Topological signal processing and learning: Recent advances and future challenges
Developing methods to process irregularly structured data is crucial in applications like gene-regulatory, brain, power, and socioeconomic networks. Graphs have been the go-to algebraic tool for modeling the structure via nodes and edges capturing their interactions, leading to the establishment of...
Uložené v:
| Vydané v: | Signal processing Ročník 233; s. 109930 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.08.2025
|
| Predmet: | |
| ISSN: | 0165-1684 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Developing methods to process irregularly structured data is crucial in applications like gene-regulatory, brain, power, and socioeconomic networks. Graphs have been the go-to algebraic tool for modeling the structure via nodes and edges capturing their interactions, leading to the establishment of the fields of graph signal processing (GSP) and graph machine learning (GML). Key graph-aware methods include Fourier transform, filtering, sampling, as well as topology identification and spatiotemporal processing. Although versatile, graphs can model only pairwise dependencies in the data. To this end, topological structures such as simplicial and cell complexes have emerged as algebraic representations for more intricate structure modeling in data-driven systems, fueling the rapid development of novel topological-based processing and learning methods. This paper first presents the core principles of topological signal processing through the Hodge theory, a framework instrumental in propelling the field forward thanks to principled connections with GSP-GML. It then outlines advances in topological signal representation, filtering, and sampling, as well as inferring topological structures from data, processing spatiotemporal topological signals, and connections with topological machine learning. The impact of topological signal processing and learning is finally highlighted in applications dealing with flow data over networks, geometric processing, statistical ranking, biology, and semantic communication. |
|---|---|
| AbstractList | Developing methods to process irregularly structured data is crucial in applications like gene-regulatory, brain, power, and socioeconomic networks. Graphs have been the go-to algebraic tool for modeling the structure via nodes and edges capturing their interactions, leading to the establishment of the fields of graph signal processing (GSP) and graph machine learning (GML). Key graph-aware methods include Fourier transform, filtering, sampling, as well as topology identification and spatiotemporal processing. Although versatile, graphs can model only pairwise dependencies in the data. To this end, topological structures such as simplicial and cell complexes have emerged as algebraic representations for more intricate structure modeling in data-driven systems, fueling the rapid development of novel topological-based processing and learning methods. This paper first presents the core principles of topological signal processing through the Hodge theory, a framework instrumental in propelling the field forward thanks to principled connections with GSP-GML. It then outlines advances in topological signal representation, filtering, and sampling, as well as inferring topological structures from data, processing spatiotemporal topological signals, and connections with topological machine learning. The impact of topological signal processing and learning is finally highlighted in applications dealing with flow data over networks, geometric processing, statistical ranking, biology, and semantic communication. |
| ArticleNumber | 109930 |
| Author | Isufi, Elvin Barbarossa, Sergio Di Lorenzo, Paolo Leus, Geert Beferull-Lozano, Baltasar |
| Author_xml | – sequence: 1 givenname: Elvin surname: Isufi fullname: Isufi, Elvin organization: Faculty of Electrical Engineering Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands – sequence: 2 givenname: Geert surname: Leus fullname: Leus, Geert organization: Faculty of Electrical Engineering Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands – sequence: 3 givenname: Baltasar orcidid: 0000-0002-0902-6245 surname: Beferull-Lozano fullname: Beferull-Lozano, Baltasar organization: SIGIPRO, Department, Simula Metropolitan Center for Digital Engineering, Oslo, Norway – sequence: 4 givenname: Sergio surname: Barbarossa fullname: Barbarossa, Sergio organization: Department of Information Engineering, Electronics, and Telecommunications, Sapienza University of Rome, Rome, Italy – sequence: 5 givenname: Paolo orcidid: 0000-0002-4130-3177 surname: Di Lorenzo fullname: Di Lorenzo, Paolo email: paolo.dilorenzo@uniroma1.it organization: Department of Information Engineering, Electronics, and Telecommunications, Sapienza University of Rome, Rome, Italy |
| BookMark | eNp9kM9OwzAMxnMYEhvwBhz6Ah1O03YNByQ08U-ahEDjHKWOUzKVdEq6Sbw9GeXMybI_f5_s34LN_OCJsWsOSw68vtkto-v2YVgWUFRpJKWAGZsnqcp53ZTnbBHjDgC4qGHO3rbDfuiHzqHus-T0qSQ3UozOd5n2JutJB5-a2-ydkPyYaXPUPm38qvYwHgJl-Kn7nnxH8ZKdWd1HuvqrF-zj8WG7fs43r08v6_tNjkVVjTnqGmtqrGyMLFrdamgFiUpYtBIbAEm8sUIKa6E1UNqykcZwbfQKywrrlbhg5ZSLYYgxkFX74L50-FYc1AmF2qkJhTqhUBOKZLubbJRuOzoKKqKj9I5xgXBUZnD_B_wAfkRvqA |
| Cites_doi | 10.1145/3588432.3591544 10.1109/TNNLS.2020.2978386 10.1109/TIP.2020.3042088 10.1088/1367-2630/acf33c 10.1109/MSP.2020.3016143 10.1109/ICASSP.2016.7472914 10.1109/TSP.2023.3347069 10.1109/79.91217 10.1109/TSP.2022.3207045 10.1007/s11071-021-07160-1 10.1109/TSIPN.2024.3485473 10.1016/j.ddtec.2020.11.009 10.1109/TAI.2021.3076021 10.1111/j.1467-937X.2005.00353.x 10.1109/OJSP.2023.3339376 10.1140/epjds/s13688-017-0109-5 10.1145/3450626.3459797 10.1109/EuCNC/6GSummit60053.2024.10597087 10.1109/MSP.2014.2329213 10.1109/MSP.2012.2233865 10.1002/for.2680 10.1038/s42005-024-01666-x 10.1109/TSP.2016.2573748 10.1038/nrm2503 10.1145/218380.218473 10.1109/IEEECONF60004.2024.10942943 10.1109/MSP.2010.939537 10.1007/s10107-010-0419-x 10.1090/S0273-0979-07-01191-3 10.1038/s41598-022-12877-z 10.1109/MSP.2020.3014067 10.1109/JIOT.2019.2950213 10.1038/s41467-019-10431-6 10.1145/2897826.2927303 10.1145/3528223.3530166 10.1109/MSP.2020.3016908 10.1214/17-AOS1613 10.1137/22M1480021 10.1109/TSP.2024.3349788 10.1109/TPWRS.2023.3266956 10.1109/TMM.2021.3111440 10.1098/rsif.2022.0043 10.1103/PhysRevE.104.064303 10.1038/s41467-024-49278-x 10.1109/TPAMI.2023.3311912 10.1090/S0273-0979-09-01249-X 10.1038/s41567-021-01371-4 10.1137/18M1201019 10.1109/TSP.2024.3379862 10.1109/TSG.2024.3389948 10.1016/j.csda.2016.03.007 10.1016/j.physrep.2020.05.004 10.1145/3605776 10.1109/TSP.2020.3042940 10.1016/j.watres.2024.121933 10.1109/TSP.2023.3282068 10.1109/LSP.2022.3221846 10.1109/TSP.2019.2940122 10.1109/OJSP.2024.3444707 10.1016/j.neunet.2024.106928 10.1145/3637528.3671455 10.1038/s41467-022-30706-9 10.1016/j.sigpro.2021.108149 10.1103/PhysRevE.106.034319 10.1145/3292500.3330872 10.1007/BFb0015544 10.1109/TSP.2019.2929930 10.1038/s41467-023-37190-9 10.1038/s41524-021-00493-w 10.1109/TMI.2022.3233876 10.3389/frai.2021.681108 10.1103/RevModPhys.87.925 10.1093/biostatistics/kxm045 10.1145/2504435.2504442 10.1137/21M1414024 10.1137/18M1223101 10.1109/MSP.2018.2890143 10.1109/MCOM.005.2200829 10.1109/TSIPN.2023.3276687 10.1109/TSP.2020.2981920 10.1038/s41567-019-0459-y 10.1214/12-AOS970 10.1109/JSTSP.2017.2730040 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.sigpro.2025.109930 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_sigpro_2025_109930 S0165168425000453 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABDPE ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSH SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c255t-ca6c6e8f98d92baba0b3e353fcf9c8009e18f393ff0bd04f489dd1ada7c45c673 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001428541400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-1684 |
| IngestDate | Sat Nov 29 08:04:47 EST 2025 Sat Apr 12 15:20:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Graph machine learning Topological signal processing Hodge theory Topological data analysis Graph signal processing Network science Topological deep learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c255t-ca6c6e8f98d92baba0b3e353fcf9c8009e18f393ff0bd04f489dd1ada7c45c673 |
| ORCID | 0000-0002-0902-6245 0000-0002-4130-3177 |
| ParticipantIDs | crossref_primary_10_1016_j_sigpro_2025_109930 elsevier_sciencedirect_doi_10_1016_j_sigpro_2025_109930 |
| PublicationCentury | 2000 |
| PublicationDate | August 2025 2025-08-00 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Signal processing |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Isufi, Gama, Shuman, Segarra (b123) 2024 Reddy, Chepuri (b85) 2024 Wu, Pan, Chen, Long, Zhang, Philip (b13) 2020; 32 Jackson (b2) 2008 Sardellitti, Barbarossa (b74) 2023 Gruber, Kastner (b127) 2023 Kipf, Welling (b98) 2017 Leus, Yang, Coutino, Isufi (b114) 2021 Calmon, Schaub, Bianconi (b62) 2023; 25 Gurugubelli, Chepuri (b86) 2023 Malizia, Corso, Gambuzza, Russo, Latora, Frasca (b32) 2024; 15 Edelsbrunner, Harer (b40) 2022 Sardellitti, Barbarossa, Testa (b57) 2021 Lütkepohl (b115) 2005 Bronstein, Bruna, Cohen, Veličković (b7) 2022 Möllers, Immer, Fortuin, Isufi (b113) 2024 Money, Krishnan, Beferull-Lozano (b118) 2021 Barbarossa, Sardellitti (b44) 2020; 68 Chen, Gel, Poor (b96) 2022; vol. 36 Tsitsvero, Barbarossa, Di Lorenzo (b10) 2016; 64 M. Hajij, G. Zamzmi, T. Papamarkou, N. Miolane, A. Guzmán-Sáenz, K.N. Ramamurthy, T. Birdal, T.K. Dey, S. Mukherjee, S.N. Samaga, et al. Topological Deep Learning: Going Beyond Graph Data, May 2023. arXiv preprint G. Taubin, A signal processing approach to fair surface design, in: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, 1995, pp. 351–358. Huang, Chung, Qiu (b168) 2023 Krishnan, Money, Beferull-Lozano, Isufi (b131) 2023 Tanaka, Eldar, Ortega, Cheung (b11) 2020; 37 Sandryhaila, Moura (b139) 2014; 31 Bernárdez, Telyatnikov, Montagna, Baccini, Papillon, Ferriol-Galmés, Hajij, Papamarkou, Bucarelli, Zaghen (b162) 2024 Gurugubelli, Chepuri (b73) 2024 Wasserman (b37) 2018 Battiston, Cencetti, Iacopini, Latora, Lucas, Patania, Young, Petri (b27) 2020; 874 Wang, Pena-Pena, Qian, Arce (b23) 2024 Hu, Pang, Liu, Tian, Lin, Vetro (b148) 2021; 24 Battiloro, Di Lorenzo, Barbarossa (b68) 2023 Roddenberry, Schaub, Hajij (b58) 2022 Gama, Isufi, Leus, Ribeiro (b92) 2020; 37 Pastor-Satorras, Castellano, Van Mieghem, Vespignani (b171) 2015; 87 . Hoppe, Schaub (b72) 2024 Anand, Chung (b164) 2023; 42 Edelsbrunner, Harer (b36) 2010 Navarro, Segarra (b110) 2024 Lim (b24) 2020 McGuire, Munch, Hirn (b106) 2023 Park, Hwang, Kim, Chung, Wu, Kim (b169) 2023 Rioul, Vetterli (b64) 1991; 8 J. Jia, M.T. Schaub, S. Segarra, A.R. Benson, Graph-based semi-supervised & active learning for edge flows, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 761–771. Zhang (b111) 2017 Dakurah, Anand, Chen, Chung (b165) 2022 Zhang, Lucas, Battiston (b30) 2023; 14 Tsitsvero, Barbarossa (b66) 2015 Iacopini, Petri, Barrat, Latora (b31) 2019; 10 Zhang, Ding, Cui (b19) 2019; 7 Isufi, Yang (b80) 2022 Gurugubelli, Chepuri (b109) 2024 Ghrist (b39) 2008; 45 Papillon, Sanborn, Hajij, Miolane (b49) 2023 Newman (b4) 2018 Sanborn, Mathe, Papillon, Buracas, Lillemark, Shewmake, Bertics, Pennec, Miolane (b51) 2024 Yang, Isufi, Schaub, Leus (b60) 2022; 70 Roddenberry, Frantzen, Schaub, Segarra (b67) 2022 Roddenberry, Schaub, Hajij (b141) 2022 Lauritzen (b5) 1996 S. Barbarossa, M. Tsitsvero, An introduction to hypergraph signal processing, in: IEEE Int. Conf. Acoust., Speech and Signal Process., 2016, pp. 6425–6429. Lambiotte, Rosvall, Scholtes (b15) 2019; 15 Battiloro, Sardellitti, Barbarossa, Di Lorenzo (b70) 2023 Lam, Yao (b124) 2012; 40 Nguyen, Slavakis, Pados (b133) 2024 Wang, Ma, Chen, Lai, Zhang (b78) 2022; 13 Hajij, Zamzmi, Papamarkou, Miolane, Guzmán-Sáenz, Ramamurthy (b103) 2022 Schaub, Zhu, Seby, Roddenberry, Segarra (b46) 2021; 187 Zaman, Ramos, Romero, Beferull-Lozano (b116) 2021; 69 Madhu, Chepuri (b112) 2024; 36 Yan, Sadler, Drost, Paul, Lerman (b172) 2017; 11 Zhang, Qamar, Kang, Jung, Zhang, Bae, Zhang (b160) 2023 Huang, Zeng, Wu, Lü (b95) 2024; vol. 38 Shuman, Narang, Frossard, Ortega, Vandergheynst (b25) 2013 K. Crane, F. De Goes, M. Desbrun, P. Schröder, Digital geometry processing with discrete exterior calculus, in: ACM SIGGRAPH 2013 Courses, 2013, pp. 1–126. Rossi, Frasca, Chamberlain, Eynard, Bronstein, Monti (b90) 2020; vol. 7 Nguyen, Slavakis (b134) 2024; 5 Wiersma, Nasikun, Eisemann, Hildebrandt (b156) 2022; 41 Kerimov, Taormina, Tscheikner-Gratl (b143) 2024 Xia, Sun, Yu, Aziz, Wan, Pan, Liu (b26) 2021; 2 Liu, Leus, Isufi (b83) 2023 Bodnar, Frasca, Otter, Wang, Lio, Montufar, Bronstein (b88) 2021; 34 Krishnagopal, Bianconi (b28) 2021; 104 Battiloro, Testa, Giusti, Sardellitti, Di Lorenzo, Barbarossa (b55) 2024 Roddenberry, Glaze, Segarra (b89) 2021; vol. 139 Anand, Chung (b166) 2024 Bodnar, Frasca, Wang, Otter, Montufar, Lio, Bronstein (b87) 2021 Liu, Isufi (b147) 2024 Smith, Seccamonte, Swami, Bullo (b144) 2022; 35 Zhou, Wang, Zhang (b94) 2024; 36 Money, Krishnan, Beferull-Lozano, Isufi (b132) 2024 Tomy, Razzanelli, Di Lauro, Rus, Della Santina (b173) 2022; 109 Lecha, Cavallo, Dominici, Isufi, Battiloro (b180) 2024 Zhang, Cui, Ding (b21) 2020; 30 Yang, Borovitskiy, Isufi (b107) 2024 G. Taubin, T. Zhang, G. Golub, Optimal Surface Smoothing as Filter Design, in: Eur. Conf. Comput. Vision, 1996, pp. 283–292. Bick, Gross, Harrington, Schaub (b17) 2023; 65 C.W.J. Goh, C. Bodnar, P. Lio, Simplicial Attention Networks, in: ICLR 2022 Workshop on Geometrical and Topological Representation Learning, arXiv preprint. Primiceri (b129) 2005; 72 Grande, Schaub (b63) 2024 Friedman, Hastie, Tibshirani (b75) 2008; 9 Feng, You, Zhang, Ji, Gao (b47) 2019; vol. 33 Barbarossa, Sardellitti (b45) 2020; 37 Riihimäki (b178) 2023; 5 Krishnan, Money, Beferull-Lozano, Isufi (b130) 2024 Money, Krishnan, Beferull-Lozano (b119) 2023; 71 Isufi, Loukas, Perraudin, Leus (b122) 2019; 67 Isufi, Gama, Shuman, Segarra (b8) 2024 Grady, Polimeni (b14) 2010; vol. 3 Battiloro, Spinelli, Telyatnikov, Bronstein, Scardapane, Di Lorenzo (b79) 2023 Reddy, Chepuri (b84) 2024 Chen, Gel, Poor (b137) 2022; 35 Cinque, Battiloro, Di Lorenzo (b105) 2023 Pena-Pena, Taipe, Wang, Lau, Arce (b22) 2023 Bispo, Santos, Neto, Lima (b42) 2024 Hwang, Hwang, Wu, Kim (b170) 2024 Richiardi, Achard, Bunke, Van De Ville (b3) 2013; 30 S. Gurugubelli, S.P. Chepuri, SaNN: Simple Yet Powerful Simplicial-aware Neural Networks, in: The Twelfth International Conference on Learning Representations, 2024. Pena-Pena, Lau, Arce (b20) 2023; 9 Chang, Guo, Yao (b126) 2018; 46 Baccini, Geraci, Bianconi (b177) 2022; 106 Mateos, Segarra, Marques, Ribeiro (b71) 2019; 36 Kerimov, Pons, Pritsis, Taormina, Tscheikner-Gratl (b142) 2024; 69 Antelmi, Cordasco, Polato, Scarano, Spagnuolo, Yang (b48) 2023; 56 A. Keros, K. Subr, Spectral coarsening with Hodge Laplacians, in: ACM SIGGRAPH 2023 Conference Proceedings, 2023, pp. 1–11. E.C. Strinati, P. Di Lorenzo, V. Sciancalepore, A. Aijaz, M. Kountouris, D. Gündüz, P. Popovski, M. Sana, P.A. Stavrou, B. Soret, et al., Goal-oriented and semantic communication in 6G AI-native networks: The 6G-GOALS approach, in: Proc. of EuCNC 2024, 2024, arXiv preprint. Yang, Isufi, Leus (b54) 2022 R. Money, M. Sabbaqi, J. Krishnan, B. Beferull-Lonano, E. Isufi, Kalman Filtering for Simplicial Processes, in: Asilomar 2024 - 2024 IEEE International Conference, 2024. Veedu, Harish, Salapaka (b121) 2021 Kastner, Huber (b128) 2020; 39 Carlsson (b35) 2009; 46 Buciulea, Isufi, Leus, Marques (b76) 2024 Lee, Choi, Kim (b125) 2016; 101 Saito, Schonsheck, Shvarts (b69) 2023 Brandt, Scandolo, Eisemann, Hildebrandt (b153) 2017; vol. 36 S. Ebli, M. Defferrard, G. Spreemann, Simplicial Neural Networks, in: NeurIPS Workshops, TDA & beyond, Preprint ArXiv:2010.03633, 2020. Sardellitti, Barbarossa (b59) 2024 Alain, Takao, Paige, Deisenroth (b108) 2023 Z. Liu, G. Wan, B.A. Prakash, M.S. Lau, W. Jin, A review of graph neural networks in epidemic modeling, in: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2024, pp. 6577–6587. Sandyhaila, Moura (b9) 2014 Sabbaqi, Isufi (b140) 2023 Giusti, Battiloro, Di Lorenzo, Sardellitti, Barbarossa (b101) 2022 Lee, Ji, Tay (b104) 2022 T. Papamarkou, T. Birdal, M.M. Bronstein, G.E. Carlsson, J. Curry, Y. Gao, M. Hajij, R. Kwitt, P. Lio, P. Di Lorenzo, et al., Position: Topological Deep Learning is the New Frontier for Relational Learning, in: Forty-First International Conference on Machine Learning, 2024. Karlebach, Shamir (b1) 2008; 9 Gong, Higham, Zygalakis, Bianconi (b179) 2024; 5 Ortega, Frossard, Kovačević, Moura, Vandergheynst (b6) 2018 Schaub, Benson, Horn, Lippner, Jadbabaie (b34) 2020; 62 Jiang, Lim, Yao, Ye (b157) 2011; 127 Wei, Wee, Laurent, Xia (b158) 2022; 12 Goldberg (b56) 2002 Shen, Giannakis, Baingana (b120) 2019; 67 Smirnov, Solomon (b155) 2021; 40 Battiloro, Wang, Riess, Di Lorenzo, Ribeiro (b100) 2024 Berge (b18) 1984; vol. 45 Nasrin, Oballe, Boothe, Maroulas (b167) 2019 Majhi, Perc, Ghosh (b16) 2022; 19 Otter, Porter, Tillmann, Vitelli, Carlsson (b38) 2017; 6 Yan, Kuruoglu (b99) 2025; 183 Yang, Isufi (b82) 2022 Jiang, Chen, Chen, Li, Wei, Pan (b161) 2021; 7 Barbarossa, Comminiello, Grassucci, Pezone, Sardellitti, Di Lorenzo (b175) 2023; 61 Bianconi (b61) 2021; 2 Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, Malinowski, Tacchetti, Raposo, Santoro, Faulkner (b12) 2018 Yang, Sala, Bogdan (b97) 2022 Wieder, Kohlbacher, Kuenemann, Garon, Ducrot, Seidel, Langer (b159) 2020; 37 Lin, Han, Feng, Liu, Tang (b33) 2024; 7 Yang, Isufi (b93) 2023 Xia, Li, Yu, He (b146) 2024 Battiston, Amico, Barrat, Bianconi, Ferraz de Arruda, Franceschiello, Iacopini, Kéfi, Latora, Moreno (b29) 2021; 17 Lee, Chung, Kang, Choi, Ha, Huh, Kim, Lee (b163) 2019 Buciulea, Isufi, Leus, Marques (b77) 2024 Marinucci, Battiloro, Di Lorenzo (b138) 2024 Hensel, Moor, Rieck (b41) 2021; 4 Chen, Jacob, Gel, Zhang, Poor (b145) 2023; 39 Money, Krishnan, Beferull-Lozano (b117) 2021 Money, Krishnan, Beferull-Lozano, Isufi (b135) 2023; 30 Tošić, Frossard (b65) 2011; 28 F. De Goes, M. Desbrun, Y. Tong, Vector field processing on triangle meshes, in: ACM SIGGRAPH 2016 Courses, 2016, pp. 1–49. Roddenberry (10.1016/j.sigpro.2025.109930_b89) 2021; vol. 139 Bick (10.1016/j.sigpro.2025.109930_b17) 2023; 65 Papillon (10.1016/j.sigpro.2025.109930_b49) 2023 Veedu (10.1016/j.sigpro.2025.109930_b121) 2021 Möllers (10.1016/j.sigpro.2025.109930_b113) 2024 Schaub (10.1016/j.sigpro.2025.109930_b46) 2021; 187 Yan (10.1016/j.sigpro.2025.109930_b99) 2025; 183 Pastor-Satorras (10.1016/j.sigpro.2025.109930_b171) 2015; 87 Battiston (10.1016/j.sigpro.2025.109930_b27) 2020; 874 Alain (10.1016/j.sigpro.2025.109930_b108) 2023 Liu (10.1016/j.sigpro.2025.109930_b83) 2023 Huang (10.1016/j.sigpro.2025.109930_b95) 2024; vol. 38 Lee (10.1016/j.sigpro.2025.109930_b104) 2022 Gurugubelli (10.1016/j.sigpro.2025.109930_b109) 2024 Money (10.1016/j.sigpro.2025.109930_b117) 2021 Leus (10.1016/j.sigpro.2025.109930_b114) 2021 Chen (10.1016/j.sigpro.2025.109930_b137) 2022; 35 Kipf (10.1016/j.sigpro.2025.109930_b98) 2017 Hu (10.1016/j.sigpro.2025.109930_b148) 2021; 24 10.1016/j.sigpro.2025.109930_b152 Antelmi (10.1016/j.sigpro.2025.109930_b48) 2023; 56 10.1016/j.sigpro.2025.109930_b154 Park (10.1016/j.sigpro.2025.109930_b169) 2023 10.1016/j.sigpro.2025.109930_b151 Lin (10.1016/j.sigpro.2025.109930_b33) 2024; 7 10.1016/j.sigpro.2025.109930_b150 Rossi (10.1016/j.sigpro.2025.109930_b90) 2020; vol. 7 Krishnagopal (10.1016/j.sigpro.2025.109930_b28) 2021; 104 Lam (10.1016/j.sigpro.2025.109930_b124) 2012; 40 Wasserman (10.1016/j.sigpro.2025.109930_b37) 2018 Roddenberry (10.1016/j.sigpro.2025.109930_b58) 2022 Money (10.1016/j.sigpro.2025.109930_b119) 2023; 71 Yang (10.1016/j.sigpro.2025.109930_b82) 2022 Krishnan (10.1016/j.sigpro.2025.109930_b131) 2023 Sanborn (10.1016/j.sigpro.2025.109930_b51) 2024 Tsitsvero (10.1016/j.sigpro.2025.109930_b66) 2015 Zhang (10.1016/j.sigpro.2025.109930_b19) 2019; 7 Wu (10.1016/j.sigpro.2025.109930_b13) 2020; 32 Yang (10.1016/j.sigpro.2025.109930_b97) 2022 Tomy (10.1016/j.sigpro.2025.109930_b173) 2022; 109 10.1016/j.sigpro.2025.109930_b43 Zhang (10.1016/j.sigpro.2025.109930_b111) 2017 Yang (10.1016/j.sigpro.2025.109930_b54) 2022 Lee (10.1016/j.sigpro.2025.109930_b125) 2016; 101 Xia (10.1016/j.sigpro.2025.109930_b146) 2024 Liu (10.1016/j.sigpro.2025.109930_b147) 2024 Zhang (10.1016/j.sigpro.2025.109930_b21) 2020; 30 McGuire (10.1016/j.sigpro.2025.109930_b106) 2023 Smirnov (10.1016/j.sigpro.2025.109930_b155) 2021; 40 Battiloro (10.1016/j.sigpro.2025.109930_b68) 2023 10.1016/j.sigpro.2025.109930_b102 Ortega (10.1016/j.sigpro.2025.109930_b6) 2018 Sardellitti (10.1016/j.sigpro.2025.109930_b59) 2024 Anand (10.1016/j.sigpro.2025.109930_b166) 2024 Barbarossa (10.1016/j.sigpro.2025.109930_b44) 2020; 68 Marinucci (10.1016/j.sigpro.2025.109930_b138) 2024 10.1016/j.sigpro.2025.109930_b50 Hoppe (10.1016/j.sigpro.2025.109930_b72) 2024 10.1016/j.sigpro.2025.109930_b52 Money (10.1016/j.sigpro.2025.109930_b132) 2024 Barbarossa (10.1016/j.sigpro.2025.109930_b45) 2020; 37 Krishnan (10.1016/j.sigpro.2025.109930_b130) 2024 10.1016/j.sigpro.2025.109930_b53 Hwang (10.1016/j.sigpro.2025.109930_b170) 2024 Nguyen (10.1016/j.sigpro.2025.109930_b134) 2024; 5 10.1016/j.sigpro.2025.109930_b174 10.1016/j.sigpro.2025.109930_b176 Newman (10.1016/j.sigpro.2025.109930_b4) 2018 Kastner (10.1016/j.sigpro.2025.109930_b128) 2020; 39 Carlsson (10.1016/j.sigpro.2025.109930_b35) 2009; 46 Hensel (10.1016/j.sigpro.2025.109930_b41) 2021; 4 Chen (10.1016/j.sigpro.2025.109930_b96) 2022; vol. 36 Gong (10.1016/j.sigpro.2025.109930_b179) 2024; 5 Pena-Pena (10.1016/j.sigpro.2025.109930_b22) 2023 Schaub (10.1016/j.sigpro.2025.109930_b34) 2020; 62 Roddenberry (10.1016/j.sigpro.2025.109930_b141) 2022 Giusti (10.1016/j.sigpro.2025.109930_b101) 2022 Pena-Pena (10.1016/j.sigpro.2025.109930_b20) 2023; 9 Battaglia (10.1016/j.sigpro.2025.109930_b12) 2018 Feng (10.1016/j.sigpro.2025.109930_b47) 2019; vol. 33 Wieder (10.1016/j.sigpro.2025.109930_b159) 2020; 37 Tošić (10.1016/j.sigpro.2025.109930_b65) 2011; 28 Brandt (10.1016/j.sigpro.2025.109930_b153) 2017; vol. 36 Zhang (10.1016/j.sigpro.2025.109930_b160) 2023 Calmon (10.1016/j.sigpro.2025.109930_b62) 2023; 25 Isufi (10.1016/j.sigpro.2025.109930_b80) 2022 Kerimov (10.1016/j.sigpro.2025.109930_b143) 2024 Baccini (10.1016/j.sigpro.2025.109930_b177) 2022; 106 Bodnar (10.1016/j.sigpro.2025.109930_b87) 2021 Reddy (10.1016/j.sigpro.2025.109930_b85) 2024 Wei (10.1016/j.sigpro.2025.109930_b158) 2022; 12 Wang (10.1016/j.sigpro.2025.109930_b78) 2022; 13 Rioul (10.1016/j.sigpro.2025.109930_b64) 1991; 8 Roddenberry (10.1016/j.sigpro.2025.109930_b67) 2022 Cinque (10.1016/j.sigpro.2025.109930_b105) 2023 Smith (10.1016/j.sigpro.2025.109930_b144) 2022; 35 Wiersma (10.1016/j.sigpro.2025.109930_b156) 2022; 41 Yang (10.1016/j.sigpro.2025.109930_b93) 2023 Berge (10.1016/j.sigpro.2025.109930_b18) 1984; vol. 45 Friedman (10.1016/j.sigpro.2025.109930_b75) 2008; 9 Ghrist (10.1016/j.sigpro.2025.109930_b39) 2008; 45 Lee (10.1016/j.sigpro.2025.109930_b163) 2019 Isufi (10.1016/j.sigpro.2025.109930_b122) 2019; 67 Yang (10.1016/j.sigpro.2025.109930_b107) 2024 Madhu (10.1016/j.sigpro.2025.109930_b112) 2024; 36 Malizia (10.1016/j.sigpro.2025.109930_b32) 2024; 15 Primiceri (10.1016/j.sigpro.2025.109930_b129) 2005; 72 Jackson (10.1016/j.sigpro.2025.109930_b2) 2008 Gruber (10.1016/j.sigpro.2025.109930_b127) 2023 Tanaka (10.1016/j.sigpro.2025.109930_b11) 2020; 37 Huang (10.1016/j.sigpro.2025.109930_b168) 2023 Battiloro (10.1016/j.sigpro.2025.109930_b70) 2023 Saito (10.1016/j.sigpro.2025.109930_b69) 2023 Jiang (10.1016/j.sigpro.2025.109930_b157) 2011; 127 Grady (10.1016/j.sigpro.2025.109930_b14) 2010; vol. 3 Nguyen (10.1016/j.sigpro.2025.109930_b133) 2024 Bianconi (10.1016/j.sigpro.2025.109930_b61) 2021; 2 Sardellitti (10.1016/j.sigpro.2025.109930_b74) 2023 Grande (10.1016/j.sigpro.2025.109930_b63) 2024 Tsitsvero (10.1016/j.sigpro.2025.109930_b10) 2016; 64 Chang (10.1016/j.sigpro.2025.109930_b126) 2018; 46 Dakurah (10.1016/j.sigpro.2025.109930_b165) 2022 Lauritzen (10.1016/j.sigpro.2025.109930_b5) 1996 Chen (10.1016/j.sigpro.2025.109930_b145) 2023; 39 Battiloro (10.1016/j.sigpro.2025.109930_b79) 2023 10.1016/j.sigpro.2025.109930_b81 Kerimov (10.1016/j.sigpro.2025.109930_b142) 2024; 69 Lambiotte (10.1016/j.sigpro.2025.109930_b15) 2019; 15 Lecha (10.1016/j.sigpro.2025.109930_b180) 2024 Lim (10.1016/j.sigpro.2025.109930_b24) 2020 Gurugubelli (10.1016/j.sigpro.2025.109930_b86) 2023 Jiang (10.1016/j.sigpro.2025.109930_b161) 2021; 7 Wang (10.1016/j.sigpro.2025.109930_b23) 2024 Isufi (10.1016/j.sigpro.2025.109930_b123) 2024 Money (10.1016/j.sigpro.2025.109930_b135) 2023; 30 Money (10.1016/j.sigpro.2025.109930_b118) 2021 Sardellitti (10.1016/j.sigpro.2025.109930_b57) 2021 Bodnar (10.1016/j.sigpro.2025.109930_b88) 2021; 34 Shen (10.1016/j.sigpro.2025.109930_b120) 2019; 67 Bernárdez (10.1016/j.sigpro.2025.109930_b162) 2024 Bronstein (10.1016/j.sigpro.2025.109930_b7) 2022 Barbarossa (10.1016/j.sigpro.2025.109930_b175) 2023; 61 10.1016/j.sigpro.2025.109930_b149 Buciulea (10.1016/j.sigpro.2025.109930_b76) 2024 Edelsbrunner (10.1016/j.sigpro.2025.109930_b36) 2010 Shuman (10.1016/j.sigpro.2025.109930_b25) 2013 Iacopini (10.1016/j.sigpro.2025.109930_b31) 2019; 10 Sabbaqi (10.1016/j.sigpro.2025.109930_b140) 2023 10.1016/j.sigpro.2025.109930_b91 Nasrin (10.1016/j.sigpro.2025.109930_b167) 2019 Yang (10.1016/j.sigpro.2025.109930_b60) 2022; 70 Zhang (10.1016/j.sigpro.2025.109930_b30) 2023; 14 Edelsbrunner (10.1016/j.sigpro.2025.109930_b40) 2022 Karlebach (10.1016/j.sigpro.2025.109930_b1) 2008; 9 Battiloro (10.1016/j.sigpro.2025.109930_b55) 2024 Bispo (10.1016/j.sigpro.2025.109930_b42) 2024 Otter (10.1016/j.sigpro.2025.109930_b38) 2017; 6 Xia (10.1016/j.sigpro.2025.109930_b26) 2021; 2 Riihimäki (10.1016/j.sigpro.2025.109930_b178) 2023; 5 Navarro (10.1016/j.sigpro.2025.109930_b110) 2024 Zaman (10.1016/j.sigpro.2025.109930_b116) 2021; 69 Gurugubelli (10.1016/j.sigpro.2025.109930_b73) 2024 Reddy (10.1016/j.sigpro.2025.109930_b84) 2024 Anand (10.1016/j.sigpro.2025.109930_b164) 2023; 42 Richiardi (10.1016/j.sigpro.2025.109930_b3) 2013; 30 Sandyhaila (10.1016/j.sigpro.2025.109930_b9) 2014 Hajij (10.1016/j.sigpro.2025.109930_b103) 2022 Gama (10.1016/j.sigpro.2025.109930_b92) 2020; 37 10.1016/j.sigpro.2025.109930_b136 Mateos (10.1016/j.sigpro.2025.109930_b71) 2019; 36 Buciulea (10.1016/j.sigpro.2025.109930_b77) 2024 Goldberg (10.1016/j.sigpro.2025.109930_b56) 2002 Battiloro (10.1016/j.sigpro.2025.109930_b100) 2024 Yan (10.1016/j.sigpro.2025.109930_b172) 2017; 11 Battiston (10.1016/j.sigpro.2025.109930_b29) 2021; 17 Lütkepohl (10.1016/j.sigpro.2025.109930_b115) 2005 Zhou (10.1016/j.sigpro.2025.109930_b94) 2024; 36 Sandryhaila (10.1016/j.sigpro.2025.109930_b139) 2014; 31 Isufi (10.1016/j.sigpro.2025.109930_b8) 2024 Majhi (10.1016/j.sigpro.2025.109930_b16) 2022; 19 |
| References_xml | – volume: 9 start-page: 770 year: 2008 end-page: 780 ident: b1 article-title: Modelling and analysis of gene regulatory networks publication-title: Nature Rev. Mol. Cell Biol. – volume: 32 start-page: 4 year: 2020 end-page: 24 ident: b13 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Networks Learn. Syst. – year: 2024 ident: b84 article-title: Recovery of signals on a simplicial complex from subsampled neighbourhood aggregation publication-title: IEEE Signal Process. Lett. – start-page: 9896 year: 2024 end-page: 9900 ident: b63 article-title: Disentangling the spectral properties of the Hodge Laplacian: not all small eigenvalues are equal publication-title: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing – year: 2024 ident: b72 article-title: Representing edge flows on graphs via sparse cell complexes publication-title: Learning on Graphs Conference – volume: 9 start-page: 432 year: 2008 end-page: 441 ident: b75 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics – volume: 183 year: 2025 ident: b99 article-title: Binarized simplicial convolutional neural networks publication-title: Neural Netw. – start-page: 1 year: 2021 end-page: 6 ident: b117 article-title: Online non-linear topology identification from graph-connected time series publication-title: 2021 IEEE Data Science and Learning Workshop – year: 2024 ident: b143 article-title: Towards transferable metamodels for water distribution systems with edge-based graph neural networks publication-title: Water Res. – start-page: 789 year: 2023 end-page: 799 ident: b169 article-title: Convolving directed graph edges via Hodge Laplacian for brain network analysis publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – reference: K. Crane, F. De Goes, M. Desbrun, P. Schröder, Digital geometry processing with discrete exterior calculus, in: ACM SIGGRAPH 2013 Courses, 2013, pp. 1–126. – year: 2020 ident: b24 article-title: Hodge Laplacians on graphs publication-title: Siam Rev. – start-page: 9516 year: 2024 end-page: 9520 ident: b132 article-title: Evolution backcasting of edge flows from partial observations using simplicial vector autoregressive models publication-title: ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing – year: 2005 ident: b115 article-title: New Introduction to Multiple Time Series Analysis – volume: 5 year: 2024 ident: b179 article-title: Higher-order connection Laplacians for directed simplicial complexes publication-title: J. Phys.: Complex. – start-page: 1 year: 2024 end-page: 5 ident: b109 article-title: Gaussian processes for predicting simplicial closure publication-title: 2024 IEEE 13rd Sensor Array and Multichannel Signal Processing Workshop – reference: R. Money, M. Sabbaqi, J. Krishnan, B. Beferull-Lonano, E. Isufi, Kalman Filtering for Simplicial Processes, in: Asilomar 2024 - 2024 IEEE International Conference, 2024. – volume: 28 start-page: 27 year: 2011 end-page: 38 ident: b65 article-title: Dictionary learning publication-title: IEEE Signal Process. Mag. – start-page: 822 year: 2023 end-page: 826 ident: b74 article-title: Probabilistic topological models over simplicial complexes publication-title: 2023 57th Asilomar Conference on Signals, Systems, and Computers – start-page: 83 year: 2013 end-page: 98 ident: b25 article-title: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains 30 (3) – volume: 25 year: 2023 ident: b62 article-title: Dirac signal processing of higher-order topological signals publication-title: New J. Phys. – volume: 19 year: 2022 ident: b16 article-title: Dynamics on higher-order networks: A review publication-title: J. R. Soc. Interface – start-page: 4 year: 2022 ident: b103 article-title: Higher-order attention networks – start-page: 1 year: 2024 end-page: 5 ident: b166 article-title: Hodge-decomposition of brain networks publication-title: 2024 IEEE International Symposium on Biomedical Imaging – volume: vol. 7 start-page: 15 year: 2020 ident: b90 article-title: Sign: Scalable inception graph neural networks publication-title: Proc. of ICML 2020 Workshop on Graph Representation Learning – volume: 5 start-page: 1073 year: 2024 end-page: 1088 ident: b134 article-title: Multilinear kernel regression and imputation via manifold learning publication-title: IEEE Open J. Signal Process. – volume: 109 start-page: 249 year: 2022 end-page: 263 ident: b173 article-title: Estimating the state of epidemics spreading with graph neural networks publication-title: Nonlinear Dynam. – start-page: 9746 year: 2024 end-page: 9750 ident: b113 article-title: Hodge-aware contrastive learning publication-title: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing – year: 2024 ident: b8 article-title: Graph filters for signal processing and machine learning on graphs publication-title: IEEE Trans. Signal Process. – volume: 15 start-page: 313 year: 2019 end-page: 320 ident: b15 article-title: From networks to optimal higher-order models of complex systems publication-title: Nat. Phys. – volume: 104 year: 2021 ident: b28 article-title: Spectral detection of simplicial communities via Hodge Laplacians publication-title: Phys. Rev. E – start-page: 1 year: 2023 end-page: 5 ident: b70 article-title: Topological signal processing over weighted simplicial complexes publication-title: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing – year: 2018 ident: b4 article-title: Networks – start-page: 5578 year: 2022 end-page: 5582 ident: b80 article-title: Convolutional filtering in simplicial complexes publication-title: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 187 year: 2021 ident: b46 article-title: Signal processing on higher-order networks: Livin’on the edge... and beyond publication-title: Signal Process. – volume: 41 start-page: 1 year: 2022 end-page: 10 ident: b156 article-title: Deltaconv: anisotropic operators for geometric deep learning on point clouds publication-title: ACM Trans. Graph. – reference: S. Ebli, M. Defferrard, G. Spreemann, Simplicial Neural Networks, in: NeurIPS Workshops, TDA & beyond, Preprint ArXiv:2010.03633, 2020. – volume: 8 start-page: 14 year: 1991 end-page: 38 ident: b64 article-title: Wavelets and signal processing publication-title: IEEE Signal Process. Mag. – start-page: 1026 year: 2021 end-page: 1037 ident: b87 article-title: Weisfeiler and lehman go topological: Message passing simplicial networks publication-title: International Conference on Machine Learning – volume: 34 start-page: 2625 year: 2021 end-page: 2640 ident: b88 article-title: Weisfeiler and lehman go cellular: Cw networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1 year: 2017 end-page: 14 ident: b98 publication-title: Semi-Supervised Classification with Graph Convolutional Networks – start-page: 817 year: 2024 end-page: 821 ident: b147 article-title: Hodge-aware matched subspace detectors publication-title: 2024 32nd European Signal Processing Conference – volume: vol. 38 start-page: 12653 year: 2024 end-page: 12661 ident: b95 article-title: Higher-order graph convolutional network with flower-petals laplacians on simplicial complexes publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – year: 2022 ident: b104 article-title: SGAT: Simplicial graph attention network – start-page: 1 year: 2023 end-page: 5 ident: b105 article-title: Pooling strategies for simplicial convolutional networks publication-title: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 39 start-page: 1142 year: 2020 end-page: 1165 ident: b128 article-title: Sparse Bayesian vector autoregressions in huge dimensions publication-title: J. Forecast. – start-page: 674 year: 2019 end-page: 682 ident: b163 article-title: Coidentification of group-level hole structures in brain networks via Hodge Laplacian publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part IV 22 – volume: 45 start-page: 61 year: 2008 end-page: 75 ident: b39 article-title: Barcodes: the persistent topology of data publication-title: Bull. Am. Math. Soc. – start-page: 9861 year: 2024 end-page: 9865 ident: b77 article-title: Learning graphs and simplicial complexes from data publication-title: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 30 start-page: 58 year: 2013 end-page: 70 ident: b3 article-title: Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience publication-title: IEEE Signal Process. Mag. – volume: 17 start-page: 1093 year: 2021 end-page: 1098 ident: b29 article-title: The physics of higher-order interactions in complex systems publication-title: Nat. Phys. – volume: 67 start-page: 5325 year: 2019 end-page: 5339 ident: b120 article-title: Nonlinear structural vector autoregressive models with application to directed brain networks publication-title: IEEE Trans. Signal Process. – volume: 101 start-page: 250 year: 2016 end-page: 276 ident: b125 article-title: Bayes shrinkage estimation for high-dimensional VAR models with scale mixture of normal distributions for noise publication-title: Comput. Statist. Data Anal. – start-page: 3042 year: 2014 end-page: 3054 ident: b9 article-title: Discrete signal processing on graphs: Frequency analysis 62 (12) – volume: 12 start-page: 9699 year: 2022 ident: b158 article-title: Hodge theory-based biomolecular data analysis publication-title: Sci. Rep. – start-page: 1506 year: 2015 end-page: 1510 ident: b66 article-title: On the degrees of freedom of signals on graphs publication-title: 2015 23rd European Signal Processing Conference – volume: 37 start-page: 1 year: 2020 end-page: 12 ident: b159 article-title: A compact review of molecular property prediction with graph neural networks publication-title: Drug Discov. Today: Technol. – start-page: 1 year: 2022 end-page: 13 ident: b97 article-title: Efficient representation learning for higher-order data with simplicial complexes publication-title: Learning on Graphs Conference – year: 2023 ident: b140 article-title: Graph-time convolutional neural networks: Architecture and theoretical analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 7 start-page: 28 year: 2021 ident: b161 article-title: Topological representations of crystalline compounds for the machine-learning prediction of materials properties publication-title: Npj Comput. Mater. – year: 2023 ident: b160 article-title: A survey on graph diffusion models: Generative ai in science for molecule, protein and material – year: 2018 ident: b37 article-title: Topological Data Analysis – year: 2024 ident: b133 article-title: Imputation of time-varying edge flows in graphs by multilinear kernel regression and manifold learning – volume: 65 start-page: 686 year: 2023 end-page: 731 ident: b17 article-title: What are higher-order networks? publication-title: SIAM Rev. – reference: S. Barbarossa, M. Tsitsvero, An introduction to hypergraph signal processing, in: IEEE Int. Conf. Acoust., Speech and Signal Process., 2016, pp. 6425–6429. – volume: 36 year: 2024 ident: b112 article-title: TopoSRL: topology preserving self-supervised simplicial representation learning publication-title: Adv. Neural Inf. Process. Syst. – year: 2024 ident: b59 article-title: Topological signal processing over generalized cell complexes publication-title: IEEE Trans. Signal Process. – volume: vol. 139 start-page: 9020 year: 2021 end-page: 9029 ident: b89 publication-title: Principled Simplicial Neural Networks for Trajectory Prediction – volume: 72 start-page: 821 year: 2005 end-page: 852 ident: b129 article-title: Time varying structural vector autoregressions and monetary policy publication-title: Rev. Econ. Stud. – volume: 2 start-page: 109 year: 2021 end-page: 127 ident: b26 article-title: Graph learning: A survey publication-title: IEEE Trans. Artif. Intell. – year: 2023 ident: b49 article-title: Architectures of topological deep learning: A survey of message-passing topological neural networks – volume: 56 start-page: 1 year: 2023 end-page: 38 ident: b48 article-title: A survey on hypergraph representation learning publication-title: ACM Comput. Surv. – start-page: 5385 year: 2021 end-page: 5399 ident: b114 article-title: Topological Volterra filters publication-title: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 69 start-page: 210 year: 2021 end-page: 225 ident: b116 article-title: Online topology identification from vector autoregressive time series publication-title: IEEE Trans. Signal Process. – start-page: 532 year: 2024 end-page: 541 ident: b170 article-title: Multi-order simplex-based graph neural network for brain network analysis publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: vol. 33 start-page: 3558 year: 2019 end-page: 3565 ident: b47 article-title: Hypergraph neural networks publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 2 year: 2021 ident: b61 article-title: The topological Dirac equation of networks and simplicial complexes publication-title: J. Phys.: Complex. – year: 2021 ident: b121 article-title: Topology learning of linear dynamical systems with latent nodes using matrix decomposition publication-title: IEEE Trans. Autom. Control – volume: 40 start-page: 1 year: 2021 end-page: 11 ident: b155 article-title: HodgeNet: Learning spectral geometry on triangle meshes publication-title: ACM Trans. Graph. – volume: 874 start-page: 1 year: 2020 end-page: 92 ident: b27 article-title: Networks beyond pairwise interactions: Structure and dynamics publication-title: Phys. Rep. – volume: 46 start-page: 255 year: 2009 end-page: 265 ident: b35 article-title: Topological methods for the analysis of high dimensional data sets and 3D object recognition publication-title: Bull. Am. Math. Soc. – volume: 67 start-page: 4870 year: 2019 end-page: 4885 ident: b122 article-title: Forecasting time series with VARMA recursions on graphs publication-title: IEEE Trans. Signal Process. – reference: Z. Liu, G. Wan, B.A. Prakash, M.S. Lau, W. Jin, A review of graph neural networks in epidemic modeling, in: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2024, pp. 6577–6587. – volume: 10 start-page: 2485 year: 2019 ident: b31 article-title: Simplicial models of social contagion publication-title: Nat. Commun. – year: 2024 ident: b100 article-title: Tangent bundle convolutional learning: from manifolds to cellular sheaves and back publication-title: IEEE Trans. Signal Process. – volume: 31 start-page: 80 year: 2014 end-page: 90 ident: b139 article-title: Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure publication-title: IEEE Signal Process. Mag. – volume: 4 year: 2021 ident: b41 article-title: A survey of topological machine learning methods publication-title: Front. Artif. Intell. – start-page: 930 year: 2022 end-page: 934 ident: b82 article-title: Simplicial trend filtering publication-title: 2022 56th Asilomar Conference on Signals, Systems, and Computers – start-page: 326 year: 2022 end-page: 335 ident: b165 article-title: Modelling cycles in brain networks with the Hodge Laplacian publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 1 year: 2023 end-page: 5 ident: b68 article-title: Topological slepians: Maximally localized representations of signals over simplicial complexes publication-title: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing – start-page: 809 year: 2023 end-page: 813 ident: b86 article-title: Gaussian processes for edge flow prediction with active learning publication-title: 2023 57th Asilomar Conference on Signals, Systems, and Computers – start-page: 1247 year: 2019 end-page: 1252 ident: b167 article-title: Bayesian topological learning for brain state classification publication-title: 2019 18th IEEE International Conference on Machine Learning and Applications – year: 2023 ident: b106 article-title: NervePool: A simplicial pooling layer publication-title: 2023 Joint Mathematics Meetings – start-page: 1332 year: 2024 end-page: 1336 ident: b42 article-title: Emergence of higher-order functional brain connectivity with hypergraph signal processing publication-title: 2024 32nd European Signal Processing Conference – year: 2008 ident: b2 article-title: Social and Economic Networks – reference: J. Jia, M.T. Schaub, S. Segarra, A.R. Benson, Graph-based semi-supervised & active learning for edge flows, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 761–771. – volume: 6 start-page: 17 year: 2017 ident: b38 article-title: A roadmap for the computation of persistent homology publication-title: EPJ Data Sci. – year: 2010 ident: b36 article-title: Computational Topology: An Introduction – year: 2023 ident: b79 article-title: From latent graph to latent topology inference: Differentiable cell complex module publication-title: Proc. of the Twelfth International Conference on Learning Representations – year: 2023 ident: b83 article-title: Unrolling of simplicial ElasticNet for edge flow signal reconstruction publication-title: IEEE Open J. Signal Process. – volume: 71 start-page: 2027 year: 2023 end-page: 2042 ident: b119 article-title: Sparse online learning with kernels using random features for estimating nonlinear dynamic graphs publication-title: IEEE Trans. Signal Process. – reference: G. Taubin, A signal processing approach to fair surface design, in: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, 1995, pp. 351–358. – volume: 30 start-page: 115 year: 2023 end-page: 119 ident: b135 article-title: Online edge flow imputation on networks publication-title: IEEE Signal Process. Lett. – year: 2017 ident: b111 article-title: Mixup: Beyond empirical risk minimization – volume: 36 year: 2024 ident: b94 article-title: Facilitating graph neural networks with random walk on simplicial complexes publication-title: Adv. Neural Inf. Process. Syst. – reference: F. De Goes, M. Desbrun, Y. Tong, Vector field processing on triangle meshes, in: ACM SIGGRAPH 2016 Courses, 2016, pp. 1–49. – volume: 9 start-page: 329 year: 2023 end-page: 345 ident: b20 article-title: T-HGSP: Hypergraph signal processing using t-product tensor decompositions publication-title: IEEE Trans. Signal Inf. Process. over Networks – start-page: 1 year: 2024 end-page: 32 ident: b123 article-title: Graph filters for signal processing and machine learning on graphs publication-title: IEEE Trans. Signal Process. – volume: 61 start-page: 36 year: 2023 end-page: 41 ident: b175 article-title: Semantic communications based on adaptive generative models and information bottleneck publication-title: IEEE Commun. Mag. – start-page: 1558 year: 2021 end-page: 1562 ident: b57 article-title: Topological signal processing over cell complexes publication-title: 2021 55th Asilomar Conference on Signals, Systems, and Computers – volume: 14 start-page: 1605 year: 2023 ident: b30 article-title: Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes publication-title: Nat. Commun. – start-page: 3754 year: 2024 end-page: 3762 ident: b107 article-title: Hodge-compositional edge Gaussian processes publication-title: International Conference on Artificial Intelligence and Statistics – reference: G. Taubin, T. Zhang, G. Golub, Optimal Surface Smoothing as Filter Design, in: Eur. Conf. Comput. Vision, 1996, pp. 283–292. – volume: 36 start-page: 16 year: 2019 end-page: 43 ident: b71 article-title: Connecting the dots: Identifying network structure via graph signal processing publication-title: IEEE Signal Process. Mag. – start-page: 278 year: 2023 end-page: 290 ident: b168 article-title: Heterogeneous graph convolutional neural network via Hodge-Laplacian for brain functional data publication-title: International Conference on Information Processing in Medical Imaging – volume: 40 start-page: 694 year: 2012 end-page: 726 ident: b124 article-title: Factor modeling for high-dimensional time series: Inference for the number of factors publication-title: Ann. Statist. – year: 2022 ident: b7 article-title: Geometric deep learning: Grids, groups, graphs, geodesics, and gauges – year: 2023 ident: b93 article-title: Convolutional learning on simplicial complexes – year: 2024 ident: b55 article-title: Generalized simplicial attention neural networks publication-title: IEEE Trans. Signal Inf. Process. over Networks – volume: 37 start-page: 174 year: 2020 end-page: 183 ident: b45 article-title: Topological signal processing: Making sense of data building on multiway relations publication-title: IEEE Signal Process. Mag. – volume: 11 start-page: 774 year: 2017 end-page: 784 ident: b172 article-title: Graph filters and the Z-Laplacian publication-title: IEEE J. Sel. Top. Signal Process. – start-page: 8852 year: 2022 end-page: 8856 ident: b58 article-title: Signal processing on cell complexes publication-title: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing – start-page: 8852 year: 2022 end-page: 8856 ident: b141 article-title: Signal processing on cell complexes publication-title: ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing – start-page: 1 year: 2024 end-page: 5 ident: b76 article-title: Learning the topology of a simplicial complex using simplicial signals: A greedy approach publication-title: 2024 IEEE 13rd Sensor Array and Multichannel Signal Processing Workshop – year: 2002 ident: b56 article-title: Combinatorial Laplacians of Simplicial Complexes – volume: 24 start-page: 3961 year: 2021 end-page: 3977 ident: b148 article-title: Graph signal processing for geometric data and beyond: Theory and applications publication-title: IEEE Trans. Multimed. – volume: 30 start-page: 1193 year: 2020 end-page: 1206 ident: b21 article-title: Hypergraph spectral analysis and processing in 3D point cloud publication-title: IEEE Trans. Image Process. – volume: 87 start-page: 925 year: 2015 end-page: 979 ident: b171 article-title: Epidemic processes in complex networks publication-title: Rev. Modern Phys. – start-page: 832 year: 2024 end-page: 836 ident: b138 article-title: Topological adaptive learning over cell complexes publication-title: 2024 32nd European Signal Processing Conference – volume: 69 start-page: 150 year: 2024 ident: b142 article-title: Sensor placement and state estimation in water distribution systems using edge Gaussian processes publication-title: Eng. Proc. – volume: 39 start-page: 720 year: 2023 end-page: 732 ident: b145 article-title: Learning power grid outages with higher-order topological neural networks publication-title: IEEE Trans. Power Syst. – start-page: 13191 year: 2024 end-page: 13195 ident: b85 article-title: Sampling and recovery of signals over product cell structures publication-title: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing – start-page: 2332 year: 2024 end-page: 2336 ident: b73 article-title: Simplicial complex learning from edge flows via sparse clique sampling publication-title: 2024 32nd European Signal Processing Conference – volume: vol. 36 start-page: 338 year: 2017 end-page: 353 ident: b153 article-title: Spectral processing of tangential vector fields publication-title: Computer Graphics Forum – reference: C.W.J. Goh, C. Bodnar, P. Lio, Simplicial Attention Networks, in: ICLR 2022 Workshop on Geometrical and Topological Representation Learning, arXiv preprint. – volume: 35 start-page: 7211 year: 2022 end-page: 7221 ident: b144 article-title: Physics-informed implicit representations of equilibrium network flows publication-title: Adv. Neural Inf. Process. Syst. – volume: vol. 45 year: 1984 ident: b18 publication-title: Hypergraphs: Combinatorics of Finite Sets – year: 2024 ident: b180 article-title: Higher-order topological directionality and directed simplicial neural networks – volume: 106 year: 2022 ident: b177 article-title: Weighted simplicial complexes and their representation power of higher-order network data and topology publication-title: Phys. Rev. E – year: 2024 ident: b51 article-title: Beyond euclid: An illustrated guide to modern machine learning with geometric, topological, and algebraic structures – year: 2022 ident: b40 article-title: Computational Topology: An Introduction – year: 1996 ident: b5 article-title: Graphical Models – volume: 62 start-page: 353 year: 2020 end-page: 391 ident: b34 article-title: Random walks on simplicial complexes and the normalized Hodge 1-Laplacian publication-title: SIAM Rev. – volume: 70 start-page: 4633 year: 2022 end-page: 4648 ident: b60 article-title: Simplicial convolutional filters publication-title: IEEE Trans. Signal Process. – year: 2023 ident: b108 article-title: Gaussian processes on cellular complexes publication-title: Proc. of International Conference on Machine Learning – volume: 42 start-page: 1563 year: 2023 end-page: 1573 ident: b164 article-title: Hodge Laplacian of brain networks publication-title: IEEE Trans. Med. Imaging – volume: 35 start-page: 8940 year: 2022 end-page: 8953 ident: b137 article-title: Time-conditioned dances with simplicial complexes: Zigzag filtration curve based supra-hodge convolution networks for time-series forecasting publication-title: Adv. Neural Inf. Process. Syst. – volume: vol. 36 start-page: 6333 year: 2022 end-page: 6341 ident: b96 article-title: BScNets: Block simplicial complex neural networks publication-title: Proceedings of the Aaai Conference on Artificial Intelligence – year: 2024 ident: b146 article-title: Locational detection of false data injection attacks in the edge space via Hodge graph neural network for smart grids publication-title: IEEE Trans. Smart Grid – volume: 15 start-page: 5184 year: 2024 ident: b32 article-title: Reconstructing higher-order interactions in coupled dynamical systems publication-title: Nat. Commun. – reference: T. Papamarkou, T. Birdal, M.M. Bronstein, G.E. Carlsson, J. Curry, Y. Gao, M. Hajij, R. Kwitt, P. Lio, P. Di Lorenzo, et al., Position: Topological Deep Learning is the New Frontier for Relational Learning, in: Forty-First International Conference on Machine Learning, 2024. – year: 2022 ident: b101 article-title: Simplicial attention neural networks – volume: 13 start-page: 3043 year: 2022 ident: b78 article-title: Full reconstruction of simplicial complexes from binary contagion and ising data publication-title: Nat. Commun. – volume: 5 start-page: 800 year: 2023 end-page: 828 ident: b178 article-title: Simplicial-connectivity of directed graphs with applications to network analysis publication-title: SIAM J. Math. Data Sci. – volume: 7 start-page: 639 year: 2019 end-page: 660 ident: b19 article-title: Introducing hypergraph signal processing: Theoretical foundation and practical applications publication-title: IEEE Internet Things J. – start-page: 1 year: 2023 end-page: 5 ident: b131 article-title: Simplicial vector autoregressive model for streaming edge flows publication-title: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 68 start-page: 2992 year: 2020 end-page: 3007 ident: b44 article-title: Topological signal processing over simplicial complexes publication-title: IEEE Trans. Signal Process. – year: 2023 ident: b127 article-title: Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends! – year: 2018 ident: b12 article-title: Relational inductive biases, deep learning, and graph networks – year: 2023 ident: b22 article-title: Learning hypergraphs tensor representations from data via t-HGSP publication-title: IEEE Trans. Signal Inf. Process. over Networks – year: 2023 ident: b69 article-title: Multiscale Hodge scattering networks for data analysis – volume: 127 start-page: 203 year: 2011 end-page: 244 ident: b157 article-title: Statistical ranking and combinatorial Hodge theory publication-title: Math. Program. – start-page: 13446 year: 2024 end-page: 13450 ident: b110 article-title: SC-MAD: Mixtures of higher-order networks for data augmentation publication-title: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 46 start-page: 2094 year: 2018 end-page: 2124 ident: b126 article-title: Principal component analysis for second-order stationary vector time series publication-title: Ann. Statist. – volume: 37 start-page: 14 year: 2020 end-page: 30 ident: b11 article-title: Sampling signals on graphs: From theory to applications publication-title: IEEE Signal Process. Mag. – start-page: 8847 year: 2022 end-page: 8851 ident: b54 article-title: Simplicial convolutional neural networks publication-title: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing – start-page: 1 year: 2024 end-page: 15 ident: b130 article-title: Simplicial vector autoregressive models publication-title: IEEE Trans. Signal Process. – reference: E.C. Strinati, P. Di Lorenzo, V. Sciancalepore, A. Aijaz, M. Kountouris, D. Gündüz, P. Popovski, M. Sana, P.A. Stavrou, B. Soret, et al., Goal-oriented and semantic communication in 6G AI-native networks: The 6G-GOALS approach, in: Proc. of EuCNC 2024, 2024, arXiv preprint. – volume: 64 start-page: 4845 year: 2016 end-page: 4860 ident: b10 article-title: Signals on graphs: Uncertainty principle and sampling publication-title: IEEE Trans. Signal Process. – reference: M. Hajij, G. Zamzmi, T. Papamarkou, N. Miolane, A. Guzmán-Sáenz, K.N. Ramamurthy, T. Birdal, T.K. Dey, S. Mukherjee, S.N. Samaga, et al. Topological Deep Learning: Going Beyond Graph Data, May 2023. arXiv preprint – reference: . – reference: A. Keros, K. Subr, Spectral coarsening with Hodge Laplacians, in: ACM SIGGRAPH 2023 Conference Proceedings, 2023, pp. 1–11. – year: 2024 ident: b162 article-title: ICML topological deep learning challenge 2024: Beyond the graph domain – reference: S. Gurugubelli, S.P. Chepuri, SaNN: Simple Yet Powerful Simplicial-aware Neural Networks, in: The Twelfth International Conference on Learning Representations, 2024. – volume: vol. 3 year: 2010 ident: b14 publication-title: Discrete Calculus: Applied Analysis on Graphs for Computational Science – volume: 7 start-page: 175 year: 2024 ident: b33 article-title: Higher-order non-Markovian social contagions in simplicial complexes publication-title: Commun. Phys. – start-page: 808 year: 2018 end-page: 828 ident: b6 article-title: Graph signal processing: Overview, challenges and applications 106 (5) – year: 2024 ident: b23 article-title: T-HyperGNNs: Hypergraph neural networks via tensor representations publication-title: IEEE Trans. Neural Networks Learn. Syst. – year: 2021 ident: b118 article-title: Random feature approximation for online nonlinear graph topology identification publication-title: IEEE MLSP – start-page: 5922 year: 2022 end-page: 5926 ident: b67 article-title: Hodgelets: Localized spectral representations of flows on simplicial complexes publication-title: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 37 start-page: 128 year: 2020 end-page: 138 ident: b92 article-title: Graphs, convolutions, and neural networks: From graph filters to graph neural networks publication-title: IEEE Signal Process. Mag. – start-page: 1332 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b42 article-title: Emergence of higher-order functional brain connectivity with hypergraph signal processing – volume: 34 start-page: 2625 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b88 article-title: Weisfeiler and lehman go cellular: Cw networks publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.sigpro.2025.109930_b102 – ident: 10.1016/j.sigpro.2025.109930_b154 doi: 10.1145/3588432.3591544 – volume: 32 start-page: 4 issue: 1 year: 2020 ident: 10.1016/j.sigpro.2025.109930_b13 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2020.2978386 – volume: 30 start-page: 1193 year: 2020 ident: 10.1016/j.sigpro.2025.109930_b21 article-title: Hypergraph spectral analysis and processing in 3D point cloud publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3042088 – year: 2024 ident: 10.1016/j.sigpro.2025.109930_b51 – year: 2008 ident: 10.1016/j.sigpro.2025.109930_b2 – volume: 25 issue: 9 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b62 article-title: Dirac signal processing of higher-order topological signals publication-title: New J. Phys. doi: 10.1088/1367-2630/acf33c – start-page: 817 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b147 article-title: Hodge-aware matched subspace detectors – year: 2024 ident: 10.1016/j.sigpro.2025.109930_b23 article-title: T-HyperGNNs: Hypergraph neural networks via tensor representations publication-title: IEEE Trans. Neural Networks Learn. Syst. – year: 2024 ident: 10.1016/j.sigpro.2025.109930_b72 article-title: Representing edge flows on graphs via sparse cell complexes – volume: 35 start-page: 7211 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b144 article-title: Physics-informed implicit representations of equilibrium network flows publication-title: Adv. Neural Inf. Process. Syst. – volume: 37 start-page: 128 issue: 6 year: 2020 ident: 10.1016/j.sigpro.2025.109930_b92 article-title: Graphs, convolutions, and neural networks: From graph filters to graph neural networks publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2020.3016143 – ident: 10.1016/j.sigpro.2025.109930_b43 doi: 10.1109/ICASSP.2016.7472914 – year: 2024 ident: 10.1016/j.sigpro.2025.109930_b59 article-title: Topological signal processing over generalized cell complexes publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2023.3347069 – volume: 8 start-page: 14 issue: 4 year: 1991 ident: 10.1016/j.sigpro.2025.109930_b64 article-title: Wavelets and signal processing publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.91217 – volume: 36 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b112 article-title: TopoSRL: topology preserving self-supervised simplicial representation learning publication-title: Adv. Neural Inf. Process. Syst. – start-page: 1 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b68 article-title: Topological slepians: Maximally localized representations of signals over simplicial complexes – volume: 70 start-page: 4633 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b60 article-title: Simplicial convolutional filters publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2022.3207045 – year: 2023 ident: 10.1016/j.sigpro.2025.109930_b69 – ident: 10.1016/j.sigpro.2025.109930_b91 – volume: 109 start-page: 249 issue: 1 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b173 article-title: Estimating the state of epidemics spreading with graph neural networks publication-title: Nonlinear Dynam. doi: 10.1007/s11071-021-07160-1 – year: 1996 ident: 10.1016/j.sigpro.2025.109930_b5 – start-page: 8852 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b141 article-title: Signal processing on cell complexes – year: 2024 ident: 10.1016/j.sigpro.2025.109930_b55 article-title: Generalized simplicial attention neural networks publication-title: IEEE Trans. Signal Inf. Process. over Networks doi: 10.1109/TSIPN.2024.3485473 – volume: 37 start-page: 1 year: 2020 ident: 10.1016/j.sigpro.2025.109930_b159 article-title: A compact review of molecular property prediction with graph neural networks publication-title: Drug Discov. Today: Technol. doi: 10.1016/j.ddtec.2020.11.009 – start-page: 822 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b74 article-title: Probabilistic topological models over simplicial complexes – year: 2002 ident: 10.1016/j.sigpro.2025.109930_b56 – start-page: 930 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b82 article-title: Simplicial trend filtering – start-page: 83 year: 2013 ident: 10.1016/j.sigpro.2025.109930_b25 – start-page: 1 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b109 article-title: Gaussian processes for predicting simplicial closure – year: 2018 ident: 10.1016/j.sigpro.2025.109930_b12 – volume: 2 start-page: 109 issue: 2 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b26 article-title: Graph learning: A survey publication-title: IEEE Trans. Artif. Intell. doi: 10.1109/TAI.2021.3076021 – volume: 72 start-page: 821 issue: 3 year: 2005 ident: 10.1016/j.sigpro.2025.109930_b129 article-title: Time varying structural vector autoregressions and monetary policy publication-title: Rev. Econ. Stud. doi: 10.1111/j.1467-937X.2005.00353.x – year: 2023 ident: 10.1016/j.sigpro.2025.109930_b22 article-title: Learning hypergraphs tensor representations from data via t-HGSP publication-title: IEEE Trans. Signal Inf. Process. over Networks – year: 2023 ident: 10.1016/j.sigpro.2025.109930_b83 article-title: Unrolling of simplicial ElasticNet for edge flow signal reconstruction publication-title: IEEE Open J. Signal Process. doi: 10.1109/OJSP.2023.3339376 – start-page: 808 year: 2018 ident: 10.1016/j.sigpro.2025.109930_b6 – year: 2024 ident: 10.1016/j.sigpro.2025.109930_b162 – start-page: 1 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b130 article-title: Simplicial vector autoregressive models publication-title: IEEE Trans. Signal Process. – volume: vol. 45 year: 1984 ident: 10.1016/j.sigpro.2025.109930_b18 – volume: 6 start-page: 17 issue: 1 year: 2017 ident: 10.1016/j.sigpro.2025.109930_b38 article-title: A roadmap for the computation of persistent homology publication-title: EPJ Data Sci. doi: 10.1140/epjds/s13688-017-0109-5 – start-page: 13191 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b85 article-title: Sampling and recovery of signals over product cell structures – start-page: 674 year: 2019 ident: 10.1016/j.sigpro.2025.109930_b163 article-title: Coidentification of group-level hole structures in brain networks via Hodge Laplacian – volume: vol. 36 start-page: 6333 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b96 article-title: BScNets: Block simplicial complex neural networks – volume: 40 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b155 article-title: HodgeNet: Learning spectral geometry on triangle meshes publication-title: ACM Trans. Graph. doi: 10.1145/3450626.3459797 – ident: 10.1016/j.sigpro.2025.109930_b176 doi: 10.1109/EuCNC/6GSummit60053.2024.10597087 – volume: 31 start-page: 80 issue: 5 year: 2014 ident: 10.1016/j.sigpro.2025.109930_b139 article-title: Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2014.2329213 – start-page: 809 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b86 article-title: Gaussian processes for edge flow prediction with active learning – start-page: 1 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b166 article-title: Hodge-decomposition of brain networks – volume: 30 start-page: 58 issue: 3 year: 2013 ident: 10.1016/j.sigpro.2025.109930_b3 article-title: Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2233865 – start-page: 1 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b70 article-title: Topological signal processing over weighted simplicial complexes – volume: 39 start-page: 1142 issue: 7 year: 2020 ident: 10.1016/j.sigpro.2025.109930_b128 article-title: Sparse Bayesian vector autoregressions in huge dimensions publication-title: J. Forecast. doi: 10.1002/for.2680 – volume: 7 start-page: 175 issue: 1 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b33 article-title: Higher-order non-Markovian social contagions in simplicial complexes publication-title: Commun. Phys. doi: 10.1038/s42005-024-01666-x – start-page: 1026 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b87 article-title: Weisfeiler and lehman go topological: Message passing simplicial networks – volume: 64 start-page: 4845 issue: 18 year: 2016 ident: 10.1016/j.sigpro.2025.109930_b10 article-title: Signals on graphs: Uncertainty principle and sampling publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2573748 – volume: 9 start-page: 770 issue: 10 year: 2008 ident: 10.1016/j.sigpro.2025.109930_b1 article-title: Modelling and analysis of gene regulatory networks publication-title: Nature Rev. Mol. Cell Biol. doi: 10.1038/nrm2503 – start-page: 1 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b123 article-title: Graph filters for signal processing and machine learning on graphs publication-title: IEEE Trans. Signal Process. – ident: 10.1016/j.sigpro.2025.109930_b149 doi: 10.1145/218380.218473 – year: 2023 ident: 10.1016/j.sigpro.2025.109930_b127 – ident: 10.1016/j.sigpro.2025.109930_b136 doi: 10.1109/IEEECONF60004.2024.10942943 – start-page: 278 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b168 article-title: Heterogeneous graph convolutional neural network via Hodge-Laplacian for brain functional data – volume: 28 start-page: 27 issue: 2 year: 2011 ident: 10.1016/j.sigpro.2025.109930_b65 article-title: Dictionary learning publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.939537 – volume: 127 start-page: 203 issue: 1 year: 2011 ident: 10.1016/j.sigpro.2025.109930_b157 article-title: Statistical ranking and combinatorial Hodge theory publication-title: Math. Program. doi: 10.1007/s10107-010-0419-x – start-page: 1247 year: 2019 ident: 10.1016/j.sigpro.2025.109930_b167 article-title: Bayesian topological learning for brain state classification – start-page: 326 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b165 article-title: Modelling cycles in brain networks with the Hodge Laplacian – year: 2022 ident: 10.1016/j.sigpro.2025.109930_b7 – volume: 45 start-page: 61 issue: 1 year: 2008 ident: 10.1016/j.sigpro.2025.109930_b39 article-title: Barcodes: the persistent topology of data publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0273-0979-07-01191-3 – start-page: 13446 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b110 article-title: SC-MAD: Mixtures of higher-order networks for data augmentation – volume: 12 start-page: 9699 issue: 1 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b158 article-title: Hodge theory-based biomolecular data analysis publication-title: Sci. Rep. doi: 10.1038/s41598-022-12877-z – year: 2024 ident: 10.1016/j.sigpro.2025.109930_b180 – start-page: 1 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b105 article-title: Pooling strategies for simplicial convolutional networks – volume: 37 start-page: 174 issue: 6 year: 2020 ident: 10.1016/j.sigpro.2025.109930_b45 article-title: Topological signal processing: Making sense of data building on multiway relations publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2020.3014067 – volume: 7 start-page: 639 issue: 1 year: 2019 ident: 10.1016/j.sigpro.2025.109930_b19 article-title: Introducing hypergraph signal processing: Theoretical foundation and practical applications publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2950213 – volume: 10 start-page: 2485 issue: 1 year: 2019 ident: 10.1016/j.sigpro.2025.109930_b31 article-title: Simplicial models of social contagion publication-title: Nat. Commun. doi: 10.1038/s41467-019-10431-6 – ident: 10.1016/j.sigpro.2025.109930_b152 doi: 10.1145/2897826.2927303 – volume: 41 start-page: 1 issue: 4 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b156 article-title: Deltaconv: anisotropic operators for geometric deep learning on point clouds publication-title: ACM Trans. Graph. doi: 10.1145/3528223.3530166 – ident: 10.1016/j.sigpro.2025.109930_b52 – volume: 37 start-page: 14 issue: 6 year: 2020 ident: 10.1016/j.sigpro.2025.109930_b11 article-title: Sampling signals on graphs: From theory to applications publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2020.3016908 – year: 2023 ident: 10.1016/j.sigpro.2025.109930_b160 – volume: 36 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b94 article-title: Facilitating graph neural networks with random walk on simplicial complexes publication-title: Adv. Neural Inf. Process. Syst. – volume: 46 start-page: 2094 issue: 5 year: 2018 ident: 10.1016/j.sigpro.2025.109930_b126 article-title: Principal component analysis for second-order stationary vector time series publication-title: Ann. Statist. doi: 10.1214/17-AOS1613 – volume: 5 start-page: 800 issue: 3 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b178 article-title: Simplicial-connectivity of directed graphs with applications to network analysis publication-title: SIAM J. Math. Data Sci. doi: 10.1137/22M1480021 – year: 2024 ident: 10.1016/j.sigpro.2025.109930_b8 article-title: Graph filters for signal processing and machine learning on graphs publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2024.3349788 – year: 2022 ident: 10.1016/j.sigpro.2025.109930_b104 – volume: 39 start-page: 720 issue: 1 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b145 article-title: Learning power grid outages with higher-order topological neural networks publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2023.3266956 – year: 2024 ident: 10.1016/j.sigpro.2025.109930_b133 – year: 2021 ident: 10.1016/j.sigpro.2025.109930_b121 article-title: Topology learning of linear dynamical systems with latent nodes using matrix decomposition publication-title: IEEE Trans. Autom. Control – start-page: 5578 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b80 article-title: Convolutional filtering in simplicial complexes – volume: vol. 33 start-page: 3558 year: 2019 ident: 10.1016/j.sigpro.2025.109930_b47 article-title: Hypergraph neural networks – volume: vol. 38 start-page: 12653 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b95 article-title: Higher-order graph convolutional network with flower-petals laplacians on simplicial complexes – volume: 24 start-page: 3961 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b148 article-title: Graph signal processing for geometric data and beyond: Theory and applications publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2021.3111440 – volume: 19 issue: 188 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b16 article-title: Dynamics on higher-order networks: A review publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2022.0043 – volume: 104 issue: 6 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b28 article-title: Spectral detection of simplicial communities via Hodge Laplacians publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.104.064303 – volume: 15 start-page: 5184 issue: 1 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b32 article-title: Reconstructing higher-order interactions in coupled dynamical systems publication-title: Nat. Commun. doi: 10.1038/s41467-024-49278-x – year: 2018 ident: 10.1016/j.sigpro.2025.109930_b37 – year: 2005 ident: 10.1016/j.sigpro.2025.109930_b115 – year: 2023 ident: 10.1016/j.sigpro.2025.109930_b140 article-title: Graph-time convolutional neural networks: Architecture and theoretical analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2023.3311912 – volume: 46 start-page: 255 issue: 2 year: 2009 ident: 10.1016/j.sigpro.2025.109930_b35 article-title: Topological methods for the analysis of high dimensional data sets and 3D object recognition publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0273-0979-09-01249-X – start-page: 9896 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b63 article-title: Disentangling the spectral properties of the Hodge Laplacian: not all small eigenvalues are equal – start-page: 532 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b170 article-title: Multi-order simplex-based graph neural network for brain network analysis – volume: 17 start-page: 1093 issue: 10 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b29 article-title: The physics of higher-order interactions in complex systems publication-title: Nat. Phys. doi: 10.1038/s41567-021-01371-4 – volume: 62 start-page: 353 issue: 2 year: 2020 ident: 10.1016/j.sigpro.2025.109930_b34 article-title: Random walks on simplicial complexes and the normalized Hodge 1-Laplacian publication-title: SIAM Rev. doi: 10.1137/18M1201019 – start-page: 8847 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b54 article-title: Simplicial convolutional neural networks – start-page: 1 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b97 article-title: Efficient representation learning for higher-order data with simplicial complexes – year: 2023 ident: 10.1016/j.sigpro.2025.109930_b79 article-title: From latent graph to latent topology inference: Differentiable cell complex module – year: 2024 ident: 10.1016/j.sigpro.2025.109930_b100 article-title: Tangent bundle convolutional learning: from manifolds to cellular sheaves and back publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2024.3379862 – year: 2024 ident: 10.1016/j.sigpro.2025.109930_b146 article-title: Locational detection of false data injection attacks in the edge space via Hodge graph neural network for smart grids publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2024.3389948 – volume: 101 start-page: 250 year: 2016 ident: 10.1016/j.sigpro.2025.109930_b125 article-title: Bayes shrinkage estimation for high-dimensional VAR models with scale mixture of normal distributions for noise publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2016.03.007 – start-page: 8852 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b58 article-title: Signal processing on cell complexes – year: 2023 ident: 10.1016/j.sigpro.2025.109930_b49 – volume: 874 start-page: 1 year: 2020 ident: 10.1016/j.sigpro.2025.109930_b27 article-title: Networks beyond pairwise interactions: Structure and dynamics publication-title: Phys. Rep. doi: 10.1016/j.physrep.2020.05.004 – start-page: 5922 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b67 article-title: Hodgelets: Localized spectral representations of flows on simplicial complexes – start-page: 5385 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b114 article-title: Topological Volterra filters – start-page: 1 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b131 article-title: Simplicial vector autoregressive model for streaming edge flows – volume: 56 start-page: 1 issue: 1 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b48 article-title: A survey on hypergraph representation learning publication-title: ACM Comput. Surv. doi: 10.1145/3605776 – start-page: 4 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b103 – volume: vol. 7 start-page: 15 year: 2020 ident: 10.1016/j.sigpro.2025.109930_b90 article-title: Sign: Scalable inception graph neural networks – start-page: 1 year: 2017 ident: 10.1016/j.sigpro.2025.109930_b98 – volume: 69 start-page: 210 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b116 article-title: Online topology identification from vector autoregressive time series publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.3042940 – year: 2024 ident: 10.1016/j.sigpro.2025.109930_b143 article-title: Towards transferable metamodels for water distribution systems with edge-based graph neural networks publication-title: Water Res. doi: 10.1016/j.watres.2024.121933 – volume: 71 start-page: 2027 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b119 article-title: Sparse online learning with kernels using random features for estimating nonlinear dynamic graphs publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2023.3282068 – volume: 30 start-page: 115 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b135 article-title: Online edge flow imputation on networks publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2022.3221846 – volume: 5 issue: 1 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b179 article-title: Higher-order connection Laplacians for directed simplicial complexes publication-title: J. Phys.: Complex. – ident: 10.1016/j.sigpro.2025.109930_b50 – start-page: 832 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b138 article-title: Topological adaptive learning over cell complexes – year: 2021 ident: 10.1016/j.sigpro.2025.109930_b118 article-title: Random feature approximation for online nonlinear graph topology identification publication-title: IEEE MLSP – volume: vol. 3 year: 2010 ident: 10.1016/j.sigpro.2025.109930_b14 – volume: 67 start-page: 5325 year: 2019 ident: 10.1016/j.sigpro.2025.109930_b120 article-title: Nonlinear structural vector autoregressive models with application to directed brain networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2940122 – volume: 5 start-page: 1073 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b134 article-title: Multilinear kernel regression and imputation via manifold learning publication-title: IEEE Open J. Signal Process. doi: 10.1109/OJSP.2024.3444707 – volume: 183 year: 2025 ident: 10.1016/j.sigpro.2025.109930_b99 article-title: Binarized simplicial convolutional neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2024.106928 – ident: 10.1016/j.sigpro.2025.109930_b174 doi: 10.1145/3637528.3671455 – volume: 13 start-page: 3043 issue: 1 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b78 article-title: Full reconstruction of simplicial complexes from binary contagion and ising data publication-title: Nat. Commun. doi: 10.1038/s41467-022-30706-9 – start-page: 9516 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b132 article-title: Evolution backcasting of edge flows from partial observations using simplicial vector autoregressive models – start-page: 789 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b169 article-title: Convolving directed graph edges via Hodge Laplacian for brain network analysis – volume: 187 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b46 article-title: Signal processing on higher-order networks: Livin’on the edge... and beyond publication-title: Signal Process. doi: 10.1016/j.sigpro.2021.108149 – start-page: 9861 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b77 article-title: Learning graphs and simplicial complexes from data – volume: vol. 36 start-page: 338 year: 2017 ident: 10.1016/j.sigpro.2025.109930_b153 article-title: Spectral processing of tangential vector fields – volume: 2 issue: 3 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b61 article-title: The topological Dirac equation of networks and simplicial complexes publication-title: J. Phys.: Complex. – start-page: 2332 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b73 article-title: Simplicial complex learning from edge flows via sparse clique sampling – volume: 69 start-page: 150 issue: 1 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b142 article-title: Sensor placement and state estimation in water distribution systems using edge Gaussian processes publication-title: Eng. Proc. – start-page: 1506 year: 2015 ident: 10.1016/j.sigpro.2025.109930_b66 article-title: On the degrees of freedom of signals on graphs – volume: 106 issue: 3 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b177 article-title: Weighted simplicial complexes and their representation power of higher-order network data and topology publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.106.034319 – ident: 10.1016/j.sigpro.2025.109930_b53 – ident: 10.1016/j.sigpro.2025.109930_b81 doi: 10.1145/3292500.3330872 – year: 2023 ident: 10.1016/j.sigpro.2025.109930_b93 – year: 2018 ident: 10.1016/j.sigpro.2025.109930_b4 – ident: 10.1016/j.sigpro.2025.109930_b150 doi: 10.1007/BFb0015544 – year: 2023 ident: 10.1016/j.sigpro.2025.109930_b108 article-title: Gaussian processes on cellular complexes – start-page: 3042 year: 2014 ident: 10.1016/j.sigpro.2025.109930_b9 – volume: 67 start-page: 4870 issue: 18 year: 2019 ident: 10.1016/j.sigpro.2025.109930_b122 article-title: Forecasting time series with VARMA recursions on graphs publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2929930 – volume: 14 start-page: 1605 issue: 1 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b30 article-title: Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes publication-title: Nat. Commun. doi: 10.1038/s41467-023-37190-9 – volume: 7 start-page: 28 issue: 1 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b161 article-title: Topological representations of crystalline compounds for the machine-learning prediction of materials properties publication-title: Npj Comput. Mater. doi: 10.1038/s41524-021-00493-w – volume: 42 start-page: 1563 issue: 5 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b164 article-title: Hodge Laplacian of brain networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3233876 – year: 2010 ident: 10.1016/j.sigpro.2025.109930_b36 – volume: 4 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b41 article-title: A survey of topological machine learning methods publication-title: Front. Artif. Intell. doi: 10.3389/frai.2021.681108 – year: 2022 ident: 10.1016/j.sigpro.2025.109930_b101 – start-page: 3754 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b107 article-title: Hodge-compositional edge Gaussian processes – volume: 87 start-page: 925 issue: 3 year: 2015 ident: 10.1016/j.sigpro.2025.109930_b171 article-title: Epidemic processes in complex networks publication-title: Rev. Modern Phys. doi: 10.1103/RevModPhys.87.925 – start-page: 9746 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b113 article-title: Hodge-aware contrastive learning – volume: 9 start-page: 432 issue: 3 year: 2008 ident: 10.1016/j.sigpro.2025.109930_b75 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics doi: 10.1093/biostatistics/kxm045 – year: 2017 ident: 10.1016/j.sigpro.2025.109930_b111 – ident: 10.1016/j.sigpro.2025.109930_b151 doi: 10.1145/2504435.2504442 – volume: 65 start-page: 686 issue: 3 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b17 article-title: What are higher-order networks? publication-title: SIAM Rev. doi: 10.1137/21M1414024 – year: 2020 ident: 10.1016/j.sigpro.2025.109930_b24 article-title: Hodge Laplacians on graphs publication-title: Siam Rev. doi: 10.1137/18M1223101 – year: 2022 ident: 10.1016/j.sigpro.2025.109930_b40 – volume: 36 start-page: 16 issue: 3 year: 2019 ident: 10.1016/j.sigpro.2025.109930_b71 article-title: Connecting the dots: Identifying network structure via graph signal processing publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2018.2890143 – volume: vol. 139 start-page: 9020 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b89 – volume: 61 start-page: 36 issue: 11 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b175 article-title: Semantic communications based on adaptive generative models and information bottleneck publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.005.2200829 – volume: 9 start-page: 329 year: 2023 ident: 10.1016/j.sigpro.2025.109930_b20 article-title: T-HGSP: Hypergraph signal processing using t-product tensor decompositions publication-title: IEEE Trans. Signal Inf. Process. over Networks doi: 10.1109/TSIPN.2023.3276687 – volume: 68 start-page: 2992 year: 2020 ident: 10.1016/j.sigpro.2025.109930_b44 article-title: Topological signal processing over simplicial complexes publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.2981920 – year: 2023 ident: 10.1016/j.sigpro.2025.109930_b106 article-title: NervePool: A simplicial pooling layer – start-page: 1 year: 2024 ident: 10.1016/j.sigpro.2025.109930_b76 article-title: Learning the topology of a simplicial complex using simplicial signals: A greedy approach – year: 2024 ident: 10.1016/j.sigpro.2025.109930_b84 article-title: Recovery of signals on a simplicial complex from subsampled neighbourhood aggregation publication-title: IEEE Signal Process. Lett. – start-page: 1558 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b57 article-title: Topological signal processing over cell complexes – volume: 35 start-page: 8940 year: 2022 ident: 10.1016/j.sigpro.2025.109930_b137 article-title: Time-conditioned dances with simplicial complexes: Zigzag filtration curve based supra-hodge convolution networks for time-series forecasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 15 start-page: 313 issue: 4 year: 2019 ident: 10.1016/j.sigpro.2025.109930_b15 article-title: From networks to optimal higher-order models of complex systems publication-title: Nat. Phys. doi: 10.1038/s41567-019-0459-y – volume: 40 start-page: 694 issue: 2 year: 2012 ident: 10.1016/j.sigpro.2025.109930_b124 article-title: Factor modeling for high-dimensional time series: Inference for the number of factors publication-title: Ann. Statist. doi: 10.1214/12-AOS970 – volume: 11 start-page: 774 issue: 6 year: 2017 ident: 10.1016/j.sigpro.2025.109930_b172 article-title: Graph filters and the Z-Laplacian publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2017.2730040 – start-page: 1 year: 2021 ident: 10.1016/j.sigpro.2025.109930_b117 article-title: Online non-linear topology identification from graph-connected time series |
| SSID | ssj0001360 |
| Score | 2.4707036 |
| Snippet | Developing methods to process irregularly structured data is crucial in applications like gene-regulatory, brain, power, and socioeconomic networks. Graphs... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 109930 |
| SubjectTerms | Graph machine learning Graph signal processing Hodge theory Network science Topological data analysis Topological deep learning Topological signal processing |
| Title | Topological signal processing and learning: Recent advances and future challenges |
| URI | https://dx.doi.org/10.1016/j.sigpro.2025.109930 |
| Volume | 233 |
| WOSCitedRecordID | wos001428541400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0165-1684 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001360 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZp0kN7KEkfNGlTdOitKNiWH1JvSUlpQwgpSWFvRtZj2VCcZR8h9NdnrJG8TreUtpCLMTaWd-cb5E-jb2YIeQ8znFLSOsYTZ1kuVMoaUVmmuQaCXyaZNb5ryWl1diZGI3kedLpz306galtxeyunDwo1XAOwu9TZf4C7HxQuwDmADkeAHY5_Bzy2PcB0x8m4Y5tTzAaI-YihU8QYxXDaq8xRCoAFm7HOSJcTjH1W5kMGe_HrkCvnWroJKsVuJgOhzzLE3u2sV9gcddVtYe3LTq9_Kt_7-8OR-rFQc9VLhXEfBL7gntzCjDZGwViMUGRFr48LYbO11BmMZJYFS0vsDxen4gyLYqxN6xhhuDoAq8HfO-he0tXBkmFL537B7Itu6NTvL3rGyh-RrawqJMx5W4dfj0cn_Zc65T6LvP8pMbXS6__W3_V76jKgI5fb5FlYR9BDxH-HbNj2OXk6qC75gnwbeAJFT6Ar2CggTaMnfKToBzT6gb-LfkBXfvCSfP98fPnpCwsdNJiGpeKCaVXq0gonhZFZoxqVNNzygjvtpIalgrSpcFxy55LGJLnLhTQmVUZVOi90WfFXZLO9bu1rQk0OXNPAQMqZPNOqMZnJC6cL3QiueblLWDROPcVCKXVUEF7VaMy6M2aNxtwlVbRgHcgekrgaQP_jk3v__eQb8mTln2_J5mK2tPvksb5ZTOazd8E77gA_zYAC |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+signal+processing+and+learning%3A+Recent+advances+and+future+challenges&rft.jtitle=Signal+processing&rft.au=Isufi%2C+Elvin&rft.au=Leus%2C+Geert&rft.au=Beferull-Lozano%2C+Baltasar&rft.au=Barbarossa%2C+Sergio&rft.date=2025-08-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.volume=233&rft_id=info:doi/10.1016%2Fj.sigpro.2025.109930&rft.externalDocID=S0165168425000453 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |