo.2025.102008_b12) 2022; 75
Yu (10.1016/j.swevo.2025.102008_b29) 1974; 14
Hansen (10.1016/j.swevo.2025.102008_b7) 2001
Audet (10.1016/j.swevo.2025.102008_b1) 2017
Zhang (10.1016/j.swevo.2025.102008_b4) 2009
de Nobel (10.1016/j.swevo.2025.102008_b53) 2021
Rasmussen (10.1016/j.swevo.2025.102008_b39) 2005
Ramachandran (10.1016/j.swevo.2025.102008_b26) 2009
McKay (10.1016/j.swevo.2025.102008_b40) 2000; 42
Holland (10.1016/j.swevo.2025.102008_b2) 1992; 267
Wu (10.1016/j.swevo.2025.102008_b10) 2019
Lourenço (10.1016/j.swevo.2025.102008_b18) 2003
Anastacio (10.1016/j.swevo.2025.102008_b35) 2022; vol. 191
Wang (10.1016/j.swevo.2025.102008_b37) 2015; 19
Blot (10.1016/j.swevo.2025.102008_b28) 2016
Benjamins (10.1016/j.swevo.2025.102008_b52) 2024
Mockus (10.1016/j.swevo.2025.102008_b21) 1974
Zhang (10.1016/j.swevo.2025.102008_b25) 2015
Parsa (10.1016/j.swevo.2025.102008_b34) 2020; 14
Hastie (10.1016/j.swevo.2025.102008_b20) 2001
Rook (10.1016/j.swevo.2025.102008_b30) 2025
Ma (10.1016/j.swevo.2025.102008_b14) 2023; 36
Deb (10.1016/j.swevo.2025.102008_b48) 2002; 6
Birattari (10.1016/j.swevo.2025.102008_b16) 2009
Hutter (10.1016/j.swevo.2025.102008_b19) 2011
Peherstorfer (10.1016/j.swevo.2025.102008_b42) 2018; 60
Fieldsend (10.1016/j.swevo.2025.102008_b43) 2015; 19
Vermetten (10.1016/j.swevo.2025.102008_b54) 2023
Bhattacharjee (10.1016/j.swevo.2025.102008_b44) 2016
Preuß (10.1016/j.swevo.2025.102008_b22) 2024
Lindauer (10.1016/j.swevo.2025.102008_b31) 2022; 23
Benjamini (10.1016/j.swevo.2025.102008_b49) 1995; 57
Hansen (10.1016/j.swevo.2025.102008_b47) 2009
References_xml – year: 2012
  ident: b9
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2
– year: 2014
  ident: b13
  article-title: A bilevel optimization approach to automated parameter tuning
  publication-title: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation
– volume: 25
  start-page: 1013
  year: 2021
  end-page: 1027
  ident: b36
  article-title: A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1565
  year: 2013
  end-page: 1572
  ident: b23
  article-title: S-Race: a multi-objective racing algorithm
  publication-title: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation
– year: 1951
  ident: b38
  article-title: A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand: By DG Krige
– volume: 14
  start-page: 319
  year: 1974
  end-page: 377
  ident: b29
  article-title: Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives
  publication-title: J. Optim. Theory Appl.
– start-page: 1
  year: 2025
  end-page: 25
  ident: b30
  article-title: MO-SMAC: Multi-objective sequential model-based algorithm configuration
  publication-title: Evol. Comput.
– volume: 19
  start-page: 445
  year: 2015
  end-page: 460
  ident: b46
  article-title: A decomposition-based evolutionary algorithm for many objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 507
  year: 2011
  end-page: 523
  ident: b19
  article-title: Sequential model-based optimization for general algorithm configuration
  publication-title: Proceedings of the 5th International Conference on Learning and Intelligent Optimization
– volume: 36
  year: 2023
  ident: b14
  article-title: MetaBox: A benchmark platform for meta-black-box optimization with reinforcement learning
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2001
  ident: b20
  publication-title: The Elements of Statistical Learning
– volume: 267
  start-page: 66
  year: 1992
  end-page: 73
  ident: b2
  article-title: Genetic algorithms
  publication-title: Sci. Am.
