Generalization of the Marčenko-Pastur problem

We study the spectrum of generalized Wishart matrices, defined as F=(XY^{⊤}+YX^{⊤})/2T, where X and Y are N×T matrices with zero mean, unit variance independent and identically distributed entries and such that E[X_{it}Y_{jt}]=cδ_{i,j}. The limit c=1 corresponds to the Marčenko-Pastur problem. For a...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E Vol. 102; no. 6-1; p. 062117
Main Authors: Bouchaud, Jean-Philippe, Potters, Marc
Format: Journal Article
Language:English
Published: United States 01.12.2020
ISSN:2470-0053, 2470-0053
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study the spectrum of generalized Wishart matrices, defined as F=(XY^{⊤}+YX^{⊤})/2T, where X and Y are N×T matrices with zero mean, unit variance independent and identically distributed entries and such that E[X_{it}Y_{jt}]=cδ_{i,j}. The limit c=1 corresponds to the Marčenko-Pastur problem. For a general c, we show that the Stieltjes transform of F is the solution of a cubic equation. In the limit c=0, T≫N, the density of eigenvalues converges to the Wigner semicircle.
AbstractList We study the spectrum of generalized Wishart matrices, defined as F=(XY^{⊤}+YX^{⊤})/2T, where X and Y are N×T matrices with zero mean, unit variance independent and identically distributed entries and such that E[X_{it}Y_{jt}]=cδ_{i,j}. The limit c=1 corresponds to the Marčenko-Pastur problem. For a general c, we show that the Stieltjes transform of F is the solution of a cubic equation. In the limit c=0, T≫N, the density of eigenvalues converges to the Wigner semicircle.
We study the spectrum of generalized Wishart matrices, defined as F=(XY^{⊤}+YX^{⊤})/2T, where X and Y are N×T matrices with zero mean, unit variance independent and identically distributed entries and such that E[X_{it}Y_{jt}]=cδ_{i,j}. The limit c=1 corresponds to the Marčenko-Pastur problem. For a general c, we show that the Stieltjes transform of F is the solution of a cubic equation. In the limit c=0, T≫N, the density of eigenvalues converges to the Wigner semicircle.We study the spectrum of generalized Wishart matrices, defined as F=(XY^{⊤}+YX^{⊤})/2T, where X and Y are N×T matrices with zero mean, unit variance independent and identically distributed entries and such that E[X_{it}Y_{jt}]=cδ_{i,j}. The limit c=1 corresponds to the Marčenko-Pastur problem. For a general c, we show that the Stieltjes transform of F is the solution of a cubic equation. In the limit c=0, T≫N, the density of eigenvalues converges to the Wigner semicircle.
Author Potters, Marc
Bouchaud, Jean-Philippe
Author_xml – sequence: 1
  givenname: Jean-Philippe
  surname: Bouchaud
  fullname: Bouchaud, Jean-Philippe
  organization: Capital Fund Management & Académie des Sciences, 75007 Paris, France
– sequence: 2
  givenname: Marc
  surname: Potters
  fullname: Potters, Marc
  organization: Capital Fund Management, 75007 Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33466081$$D View this record in MEDLINE/PubMed
BookMark eNpNj81Kw0AUhQep2Fr7BIJk6SZx7iTzt5RSq1CxiK7DTXJDo0mmZhKhvoNv5YNZsYKrcxYf5_CdslHrWmLsHHgEwOOr9WbnH-l9EQEXEVcCQB-xiUg0DzmX8ehfH7OZ9y-cc1DcahAnbBzHiVLcwIRFS2qpw7r6wL5ybeDKoN9QcI_d1ye1ry5co--HLth2LqupOWPHJdaeZoecsuebxdP8Nlw9LO_m16swF1L2YQHSao2FIaOQCikRjSFZahRlkmMMRgtEbZTBIsMcRCJzK5WxGek9EIspu_zd3f--DeT7tKl8TnWNLbnBp3s5m4AR9ge9OKBD1lCRbruqwW6X_jmKb81BV2w
ContentType Journal Article
DBID NPM
7X8
DOI 10.1103/PhysRevE.102.062117
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 2470-0053
ExternalDocumentID 33466081
Genre Journal Article
GroupedDBID 3MX
53G
5VS
AEQTI
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
AUAIK
EBS
EJD
NPBMV
NPM
ROL
S7W
7X8
ABSSX
ID FETCH-LOGICAL-c255t-d15977ad8e86aed55aa88e5f7a2f4ca31872aa7868adbac1245c95689be7f4c32
IEDL.DBID 7X8
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000599257900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2470-0053
IngestDate Wed Oct 01 11:46:16 EDT 2025
Thu Jan 02 22:57:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6-1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c255t-d15977ad8e86aed55aa88e5f7a2f4ca31872aa7868adbac1245c95689be7f4c32
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33466081
PQID 2479418293
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2479418293
pubmed_primary_33466081
PublicationCentury 2000
PublicationDate 2020-Dec
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-Dec
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review. E
PublicationTitleAlternate Phys Rev E
PublicationYear 2020
SSID ssj0001609712
Score 2.134071
Snippet We study the spectrum of generalized Wishart matrices, defined as F=(XY^{⊤}+YX^{⊤})/2T, where X and Y are N×T matrices with zero mean, unit variance...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 062117
Title Generalization of the Marčenko-Pastur problem
URI https://www.ncbi.nlm.nih.gov/pubmed/33466081
https://www.proquest.com/docview/2479418293
Volume 102
WOSCitedRecordID wos000599257900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UKnjx_agvInjdtskm2c1JRFo82FJEpbcwu9mACEltav-F_8of5myypSdB8JJTFpbZ2Z1vXt8A3CgZS0XQmCllo1WJz1kiFGfS10muMJdYd6W9PorRSE4mydgF3CpXVrl8E-uHOiu1jZF3A0uFTmA44bfTD2anRtnsqhuhsQ4tTlDGarWYyFWMJbYMSTaRQKttA3XEHfGQ3-NdW2L5ZBZ9y17Q6cXkCYnfYWZtbga7_93oHuw4oOndNZqxD2umOICtuuBTV4fQcXzTrg3TK3OPoKA3xNn3lyneSzbGiqyR5wbOHMHLoP98_8Dc7ASmyUmYs8y3xHKYSSNjNFkUIUppolxgkIca6SaLAOkcYomZQk1WPtK2czBRRtAPPDiGjaIszCl4QmhC4DwnoJOEsqeQzLovpQqF0coEURuul4JISTdtwgELU35W6UoUbThppJlOGxKNlPMwjgmPnP1h9TlsB9bNratILqCV0800l7CpF_O3anZVHzp9R-PhD_nntck
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalization+of+the+Mar%C4%8Denko-Pastur+problem&rft.jtitle=Physical+review.+E&rft.au=Bouchaud%2C+Jean-Philippe&rft.au=Potters%2C+Marc&rft.date=2020-12-01&rft.issn=2470-0053&rft.eissn=2470-0053&rft.volume=102&rft.issue=6-1&rft.spage=062117&rft_id=info:doi/10.1103%2FPhysRevE.102.062117&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-0053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-0053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-0053&client=summon