A cooperative neural dynamic model for solving general convex nonlinear optimization problems with fuzzy parameters and an application in manufacturing systems

In the presented study, the solution of the fuzzy nonlinear optimization problems (FNLOPs) is calculated using a recurrent neural network (RNN) model. Since there is a few research for solving FNLOP by RNN's, we give a new approach to solve the problem. By reducing the original program to an in...

Full description

Saved in:
Bibliographic Details
Published in:International journal of adaptive control and signal processing Vol. 38; no. 6; pp. 2272 - 2300
Main Authors: Jahangiri, Mohammadreza, Nazemi, Alireza
Format: Journal Article
Language:English
Published: Bognor Regis Wiley Subscription Services, Inc 01.06.2024
Subjects:
ISSN:0890-6327, 1099-1115
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the presented study, the solution of the fuzzy nonlinear optimization problems (FNLOPs) is calculated using a recurrent neural network (RNN) model. Since there is a few research for solving FNLOP by RNN's, we give a new approach to solve the problem. By reducing the original program to an interval problem and then weighting problem, the Karush–Kuhn–Tucker (KKT) conditions are given. Moreover, we use the KKT conditions into a RNN as an important tool to solve the problem. Besides, the global convergence properties and the Lyapunov stability of the dynamic model are studied in this study. In the final step, some illustrative examples are considered to establish the obtained results. Reported results are compared with some others network models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0890-6327
1099-1115
DOI:10.1002/acs.3804