– year: 2009
  ident: b4
  article-title: JADE: Adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
– volume: 26
  start-page: 402
  year: 2022
  end-page: 416
  ident: b55
  article-title: PSO-X: A component-based framework for the automatic design of particle swarm optimization algorithms
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 563
  year: 2024
  end-page: 566
  ident: b52
  article-title: Instance selection for dynamic algorithm configuration with reinforcement learning: Improving generalization
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference Companion
– volume: 10
  start-page: 545
  year: 2011
  end-page: 555
  ident: b50
  article-title: Cliff’s Delta Calculator: A non-parametric effect size program for two groups of observations
  publication-title: Univ. Psychol.
– year: 2008
  ident: b3
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2003
  ident: b8
  article-title: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
  publication-title: Evol. Comput.
– start-page: 37
  year: 2012
  end-page: 71
  ident: b11
  article-title: Automated algorithm configuration and parameter tuning
  publication-title: Autonomous Search
– year: 2002
  ident: b15
  article-title: A racing algorithm for configuring metaheuristics
  publication-title: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation
– start-page: 1383
  year: 2015
  end-page: 1390
  ident: b25
  article-title: SPRINT multi-objective model racing
  publication-title: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation
– year: 2004
  ident: b27
  publication-title: Sequential Analysis
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: b49
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 23
  year: 2022
  ident: b31
  article-title: SMAC3: a versatile Bayesian optimization package for hyperparameter optimization
  publication-title: J. Mach. Learn. Res.
– year: 2001
  ident: b7
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol. Comput.
– year: 2002
  ident: b6
  article-title: Evolution strategies –A comprehensive introduction
  publication-title: Nat. Comput.: Int. J.
– volume: 27
  start-page: 1765
  year: 2023
  end-page: 1779
  ident: b41
  article-title: Surrogate-assisted differential evolution with adaptive multisubspace search for large-scale expensive optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1375
  year: 2021
  end-page: 1384
  ident: b53
  article-title: Tuning as a means of assessing the benefits of new ideas in interplay with existing algorithmic modules
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference Companion
– year: 2017
  ident: b1
  article-title: Derivative-Free and Blackbox Optimization
– start-page: 66
  year: 2016
  end-page: 77
  ident: b44
  article-title: A study on performance metrics to identify solutions of interest from a trade-off set
  publication-title: Proceedings of the Second Australasian Conference on Artificial Life and Computational Intelligence - Volume 9592
– volume: 19
  start-page: 103
  year: 2015
  end-page: 117
  ident: b43
  article-title: The rolling tide evolutionary algorithm: A multiobjective optimizer for noisy optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 3
  year: 2023
  ident: b33
  article-title: Multi-objective hyperparameter optimization in machine learning—An overview
  publication-title: ACM Trans. Evol. Learn. Optim.
– year: 2009
  ident: b26
  article-title: Mathematical Statistics with Applications
– volume: 75
  year: 2022
  ident: b12
  article-title: A survey of methods for automated algorithm configuration
  publication-title: J. Artif. Int. Res.
– volume: 60
  start-page: 550
  year: 2018
  end-page: 591
  ident: b42
  article-title: Survey of multifidelity methods in uncertainty propagation, inference, and optimization
  publication-title: SIAM Rev.
– start-page: 320
  year: 2003
  end-page: 353
  ident: b18
  article-title: Iterated local search
  publication-title: Handbook of Metaheuristics
– reference: S. Biswas, D. Saha, S. De, A.D. Cobb, S. Das, B.A. Jalaian, Improving Differential Evolution through Bayesian Hyperparameter Optimization, in: 2021 IEEE Congress on Evolutionary Computation, CEC, 2021, pp. 832–840.
– volume: 46
  start-page: 1863
  year: 2016
  end-page: 1876
  ident: b24
  article-title: Multi-objective model selection via racing
  publication-title: IEEE Trans. Cybern.
– volume: 10
  start-page: 50
  year: 2006
  end-page: 66
  ident: b32
  article-title: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– year: 2009
  ident: b16
  article-title: Tuning Metaheuristics: a Machine Learning Perspective
– volume: 19
  start-page: 524
  year: 2015
  end-page: 541
  ident: b37
  article-title: Two_Arch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b48
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 400
  year: 1974
  end-page: 404
  ident: b21
  article-title: On Bayesian methods for seeking the extremum
  publication-title: Proceedings of the IFIP Technical Conference
– volume: 14
  year: 2020
  ident: b34
  article-title: Bayesian multi-objective hyperparameter optimization for accurate, fast, and efficient neural network accelerator design
  publication-title: Front. Neurosci.
– volume: 8
  start-page: 631
  year: 1998
  end-page: 657
  ident: b45
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
– year: 2006
  ident: b5
  article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
– year: 2019
  ident: b10
  article-title: Hyperparameter optimization for machine learning models based on Bayesian optimizationb
  publication-title: J. Electron. Sci. Technol.
– volume: vol. 191
  start-page: 11
  year: 2022
  end-page: 23
  ident: b35
  article-title: Challenges of acquiring compositional inductive biases via meta-learning
  publication-title: ECMLPKDD Workshop on Meta-Knowledge Transfer
– volume: 42
  start-page: 55
  year: 2000
  end-page: 61
  ident: b40
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– year: 2005
  ident: b39
  article-title: Gaussian Processes for Machine Learning
– start-page: 305
  year: 2024
  end-page: 321
  ident: b22
  article-title: On the potential of multi-objective automated algorithm configuration on multi-modal multi-objective optimisation problems
  publication-title: Applications of Evolutionary Computation
– start-page: 864
  year: 2023
  end-page: 872
  ident: b54
  article-title: Modular differential evolution
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference
– year: 2009
  ident: b47
  article-title: Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions
– year: 2007
  ident: b17
  article-title: Automatic algorithm configuration based on local search
  publication-title: Proceedings of the 22nd National Conference on Artificial Intelligence - Volume 2
– start-page: 32
  year: 2016
  end-page: 47
  ident: b28
  article-title: MO-ParamILS: A multi-objective automatic algorithm configuration framework
  publication-title: Learning and Intelligent Optimization
– volume: 3
  issue: 4
  year: 2023
  ident: 10.1016/j.swevo.2025.102008_b33
  article-title: Multi-objective hyperparameter optimization in machine learning—An overview
  publication-title: ACM Trans. Evol. Learn. Optim.
  doi: 10.1145/3610536
– volume: 19
  start-page: 524
  issue: 4
  year: 2015
  ident: 10.1016/j.swevo.2025.102008_b37
  article-title: Two_Arch2: An improved two-archive algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2350987
– start-page: 563
  year: 2024
  ident: 10.1016/j.swevo.2025.102008_b52
  article-title: Instance selection for dynamic algorithm configuration with reinforcement learning: Improving generalization
– start-page: 320
  year: 2003
  ident: 10.1016/j.swevo.2025.102008_b18
  article-title: Iterated local search
– volume: 46
  start-page: 1863
  issue: 8
  year: 2016
  ident: 10.1016/j.swevo.2025.102008_b24
  article-title: Multi-objective model selection via racing
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2456187
– year: 2001
  ident: 10.1016/j.swevo.2025.102008_b7
  article-title: Completely derandomized self-adaptation in evolution strategies
  publication-title: Evol. Comput.
  doi: 10.1162/106365601750190398
– year: 2019
  ident: 10.1016/j.swevo.2025.102008_b10
  article-title: Hyperparameter optimization for machine learning models based on Bayesian optimizationb
  publication-title: J. Electron. Sci. Technol.
– year: 2003
  ident: 10.1016/j.swevo.2025.102008_b8
  article-title: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
  publication-title: Evol. Comput.
  doi: 10.1162/106365603321828970
– volume: 42
  start-page: 55
  issue: 1
  year: 2000
  ident: 10.1016/j.swevo.2025.102008_b40
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485979
– volume: 10
  start-page: 545
  issue: 2
  year: 2011
  ident: 10.1016/j.swevo.2025.102008_b50
  article-title: Cliff’s Delta Calculator: A non-parametric effect size program for two groups of observations
  publication-title: Univ. Psychol.
  doi: 10.11144/Javeriana.upsy10-2.cdcp
– year: 2004
  ident: 10.1016/j.swevo.2025.102008_b27
– year: 2009
  ident: 10.1016/j.swevo.2025.102008_b4
  article-title: JADE: Adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1
  year: 2025
  ident: 10.1016/j.swevo.2025.102008_b30
  article-title: MO-SMAC: Multi-objective sequential model-based algorithm configuration
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00371
– year: 2005
  ident: 10.1016/j.swevo.2025.102008_b39
– year: 2001
  ident: 10.1016/j.swevo.2025.102008_b20
– volume: 19
  start-page: 103
  issue: 1
  year: 2015
  ident: 10.1016/j.swevo.2025.102008_b43
  article-title: The rolling tide evolutionary algorithm: A multiobjective optimizer for noisy optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2304415
– start-page: 507
  year: 2011
  ident: 10.1016/j.swevo.2025.102008_b19
  article-title: Sequential model-based optimization for general algorithm configuration
– start-page: 305
  year: 2024
  ident: 10.1016/j.swevo.2025.102008_b22
  article-title: On the potential of multi-objective automated algorithm configuration on multi-modal multi-objective optimisation problems
– volume: 8
  start-page: 631
  issue: 3
  year: 1998
  ident: 10.1016/j.swevo.2025.102008_b45
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496307510
– year: 2012
  ident: 10.1016/j.swevo.2025.102008_b9
  article-title: Practical bayesian optimization of machine learning algorithms
– start-page: 32
  year: 2016
  ident: 10.1016/j.swevo.2025.102008_b28
  article-title: MO-ParamILS: A multi-objective automatic algorithm configuration framework
– start-page: 1565
  year: 2013
  ident: 10.1016/j.swevo.2025.102008_b23
  article-title: S-Race: a multi-objective racing algorithm
– volume: 25
  start-page: 1013
  issue: 6
  year: 2021
  ident: 10.1016/j.swevo.2025.102008_b36
  article-title: A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3073648
– year: 2017
  ident: 10.1016/j.swevo.2025.102008_b1
– volume: vol. 191
  start-page: 11
  year: 2022
  ident: 10.1016/j.swevo.2025.102008_b35
  article-title: Challenges of acquiring compositional inductive biases via meta-learning
– year: 2008
  ident: 10.1016/j.swevo.2025.102008_b3
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 14
  start-page: 319
  year: 1974
  ident: 10.1016/j.swevo.2025.102008_b29
  article-title: Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00932614
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 10.1016/j.swevo.2025.102008_b49
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– year: 2002
  ident: 10.1016/j.swevo.2025.102008_b6
  article-title: Evolution strategies –A comprehensive introduction
  publication-title: Nat. Comput.: Int. J.
  doi: 10.1023/A:1015059928466
– volume: 75
  year: 2022
  ident: 10.1016/j.swevo.2025.102008_b12
  article-title: A survey of methods for automated algorithm configuration
  publication-title: J. Artif. Int. Res.
– start-page: 1375
  year: 2021
  ident: 10.1016/j.swevo.2025.102008_b53
  article-title: Tuning as a means of assessing the benefits of new ideas in interplay with existing algorithmic modules
– start-page: 37
  year: 2012
  ident: 10.1016/j.swevo.2025.102008_b11
  article-title: Automated algorithm configuration and parameter tuning
– start-page: 66
  year: 2016
  ident: 10.1016/j.swevo.2025.102008_b44
  article-title: A study on performance metrics to identify solutions of interest from a trade-off set
– volume: 36
  year: 2023
  ident: 10.1016/j.swevo.2025.102008_b14
  article-title: MetaBox: A benchmark platform for meta-black-box optimization with reinforcement learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 400
  year: 1974
  ident: 10.1016/j.swevo.2025.102008_b21
  article-title: On Bayesian methods for seeking the extremum
– start-page: 1383
  year: 2015
  ident: 10.1016/j.swevo.2025.102008_b25
  article-title: SPRINT multi-objective model racing
– year: 2014
  ident: 10.1016/j.swevo.2025.102008_b13
  article-title: A bilevel optimization approach to automated parameter tuning
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 10.1016/j.swevo.2025.102008_b2
  article-title: Genetic algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– volume: 19
  start-page: 445
  issue: 3
  year: 2015
  ident: 10.1016/j.swevo.2025.102008_b46
  article-title: A decomposition-based evolutionary algorithm for many objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2339823
– volume: 14
  year: 2020
  ident: 10.1016/j.swevo.2025.102008_b34
  article-title: Bayesian multi-objective hyperparameter optimization for accurate, fast, and efficient neural network accelerator design
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00667
– year: 2009
  ident: 10.1016/j.swevo.2025.102008_b47
– year: 2009
  ident: 10.1016/j.swevo.2025.102008_b16
– volume: 23
  issue: 1
  year: 2022
  ident: 10.1016/j.swevo.2025.102008_b31
  article-title: SMAC3: a versatile Bayesian optimization package for hyperparameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 26
  start-page: 402
  issue: 3
  year: 2022
  ident: 10.1016/j.swevo.2025.102008_b55
  article-title: PSO-X: A component-based framework for the automatic design of particle swarm optimization algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3102863
– year: 2002
  ident: 10.1016/j.swevo.2025.102008_b15
  article-title: A racing algorithm for configuring metaheuristics
– volume: 60
  start-page: 550
  issue: 3
  year: 2018
  ident: 10.1016/j.swevo.2025.102008_b42
  article-title: Survey of multifidelity methods in uncertainty propagation, inference, and optimization
  publication-title: SIAM Rev.
  doi: 10.1137/16M1082469
– year: 2006
  ident: 10.1016/j.swevo.2025.102008_b5
  article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.872133
– year: 2007
  ident: 10.1016/j.swevo.2025.102008_b17
  article-title: Automatic algorithm configuration based on local search
– year: 2009
  ident: 10.1016/j.swevo.2025.102008_b26
– year: 1951
  ident: 10.1016/j.swevo.2025.102008_b38
– volume: 10
  start-page: 50
  issue: 1
  year: 2006
  ident: 10.1016/j.swevo.2025.102008_b32
  article-title: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851274
– volume: 27
  start-page: 1765
  issue: 6
  year: 2023
  ident: 10.1016/j.swevo.2025.102008_b41
  article-title: Surrogate-assisted differential evolution with adaptive multisubspace search for large-scale expensive optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3226837
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.swevo.2025.102008_b48
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– ident: 10.1016/j.swevo.2025.102008_b51
  doi: 10.1109/CEC45853.2021.9504792
– start-page: 864
  year: 2023
  ident: 10.1016/j.swevo.2025.102008_b54
  article-title: Modular differential evolution
SSID ssj0000602559
Score 2.3633788
Snippet Multi-objective automatic algorithm configuration alleviates the tedious parameter tuning for users by optimizing both the performance and efficiency of the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 102008
SubjectTerms Automatic algorithm configuration
Dynamic instance sampling
Multi-objective optimization
Parameter tuning
Title Dynamic instance sampling for multi-objective automatic algorithm configuration
URI https://dx.doi.org/10.1016/j.swevo.2025.102008
Volume 97
WOSCitedRecordID wos001509618900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLagcODCBmyiG5t84MZctUmdOMeKH2IIARJs606R7TilFaRVmkL__D3_SNpShAYSlyixZCd5n_Xy-eXzewjtUx6GiWwJ4lMlSJsHjDBPRiQFz5iIlqdCU87n93l4ccG63ejKlXcfm3ICYZax6TQavSvU0AZg662zr4C7GhQa4BxAhyPADsf_Av7I1pjXKvPC7AcYc60ad4JJIyAkQzGwju6AT4qhy9p61xvm_eL2XivR035vks9Ac-z1-pHntqSGenDvoEV30lSGWPilf25EAn8nMCWqtj8uNH1qd9LMxxs8WqndXBBsaSOM9lUerBwJkL0Fx2qFt0s-2oYLBo3xIzxrQ99C549oNtnsk1QJBa_1wHpcYGrQL-iuojUvpBGrobXOz-PuWRVPawZmdaRrCZbPUiaZMnK-pbs9T0TmyMXNR7TpVgW4Y9HcQisq20Yfyoob2DngHXTpwMUluLgEFwO4-Am4uAIXV-DiBXA_oV8nxzeHp8SVxCAS3q4ginNPSNGUoQgS3vakn0Rw5Qcq9XXqQj-VTEjg_H5LAjH1I3AUos0CTqWXpuBsP6NaNszULsKKM5owAXxeByaE5DJJ_VAmguoUgJTW0Y_SPvHIZj6JS0ngIDbmjLU5Y2vOOgpKG8aOvFlSFgPuL3X88taOX9HGbH7uoVqRT9Q3tC4fiv44_-7mxz_Rs28L
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+instance+sampling+for+multi-objective+automatic+algorithm+configuration&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Li%2C+Yuchen&rft.au=Wang%2C+Handing&rft.date=2025-08-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=97&rft_id=info:doi/10.1016%2Fj.swevo.2025.102008&rft.externalDocID=S221065022500166X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon