Learning dual-pixel alignment for defocus deblurring
It is a challenging task to recover sharp image from a single defocus blurry image in real-world applications. On many modern cameras, dual-pixel (DP) sensors create two-image views, based on which stereo information can be exploited to benefit defocus deblurring. Despite the impressive results achi...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 616; s. 128880 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.02.2025
|
| Témata: | |
| ISSN: | 0925-2312 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It is a challenging task to recover sharp image from a single defocus blurry image in real-world applications. On many modern cameras, dual-pixel (DP) sensors create two-image views, based on which stereo information can be exploited to benefit defocus deblurring. Despite the impressive results achieved by existing DP defocus deblurring methods, the misalignment between DP image views is still not studied, leaving room for improving DP defocus deblurring. In this work, we propose a Dual-Pixel Alignment Network (DPANet) for defocus deblurring. Generally, DPANet is an encoder–decoder with skip-connections, where two branches with shared parameters in the encoder are employed to extract and align deep features from left and right views, and one decoder is adopted to fuse aligned features for predicting the sharp image. Due to that DP views suffer from different blur amounts, it is not trivial to align left and right views. To this end, we propose novel encoder alignment module (EAM) and decoder alignment module (DAM). In particular, a correlation layer is suggested in EAM to measure the disparity between DP views, whose deep features can then be accordingly aligned using deformable convolutions. DAM can further enhance the alignment of skip-connected features from encoder and deep features in decoder. By introducing several EAMs and DAMs, DP views in DPANet can be well aligned for better predicting latent sharp image. Experimental results on real-world datasets show that our DPANet is notably superior to state-of-the-art deblurring methods in reducing defocus blur while recovering visually plausible sharp structures and textures. |
|---|---|
| AbstractList | It is a challenging task to recover sharp image from a single defocus blurry image in real-world applications. On many modern cameras, dual-pixel (DP) sensors create two-image views, based on which stereo information can be exploited to benefit defocus deblurring. Despite the impressive results achieved by existing DP defocus deblurring methods, the misalignment between DP image views is still not studied, leaving room for improving DP defocus deblurring. In this work, we propose a Dual-Pixel Alignment Network (DPANet) for defocus deblurring. Generally, DPANet is an encoder–decoder with skip-connections, where two branches with shared parameters in the encoder are employed to extract and align deep features from left and right views, and one decoder is adopted to fuse aligned features for predicting the sharp image. Due to that DP views suffer from different blur amounts, it is not trivial to align left and right views. To this end, we propose novel encoder alignment module (EAM) and decoder alignment module (DAM). In particular, a correlation layer is suggested in EAM to measure the disparity between DP views, whose deep features can then be accordingly aligned using deformable convolutions. DAM can further enhance the alignment of skip-connected features from encoder and deep features in decoder. By introducing several EAMs and DAMs, DP views in DPANet can be well aligned for better predicting latent sharp image. Experimental results on real-world datasets show that our DPANet is notably superior to state-of-the-art deblurring methods in reducing defocus blur while recovering visually plausible sharp structures and textures. |
| ArticleNumber | 128880 |
| Author | Li, Yu Ren, Dongwei Zuo, Wangmeng Shu, Xinya Li, Qince Yi, Yaling |
| Author_xml | – sequence: 1 givenname: Yu surname: Li fullname: Li, Yu email: liyuhit@outlook.com – sequence: 2 givenname: Yaling surname: Yi fullname: Yi, Yaling email: csylyi@outlook.com – sequence: 3 givenname: Xinya surname: Shu fullname: Shu, Xinya email: shuxinyahit@outlook.com – sequence: 4 givenname: Dongwei surname: Ren fullname: Ren, Dongwei email: rendongweihit@gmail.com – sequence: 5 givenname: Qince surname: Li fullname: Li, Qince email: qinceli@hit.edu.cn – sequence: 6 givenname: Wangmeng surname: Zuo fullname: Zuo, Wangmeng email: wmzuo@hit.edu.cn |
| BookMark | eNp9j71OwzAUhT0UibbwBgx5gQTf68RJFiRU8SdVYoHZcu3rylHqVHaC4O1JFWams5zz6XwbtgpDIMbugBfAQd53RaDJDKcCOZYFYNM0fMXWvMUqRwF4zTYpdZxDDdiuWbknHYMPx8xOus_P_pv6TPf-GE4UxswNMbPkBjOlOQ_9FOPcvWFXTveJbv9yyz6fnz52r_n-_eVt97jPDVbVmFsoa066MlVNspHiYBspAdA4xMaVFsmQE62VYJ2sHQqHUpRwaCst0GkhtqxcuCYOKUVy6hz9SccfBVxdbFWnFlt1sVWL7Tx7WGY0f_vyFFUynoIh6yOZUdnB_w_4BbsyY44 |
| Cites_doi | 10.1007/s11063-024-11455-w 10.1109/TIP.2021.3055613 10.1109/CVPR52729.2023.00570 10.1109/CVPR.2017.295 10.1109/CVPR52688.2022.00564 10.1109/ICCV48922.2021.00229 10.1109/CVPR46437.2021.01458 10.1109/TIP.2020.3002345 10.1109/CVPR52729.2023.00557 10.1109/ICCV51070.2023.01158 10.1109/CVPR.2015.7298665 10.1109/CVPR.2018.00068 10.1109/CVPR.2019.01250 10.1109/TIP.2021.3113185 10.1109/TIP.2016.2526907 10.1109/CVPR42600.2020.00230 10.1109/TIFS.2020.3035879 10.1109/CVPR.2017.179 10.1109/CVPR.2019.00165 10.1109/TIP.2016.2528042 10.1109/ICCV.2015.123 10.1007/978-3-030-01267-0_32 10.1109/TIP.2020.3045630 10.1109/TIP.2003.819861 10.1109/JAS.2022.105563 10.1109/CVPR.2018.00931 10.1109/ICCV.2015.316 10.4236/jcc.2013.16003 10.1364/OL.399204 10.1109/TIP.2018.2881830 10.1109/CVPR46437.2021.00432 10.1109/TIP.2021.3061901 10.1109/CVPRW.2019.00247 10.1007/s11063-021-10604-9 10.1109/ICCV.2019.00772 10.1109/TIP.2017.2771563 10.3390/s150305747 10.1364/JOSAA.12.000058 10.1109/JPROC.2023.3238524 10.1109/CVPR.2019.01125 10.1109/TII.2018.2884211 10.1109/CVPR.2019.00613 10.1109/ICCV.2019.00897 10.1109/CVPR.2019.00953 10.1109/TIP.2016.2617460 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2024.128880 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_neucom_2024_128880 S0925231224016515 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB HLZ HVGLF HZ~ LG9 M41 R2- SBC WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c255t-d1470ea5c57e6863bd866112cf228f4d2ecef39d61df67f23f26341b95a32fa33 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001363744800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 06:34:02 EST 2025 Sat Dec 14 16:14:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Image deblurring Defocus deblurring |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c255t-d1470ea5c57e6863bd866112cf228f4d2ecef39d61df67f23f26341b95a32fa33 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2024_128880 elsevier_sciencedirect_doi_10_1016_j_neucom_2024_128880 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 2025-02-00 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – sequence: 0 name: Elsevier B.V |
| References | S.W. Zamir, A. Arora, S. Khan, M. Hayat, F.S. Khan, M.-H. Yang, L. Shao, Multi-stage progressive image restoration, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14821–14831. A. Abuolaim, M. Delbracio, D. Kelly, M.S. Brown, P. Milanfar, Learning to reduce defocus blur by realistically modeling dual-pixel data, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 2289–2298. Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga others (b51) 2019; 32 Śliwiński, Wachel (b17) 2013; 1 Hong, Yu, Zhang, Jin, Lee (b4) 2018; 15 Jung, Kim, Jang, Ha, Sohn (b36) 2021; 30 Punnappurath, Abuolaim, Afifi, Brown (b42) 2020 X. Zhu, H. Hu, S. Lin, J. Dai, Deformable convnets v2: More deformable, better results, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 9308–9316. Mao, Shen, Yang (b32) 2016 Zou, Chen, Shi, Guo, Ye (b5) 2023; 111 Wu, Hong, Zhang, He (b7) 2021; 53 D. Sun, X. Yang, M.-Y. Liu, J. Kautz, Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8934–8943. D’Andrés, Salvador, Kochale, Süsstrunk (b10) 2016; 25 Charbonnier, Blanc-Feraud, Aubert, Barlaud (b46) 1994; vol. 2 Krishnan, Fergus (b14) 2009; 22 S. Zhou, J. Zhang, W. Zuo, H. Xie, J. Pan, J. Ren, DAVANet: Stereo deblurring with view aggregation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 10996–11005. Abuolaim, Brown (b26) 2020 A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van Der Smagt, D. Cremers, T. Brox, Flownet: Learning optical flow with convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2758–2766. Yi, Eramian (b9) 2016; 25 X. Wang, K.C. Chan, K. Yu, C. Dong, C. Change Loy, Edvr: Video restoration with enhanced deformable convolutional networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2019. Liu, Zhou, Liao (b39) 2016; 25 Ronneberger, Fischer, Brox (b31) 2015 C. Herrmann, R.S. Bowen, N. Wadhwa, R. Garg, Q. He, J.T. Barron, R. Zabih, Learning to autofocus, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, p. 2020. Kong, Sun, Liu, Jiang, Li, Shi (b2) 2020; 29 E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T. Brox, Flownet 2.0: Evolution of optical flow estimation with deep networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2462–2470. J. Lee, S. Lee, S. Cho, S. Lee, Deep defocus map estimation using domain adaptation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 12222–12230. R. Garg, N. Wadhwa, S. Ansari, J.T. Barron, Learning single camera depth estimation using dual-pixels, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 7628–7637. J. Shi, L. Xu, J. Jia, Just noticeable defocus blur detection and estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2015, pp. 657–665. Liang, Jiang, Liu, Ma (b29) 2022; 9 Wu, Zhou, Liu, Ni, Fan (b23) 2020; 16 Fish, Brinicombe, Pike, Walker (b15) 1995; 12 L. Pan, S. Chowdhury, R. Hartley, M. Liu, H. Zhang, H. Li, Dual pixel exploration: Simultaneous depth estimation and image restoration, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 4340–4349. Wang, Bovik, Sheikh, Simoncelli (b54) 2004; 13 Y. Quan, X. Yao, H. Ji, Single image defocus deblurring via implicit neural inverse kernels, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 12600–12610. R. Zhang, P. Isola, A.A. Efros, E. Shechtman, O. Wang, The unreasonable effectiveness of deep features as a perceptual metric, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 586–595. A. Abuolaim, A. Punnappurath, M.S. Brown, Revisiting autofocus for smartphone cameras, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 523–537. Zeng, Wang, Mao, Liu, Peng, Chen (b37) 2018; 28 Kong, Dong, Yang, Pan (b41) 2024 Fan, Hong, Zeng, Liu (b6) 2024; 56 H. Zhang, Y. Dai, H. Li, P. Koniusz, Deep stacked hierarchical multi-patch network for image deblurring, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 5978–5986. Guo, Feng, Gao, Liu, Wang (b1) 2021; 30 A. Punnappurath, M.S. Brown, Reflection removal using a dual-pixel sensor, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 1556–1565. K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034. J. Park, Y.-W. Tai, D. Cho, I. So Kweon, A unified approach of multi-scale deep and hand-crafted features for defocus estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 1736–1745. Zhang, Sun (b38) 2021; 30 K. Dp, J. Ba, Adam: A method for stochastic optimization, in: Proc. of the 3rd International Conference for Learning Representations, ICLR, 2015. Jang, Yoo, Kim, Paik (b16) 2015; 15 Karaali, Jung (b11) 2017; 27 Y. Quan, Z. Wu, H. Ji, Neumann network with recursive kernels for single image defocus deblurring, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5754–5763. Deng, Zhang, Zhong (b24) 2020; 45 Zhang, Wadhwa, Orts-Escolano, Häne, Fanello, Garg (b22) 2020 O. Kupyn, T. Martyniuk, J. Wu, Z. Wang, Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 8878–8887. Sun, Zheng, Lu (b3) 2021; 30 S.W. Zamir, A. Arora, S. Khan, M. Hayat, F.S. Khan, M.-H. Yang, Restormer: Efficient transformer for high-resolution image restoration, in: CVPR, 2022. L. Kong, J. Dong, J. Ge, M. Li, J. Pan, Efficient frequency domain-based transformers for high-quality image deblurring, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5886–5895. 10.1016/j.neucom.2024.128880_b47 10.1016/j.neucom.2024.128880_b48 Zhang (10.1016/j.neucom.2024.128880_b38) 2021; 30 10.1016/j.neucom.2024.128880_b45 Wu (10.1016/j.neucom.2024.128880_b23) 2020; 16 10.1016/j.neucom.2024.128880_b49 Liu (10.1016/j.neucom.2024.128880_b39) 2016; 25 Jung (10.1016/j.neucom.2024.128880_b36) 2021; 30 10.1016/j.neucom.2024.128880_b8 Fan (10.1016/j.neucom.2024.128880_b6) 2024; 56 10.1016/j.neucom.2024.128880_b50 Fish (10.1016/j.neucom.2024.128880_b15) 1995; 12 Paszke (10.1016/j.neucom.2024.128880_b51) 2019; 32 10.1016/j.neucom.2024.128880_b55 10.1016/j.neucom.2024.128880_b52 10.1016/j.neucom.2024.128880_b53 Wang (10.1016/j.neucom.2024.128880_b54) 2004; 13 10.1016/j.neucom.2024.128880_b12 10.1016/j.neucom.2024.128880_b13 Sun (10.1016/j.neucom.2024.128880_b3) 2021; 30 10.1016/j.neucom.2024.128880_b18 10.1016/j.neucom.2024.128880_b19 Charbonnier (10.1016/j.neucom.2024.128880_b46) 1994; vol. 2 Zhang (10.1016/j.neucom.2024.128880_b22) 2020 Ronneberger (10.1016/j.neucom.2024.128880_b31) 2015 Śliwiński (10.1016/j.neucom.2024.128880_b17) 2013; 1 10.1016/j.neucom.2024.128880_b21 Kong (10.1016/j.neucom.2024.128880_b41) 2024 10.1016/j.neucom.2024.128880_b20 Krishnan (10.1016/j.neucom.2024.128880_b14) 2009; 22 10.1016/j.neucom.2024.128880_b25 Liang (10.1016/j.neucom.2024.128880_b29) 2022; 9 Guo (10.1016/j.neucom.2024.128880_b1) 2021; 30 Hong (10.1016/j.neucom.2024.128880_b4) 2018; 15 10.1016/j.neucom.2024.128880_b27 10.1016/j.neucom.2024.128880_b28 D’Andrés (10.1016/j.neucom.2024.128880_b10) 2016; 25 Kong (10.1016/j.neucom.2024.128880_b2) 2020; 29 Yi (10.1016/j.neucom.2024.128880_b9) 2016; 25 Abuolaim (10.1016/j.neucom.2024.128880_b26) 2020 Mao (10.1016/j.neucom.2024.128880_b32) 2016 Punnappurath (10.1016/j.neucom.2024.128880_b42) 2020 Zou (10.1016/j.neucom.2024.128880_b5) 2023; 111 Karaali (10.1016/j.neucom.2024.128880_b11) 2017; 27 10.1016/j.neucom.2024.128880_b33 10.1016/j.neucom.2024.128880_b30 Zeng (10.1016/j.neucom.2024.128880_b37) 2018; 28 Deng (10.1016/j.neucom.2024.128880_b24) 2020; 45 10.1016/j.neucom.2024.128880_b34 10.1016/j.neucom.2024.128880_b35 Wu (10.1016/j.neucom.2024.128880_b7) 2021; 53 10.1016/j.neucom.2024.128880_b40 10.1016/j.neucom.2024.128880_b43 Jang (10.1016/j.neucom.2024.128880_b16) 2015; 15 10.1016/j.neucom.2024.128880_b44 |
| References_xml | – year: 2024 ident: b41 article-title: Efficient visual state space model for image deblurring – volume: 30 start-page: 3419 year: 2021 end-page: 3433 ident: b38 article-title: Joint depth and defocus estimation from a single image using physical consistency publication-title: IEEE Trans. Image Process. – volume: 22 start-page: 1033 year: 2009 end-page: 1041 ident: b14 article-title: Fast image deconvolution using hyper-laplacian priors publication-title: Adv. Neural Inf. Process. Syst. – volume: 25 start-page: 1626 year: 2016 end-page: 1638 ident: b9 article-title: Lbp-based segmentation of defocus blur publication-title: IEEE Trans. Image Process. – volume: 25 start-page: 1660 year: 2016 end-page: 1673 ident: b10 article-title: Non-parametric blur map regression for depth of field extension publication-title: IEEE Trans. Image Process. – reference: Y. Quan, Z. Wu, H. Ji, Neumann network with recursive kernels for single image defocus deblurring, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5754–5763. – reference: K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034. – reference: S.W. Zamir, A. Arora, S. Khan, M. Hayat, F.S. Khan, M.-H. Yang, Restormer: Efficient transformer for high-resolution image restoration, in: CVPR, 2022. – volume: 16 start-page: 1440 year: 2020 end-page: 1451 ident: b23 article-title: Single-shot face anti-spoofing for dual pixel camera publication-title: IEEE Trans. Inf. Forensics Secur. – reference: Y. Quan, X. Yao, H. Ji, Single image defocus deblurring via implicit neural inverse kernels, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 12600–12610. – reference: K. Dp, J. Ba, Adam: A method for stochastic optimization, in: Proc. of the 3rd International Conference for Learning Representations, ICLR, 2015. – volume: 30 start-page: 1812 year: 2021 end-page: 1824 ident: b1 article-title: Exploring the effects of blur and deblurring to visual object tracking publication-title: IEEE Trans. Image Process. – reference: J. Shi, L. Xu, J. Jia, Just noticeable defocus blur detection and estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2015, pp. 657–665. – reference: S. Zhou, J. Zhang, W. Zuo, H. Xie, J. Pan, J. Ren, DAVANet: Stereo deblurring with view aggregation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 10996–11005. – volume: 111 start-page: 257 year: 2023 end-page: 276 ident: b5 article-title: Object detection in 20 years: A survey publication-title: Proc. IEEE – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: b54 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 56 start-page: 27 year: 2024 ident: b6 article-title: A deep convolutional encoder–decoder–restorer architecture for image deblurring publication-title: Neural Process. Lett. – reference: A. Abuolaim, M. Delbracio, D. Kelly, M.S. Brown, P. Milanfar, Learning to reduce defocus blur by realistically modeling dual-pixel data, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 2289–2298. – volume: vol. 2 start-page: 168 year: 1994 end-page: 172 ident: b46 article-title: Two deterministic half-quadratic regularization algorithms for computed imaging publication-title: Proceedings of 1st International Conference on Image Processing – reference: J. Lee, S. Lee, S. Cho, S. Lee, Deep defocus map estimation using domain adaptation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 12222–12230. – reference: L. Kong, J. Dong, J. Ge, M. Li, J. Pan, Efficient frequency domain-based transformers for high-quality image deblurring, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5886–5895. – reference: X. Wang, K.C. Chan, K. Yu, C. Dong, C. Change Loy, Edvr: Video restoration with enhanced deformable convolutional networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2019. – year: 2016 ident: b32 article-title: Image restoration using very deep convolutional encoder–decoder networks with symmetric skip connections publication-title: Advances in Neural Information Processing Systems – volume: 25 start-page: 5943 year: 2016 end-page: 5956 ident: b39 article-title: Defocus map estimation from a single image based on two-parameter defocus model publication-title: IEEE Trans. Image Process. – reference: O. Kupyn, T. Martyniuk, J. Wu, Z. Wang, Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 8878–8887. – start-page: 234 year: 2015 end-page: 241 ident: b31 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – reference: A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van Der Smagt, D. Cremers, T. Brox, Flownet: Learning optical flow with convolutional networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 2758–2766. – start-page: 582 year: 2020 end-page: 598 ident: b22 article-title: Du 2 net: Learning depth estimation from dual-cameras and dual-pixels publication-title: European Conference on Computer Vision – reference: D. Sun, X. Yang, M.-Y. Liu, J. Kautz, Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8934–8943. – volume: 53 start-page: 4419 year: 2021 end-page: 4436 ident: b7 article-title: Stack-based scale-recurrent network for face image deblurring publication-title: Neural Process. Lett. – start-page: 111 year: 2020 end-page: 126 ident: b26 article-title: Defocus deblurring using dual-pixel data publication-title: European Conference on Computer Vision – reference: R. Garg, N. Wadhwa, S. Ansari, J.T. Barron, Learning single camera depth estimation using dual-pixels, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 7628–7637. – volume: 15 start-page: 5747 year: 2015 end-page: 5762 ident: b16 article-title: Sensor-based auto-focusing system using multi-scale feature extraction and phase correlation matching publication-title: Sensors – reference: A. Abuolaim, A. Punnappurath, M.S. Brown, Revisiting autofocus for smartphone cameras, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 523–537. – reference: J. Park, Y.-W. Tai, D. Cho, I. So Kweon, A unified approach of multi-scale deep and hand-crafted features for defocus estimation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 1736–1745. – reference: H. Zhang, Y. Dai, H. Li, P. Koniusz, Deep stacked hierarchical multi-patch network for image deblurring, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 5978–5986. – volume: 15 start-page: 3952 year: 2018 end-page: 3961 ident: b4 article-title: Multimodal face-pose estimation with multitask manifold deep learning publication-title: IEEE Trans. Ind. Inf. – volume: 32 start-page: 8026 year: 2019 end-page: 8037 ident: b51 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1 year: 2020 end-page: 12 ident: b42 article-title: Modeling defocus-disparity in dual-pixel sensors publication-title: 2020 IEEE International Conference on Computational Photography – reference: R. Zhang, P. Isola, A.A. Efros, E. Shechtman, O. Wang, The unreasonable effectiveness of deep features as a perceptual metric, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 586–595. – reference: A. Punnappurath, M.S. Brown, Reflection removal using a dual-pixel sensor, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 1556–1565. – volume: 30 start-page: 8170 year: 2021 end-page: 8183 ident: b36 article-title: Multi-task learning framework for motion estimation and dynamic scene deblurring publication-title: IEEE Trans. Image Process. – volume: 28 start-page: 2107 year: 2018 end-page: 2115 ident: b37 article-title: A local metric for defocus blur detection based on cnn feature learning publication-title: IEEE Trans. Image Process. – volume: 29 start-page: 7389 year: 2020 end-page: 7398 ident: b2 article-title: Foveabox: Beyound anchor-based object detection publication-title: IEEE Trans. Image Process. – volume: 9 start-page: 878 year: 2022 end-page: 892 ident: b29 article-title: Bambnet: A blur-aware multi-branch network for dual-pixel defocus deblurring publication-title: IEEE/CAA J. Autom. Sin. – reference: L. Pan, S. Chowdhury, R. Hartley, M. Liu, H. Zhang, H. Li, Dual pixel exploration: Simultaneous depth estimation and image restoration, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 4340–4349. – volume: 12 start-page: 58 year: 1995 end-page: 65 ident: b15 article-title: Blind deconvolution by means of the richardson–lucy algorithm publication-title: J. Opt. Soc. Amer. A – reference: X. Zhu, H. Hu, S. Lin, J. Dai, Deformable convnets v2: More deformable, better results, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 9308–9316. – reference: S.W. Zamir, A. Arora, S. Khan, M. Hayat, F.S. Khan, M.-H. Yang, L. Shao, Multi-stage progressive image restoration, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 14821–14831. – volume: 1 start-page: 11 year: 2013 ident: b17 article-title: A simple model for on-sensor phase-detection autofocusing algorithm publication-title: J. Comput. Commun. – reference: E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, T. Brox, Flownet 2.0: Evolution of optical flow estimation with deep networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2462–2470. – volume: 45 start-page: 4734 year: 2020 end-page: 4737 ident: b24 article-title: Image-free real-time 3-d tracking of a fast-moving object using dual-pixel detection publication-title: Opt. Lett. – volume: 30 start-page: 2810 year: 2021 end-page: 2825 ident: b3 article-title: A supervised segmentation network for hyperspectral image classification publication-title: IEEE Trans. Image Process. – reference: C. Herrmann, R.S. Bowen, N. Wadhwa, R. Garg, Q. He, J.T. Barron, R. Zabih, Learning to autofocus, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, p. 2020. – volume: 27 start-page: 1126 year: 2017 end-page: 1137 ident: b11 article-title: Edge-based defocus blur estimation with adaptive scale selection publication-title: IEEE Trans. Image Process. – volume: 56 start-page: 27 issue: 1 year: 2024 ident: 10.1016/j.neucom.2024.128880_b6 article-title: A deep convolutional encoder–decoder–restorer architecture for image deblurring publication-title: Neural Process. Lett. doi: 10.1007/s11063-024-11455-w – volume: 30 start-page: 2810 year: 2021 ident: 10.1016/j.neucom.2024.128880_b3 article-title: A supervised segmentation network for hyperspectral image classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3055613 – ident: 10.1016/j.neucom.2024.128880_b40 doi: 10.1109/CVPR52729.2023.00570 – volume: vol. 2 start-page: 168 year: 1994 ident: 10.1016/j.neucom.2024.128880_b46 article-title: Two deterministic half-quadratic regularization algorithms for computed imaging – start-page: 1 year: 2020 ident: 10.1016/j.neucom.2024.128880_b42 article-title: Modeling defocus-disparity in dual-pixel sensors – ident: 10.1016/j.neucom.2024.128880_b13 doi: 10.1109/CVPR.2017.295 – ident: 10.1016/j.neucom.2024.128880_b50 – ident: 10.1016/j.neucom.2024.128880_b30 doi: 10.1109/CVPR52688.2022.00564 – year: 2016 ident: 10.1016/j.neucom.2024.128880_b32 article-title: Image restoration using very deep convolutional encoder–decoder networks with symmetric skip connections – ident: 10.1016/j.neucom.2024.128880_b28 doi: 10.1109/ICCV48922.2021.00229 – ident: 10.1016/j.neucom.2024.128880_b33 doi: 10.1109/CVPR46437.2021.01458 – volume: 29 start-page: 7389 year: 2020 ident: 10.1016/j.neucom.2024.128880_b2 article-title: Foveabox: Beyound anchor-based object detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3002345 – ident: 10.1016/j.neucom.2024.128880_b52 doi: 10.1109/CVPR52729.2023.00557 – ident: 10.1016/j.neucom.2024.128880_b53 doi: 10.1109/ICCV51070.2023.01158 – ident: 10.1016/j.neucom.2024.128880_b8 doi: 10.1109/CVPR.2015.7298665 – ident: 10.1016/j.neucom.2024.128880_b55 doi: 10.1109/CVPR.2018.00068 – ident: 10.1016/j.neucom.2024.128880_b12 doi: 10.1109/CVPR.2019.01250 – volume: 30 start-page: 8170 year: 2021 ident: 10.1016/j.neucom.2024.128880_b36 article-title: Multi-task learning framework for motion estimation and dynamic scene deblurring publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3113185 – volume: 25 start-page: 1660 issue: 4 year: 2016 ident: 10.1016/j.neucom.2024.128880_b10 article-title: Non-parametric blur map regression for depth of field extension publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2526907 – ident: 10.1016/j.neucom.2024.128880_b18 doi: 10.1109/CVPR42600.2020.00230 – volume: 16 start-page: 1440 year: 2020 ident: 10.1016/j.neucom.2024.128880_b23 article-title: Single-shot face anti-spoofing for dual pixel camera publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2020.3035879 – ident: 10.1016/j.neucom.2024.128880_b43 doi: 10.1109/CVPR.2017.179 – ident: 10.1016/j.neucom.2024.128880_b20 doi: 10.1109/CVPR.2019.00165 – volume: 25 start-page: 1626 issue: 4 year: 2016 ident: 10.1016/j.neucom.2024.128880_b9 article-title: Lbp-based segmentation of defocus blur publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2528042 – ident: 10.1016/j.neucom.2024.128880_b49 doi: 10.1109/ICCV.2015.123 – ident: 10.1016/j.neucom.2024.128880_b19 doi: 10.1007/978-3-030-01267-0_32 – volume: 30 start-page: 1812 year: 2021 ident: 10.1016/j.neucom.2024.128880_b1 article-title: Exploring the effects of blur and deblurring to visual object tracking publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3045630 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.neucom.2024.128880_b54 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 9 start-page: 878 issue: 5 year: 2022 ident: 10.1016/j.neucom.2024.128880_b29 article-title: Bambnet: A blur-aware multi-branch network for dual-pixel defocus deblurring publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2022.105563 – ident: 10.1016/j.neucom.2024.128880_b48 doi: 10.1109/CVPR.2018.00931 – start-page: 582 year: 2020 ident: 10.1016/j.neucom.2024.128880_b22 article-title: Du 2 net: Learning depth estimation from dual-cameras and dual-pixels – ident: 10.1016/j.neucom.2024.128880_b44 doi: 10.1109/ICCV.2015.316 – volume: 1 start-page: 11 issue: 06 year: 2013 ident: 10.1016/j.neucom.2024.128880_b17 article-title: A simple model for on-sensor phase-detection autofocusing algorithm publication-title: J. Comput. Commun. doi: 10.4236/jcc.2013.16003 – volume: 32 start-page: 8026 year: 2019 ident: 10.1016/j.neucom.2024.128880_b51 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – volume: 45 start-page: 4734 issue: 17 year: 2020 ident: 10.1016/j.neucom.2024.128880_b24 article-title: Image-free real-time 3-d tracking of a fast-moving object using dual-pixel detection publication-title: Opt. Lett. doi: 10.1364/OL.399204 – volume: 28 start-page: 2107 issue: 5 year: 2018 ident: 10.1016/j.neucom.2024.128880_b37 article-title: A local metric for defocus blur detection based on cnn feature learning publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2881830 – ident: 10.1016/j.neucom.2024.128880_b27 doi: 10.1109/CVPR46437.2021.00432 – volume: 30 start-page: 3419 year: 2021 ident: 10.1016/j.neucom.2024.128880_b38 article-title: Joint depth and defocus estimation from a single image using physical consistency publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3061901 – ident: 10.1016/j.neucom.2024.128880_b45 doi: 10.1109/CVPRW.2019.00247 – volume: 53 start-page: 4419 year: 2021 ident: 10.1016/j.neucom.2024.128880_b7 article-title: Stack-based scale-recurrent network for face image deblurring publication-title: Neural Process. Lett. doi: 10.1007/s11063-021-10604-9 – ident: 10.1016/j.neucom.2024.128880_b21 doi: 10.1109/ICCV.2019.00772 – volume: 22 start-page: 1033 year: 2009 ident: 10.1016/j.neucom.2024.128880_b14 article-title: Fast image deconvolution using hyper-laplacian priors publication-title: Adv. Neural Inf. Process. Syst. – year: 2024 ident: 10.1016/j.neucom.2024.128880_b41 – volume: 27 start-page: 1126 issue: 3 year: 2017 ident: 10.1016/j.neucom.2024.128880_b11 article-title: Edge-based defocus blur estimation with adaptive scale selection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2771563 – volume: 15 start-page: 5747 issue: 3 year: 2015 ident: 10.1016/j.neucom.2024.128880_b16 article-title: Sensor-based auto-focusing system using multi-scale feature extraction and phase correlation matching publication-title: Sensors doi: 10.3390/s150305747 – start-page: 111 year: 2020 ident: 10.1016/j.neucom.2024.128880_b26 article-title: Defocus deblurring using dual-pixel data – volume: 12 start-page: 58 issue: 1 year: 1995 ident: 10.1016/j.neucom.2024.128880_b15 article-title: Blind deconvolution by means of the richardson–lucy algorithm publication-title: J. Opt. Soc. Amer. A doi: 10.1364/JOSAA.12.000058 – start-page: 234 year: 2015 ident: 10.1016/j.neucom.2024.128880_b31 article-title: U-Net: convolutional networks for biomedical image segmentation – volume: 111 start-page: 257 issue: 3 year: 2023 ident: 10.1016/j.neucom.2024.128880_b5 article-title: Object detection in 20 years: A survey publication-title: Proc. IEEE doi: 10.1109/JPROC.2023.3238524 – ident: 10.1016/j.neucom.2024.128880_b25 doi: 10.1109/CVPR.2019.01125 – volume: 15 start-page: 3952 issue: 7 year: 2018 ident: 10.1016/j.neucom.2024.128880_b4 article-title: Multimodal face-pose estimation with multitask manifold deep learning publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2884211 – ident: 10.1016/j.neucom.2024.128880_b34 doi: 10.1109/CVPR.2019.00613 – ident: 10.1016/j.neucom.2024.128880_b35 doi: 10.1109/ICCV.2019.00897 – ident: 10.1016/j.neucom.2024.128880_b47 doi: 10.1109/CVPR.2019.00953 – volume: 25 start-page: 5943 issue: 12 year: 2016 ident: 10.1016/j.neucom.2024.128880_b39 article-title: Defocus map estimation from a single image based on two-parameter defocus model publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2617460 |
| SSID | ssj0017129 |
| Score | 2.4457517 |
| Snippet | It is a challenging task to recover sharp image from a single defocus blurry image in real-world applications. On many modern cameras, dual-pixel (DP) sensors... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 128880 |
| SubjectTerms | Defocus deblurring Image deblurring |
| Title | Learning dual-pixel alignment for defocus deblurring |
| URI | https://dx.doi.org/10.1016/j.neucom.2024.128880 |
| Volume | 616 |
| WOSCitedRecordID | wos001363744800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017129 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa2wKGXFloqoLTKoVejjfOwfVwhqlKtUIVA2p4ixw-U1Ta7gg1d_j3j2E6Wh1A59JKHlYwjf8nM58l4BqFvFFgB0YrjXGcMp0YozERKMaeGZMlwqKVQbbEJenbGJhP-azAYh7UwtzNa12y14ov_CjW0Adh26ewr4O6EQgMcA-iwBdhh-0_Aj4Ozw66ywotqpW0QcnXlfvvbqEKlzVw2N7AvZ9YD6I3XNCRyasCotcUevBth9MdmU1D21encBuM2CuB302kNdy5mQVqb9rGxjZOqvuuU_7lXc_P66q-u1n0OJAthyr3zENqAGT7Qo3m8rgnB7jFXo-mJknb-gulRrRsbsQMdpEf95Q9zYj-yVV0EYQhOmxZOSmGlFE7KG7RJaMZBx22OTk8mP7u_SjQmLveif_qwlLKN93v6NM9TlTX6cbGN3vl5QzRyeO-gga4_oPehJkfkVfRHlAb4ox7-qIM_AvgjD3_Uw7-LLr-fXBz_wL4yBpYwBVxiFad0qEUmM6pzlielYsCzYiINIcykimipTcJVHiuTw1eXGJIDXSl5JhJiRJJ8Qhv1vNZ7KBIq1twYQ1VZptwoAYRXMspYKcscyNw-wmEQioVLgFK8NPj7iIaRKjyJc-SsAPhfvPPglT19Rm_7d_MQbSyvG_0FbcnbZXVz_dVjfw8jWGkY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+dual-pixel+alignment+for+defocus+deblurring&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Li%2C+Yu&rft.au=Yi%2C+Yaling&rft.au=Shu%2C+Xinya&rft.au=Ren%2C+Dongwei&rft.date=2025-02-01&rft.issn=0925-2312&rft.volume=616&rft.spage=128880&rft_id=info:doi/10.1016%2Fj.neucom.2024.128880&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2024_128880 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |